MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 44 (February 17, 2016)

David R. Wilkins

38. Scalar and Vector Products in Three Dimensions

38.1. The Length of Three-Dimensional Vectors

Let P_1 and P_2 be points in space, and let **u** denote the displacement vector P_1P_2 from the point P_1 to the point P_2 . If $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ then $\mathbf{u} = (u_x, u_y, u_z)$ where $u_x = x_2 - x_1$, $u_y = y_2 - y_1$ and $u_z = z_2 - z_1$. The *length* (or *magnitude*) of the vector **u** is defined to be the distance from the point P_1 to the point P_2 . This distance may be calculated using Pythagoras's Theorem. Let $Q = (x_2, y_2, z_1)$ and $R = (x_2, y_1, z_1)$. If the points P_1 and P_2 are distinct, and if $z_1 \neq z_2$, then the triangle P_1QP_2 is a right-angled triangle with hypotenuse P_1P_2 , and it follows from Pythagoras's Theorem that

$$P_1P_2^2 = P_1Q^2 + QP_2^2 = P_1Q^2 + (z_2 - z_1)^2.$$

This identity also holds when $P_1 = P_2$, and when $z_1 = z_2$, and therefore holds wherever the points P_1 and P_2 are located.

Similarly

$$P_1Q^2 = P_1R^2 + RQ^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

(since P_1RQ is a right-angled triangle with hypotenuse P_1Q whenever the points P_1 , R and Q are distinct), and therefore the length $|\mathbf{u}|$ of the displacement vector \mathbf{u} from the point P_1 to the point P_2 satisfies the equation

$$|\mathbf{u}|^2 = P_1 P_2^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

= $u_x^2 + u_y^2 + u_z^2$.

Note:

$$\overrightarrow{P_1R} = (x_2 - x_1, 0, 0), \quad \overrightarrow{RQ} = (0, y_2 - y_1, 0), \quad \overrightarrow{QP_2} = (0, 0, z_2 - z_1).$$

In general we define the *length*, or *magnitude*, $|\mathbf{v}|$ of any vector quantity \mathbf{v} by the formula

$$|\mathbf{v}|=\sqrt{v_x^2+v_y^2+v_z^2},$$

where $\mathbf{v} = (v_x, v_y, v_z)$. This ensures that the length of any displacement vector is equal to the distance between the two points that determine the displacement.

Example

The vector (3, 4, 12) is of length 13, since

$$3^2 + 4^2 + 12^2 = 5^2 + 12^2 = 13^2.$$

A vector whose length is equal to one is said to be a unit vector.

Let \mathbf{v} be a non-zero vector in three-dimensional space, and let t be a real number.

Note that if t > 0 then $t\mathbf{v}$ is a vector, pointing in the same direction as \mathbf{v} , whose length is obtained on multiplying the length of \mathbf{v} by the positive real number t.

Similarly if t < 0 then $t\mathbf{v}$ is a vector, pointing in the opposite direction to \mathbf{v} , whose length is obtained on multiplying the length of \mathbf{v} by the positive real number |t|.