MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 42 (February 10, 2016)

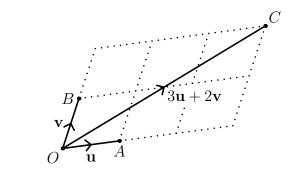
David R. Wilkins

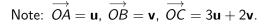
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in three-dimensional space. A vector \mathbf{v} is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ if there exist real numbers t_1, t_2, \dots, t_k such that

 $\mathbf{v} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k.$

Let O, A and B be distinct points of three-dimensional space that are not collinear (i.e., that do not all lie on any one line in that space). The displacement vector \overrightarrow{OP} of a point P in three-dimensional space is a linear combination of the displacement vectors \overrightarrow{OA} and \overrightarrow{OB} if and only if the point P lies in the unique plane that contains the points O, A and B.

36. Vectors in Three-Dimensional Space (continued)





36.6. Linear Dependence and Independence

Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are said to be be *linearly dependent* if there exist real numbers t_1, t_2, \dots, t_k , not all zero, such that

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0}.$$

If the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are not linearly dependent, then they are said to be *linearly independent*.

Note that if any of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k$ is the zero vector, then those vectors are linearly dependent. Indeed if $\mathbf{v}_i = \mathbf{0}$ then these vectors satisfy a relation of the form

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0}.$$

where $t_j = 0$ if $j \neq i$ and $t_i \neq 0$. We conclude that, in any list of linearly independent vectors, the vectors are all non-zero.

Also if any vector in the list $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is a scalar multiple of some other vector in the list then these vectors are linearly dependent. Indeed suppose that $\mathbf{v}_k = t\mathbf{v}_j$, where $j \neq k$. Then $t\mathbf{v}_j - \mathbf{v}_k = \mathbf{0}$, and thus

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0},$$

where $t_j = t$, $t_k = -1$ and $t_i = 0$ whenever *i* is distinct from both *j* and *k*.

If a vector \mathbf{v} is expressible as a linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ then the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}$ are linearly dependent. For there exist real numbers s_1, \ldots, s_k such that

$$\mathbf{v} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k.$$

But then

$$s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_k\mathbf{v}_k-\mathbf{v}=\mathbf{0}_k$$

Theorem 36.2

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be three vectors in three-dimensional space which are linearly independent. Then, given any vector \mathbf{s} , there exist unique real numbers p, q and r such that

 $\mathbf{s} = p\mathbf{u} + q\mathbf{v} + r\mathbf{w}.$

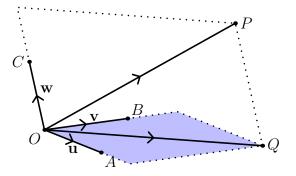
Proof

First we note that the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are all non-zero, and none of these vectors is a scalar multiple of another vector in the list. Let O denote the origin of a Cartesian coordinate system, and let A, B, C and P denote the points of three-dimensional space whose displacement vectors from the origin O are \mathbf{u} , \mathbf{v} , \mathbf{w} and \mathbf{s} respectively. The points O, A, B and C are then all distinct, and there is a unique plane which contains the three points O, A and B. This plane OAB consists of all points whose displacement vector from the origin is expressible in the form $p\mathbf{u} + q\mathbf{v}$ for some real numbers n and q Now the vector \mathbf{w} is not expressible as a linear combination of \mathbf{u} and \mathbf{v} , and therefore the point *C* does not belong to the plane *OAB*. Therefore the line parallel to *OC* that passes through the point *P* is not parallel to the plane *OAP*. This line therefore intersects the plane in a single point *Q*. Now the displacement vector of the point *Q* from the origin is of the form $\mathbf{s} - r\mathbf{w}$ for some uniquely-determined real number *r*. But it is also expressible in the form $p\mathbf{u} + q\mathbf{v}$ for some uniquely-determined real numbers *p* and *q*, because *Q* lies in the plane *OAB*. Thus there exist real numbers *p*, *q* and *r* such that $\mathbf{s} - r\mathbf{w} = p\mathbf{u} + q\mathbf{v}$. But then

$$\mathbf{s} = p\mathbf{u} + q\mathbf{v} + r\mathbf{w}.$$

Moreover the point Q and thus the real numbers p, q and r are uniquely determined by **s**, as required.

36. Vectors in Three-Dimensional Space (continued)



Note:

$$\overrightarrow{OP} = \mathbf{s} = 1.5 \,\mathbf{u} + 1.6 \,\mathbf{v} + 1.8 \,\mathbf{w},$$

$$\overrightarrow{OQ} = 1.5 \,\mathbf{u} + 1.6 \,\mathbf{v},$$

$$\overrightarrow{QP} = 1.8 \,\mathbf{w}.$$

It follows from this theorem that no linearly independent list of vectors in three-dimensional space can contain more than three vectors, since were there a fourth vector in the list, then it would be expressible as a linear combination of the other three, and the vectors would not then be linearly independent.

36.7. Line Segments

Let O be the origin of Cartesian coordinates in three-dimensional Euclidean space, and let P and Q be points of three-dimensional space with position vectors \mathbf{p} and \mathbf{q} respectively, where $\mathbf{p} = \overrightarrow{OP}$ and $\mathbf{q} = \overrightarrow{OQ}$. We consider how to specify, in vector notation, the line segment joining the point P to a point Q.

Let *R* be a point on the line segment *PQ* whose endpoints are *P* and *Q*. Then the vectors \overrightarrow{OP} and \overrightarrow{OR} are collinear, and indeed $\overrightarrow{PR} = t \overrightarrow{PQ}$ for some real number *t* satisfying $0 \le t \le 1$. Now $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR}$, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{PQ} = \mathbf{q} - \mathbf{p}$ Thus a point with position vector **r** lies on the line segment joining *P* to *Q* if and only if

$$\mathbf{r} = \mathbf{p} + t(\mathbf{q} - \mathbf{p})$$

for some real number t satisfying $0 \le t \le 1$. It follows that the set of position vectors of points that lie on the line segment with endpoints P and Q is

$$\{\mathbf{r}: \mathbf{r} = (1-t)\mathbf{p} + t\mathbf{q} \text{ for some } t \in \mathbb{R} \text{ satisfying } 0 \le t \le 1\}.$$

37. Real Vector Spaces

37.1. The Definition of a Real Vector Space

Definition

A real vector space consists of a set V on which are defined a binary operation of vector addition, adding any pair of elements \mathbf{v} and \mathbf{w} of V to yield an element $\mathbf{v} + \mathbf{w}$ of V, and an operation of multiplication-by-scalars, multiplying any element \mathbf{v} of V by any real number t to yield an element $t\mathbf{v}$ of V, where these operations of vector addition and multiplication satisfy the following axioms:—

37. Real Vector Spaces (continued)

$$\textbf{0} \ \mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \text{ for all } \mathbf{v}, \mathbf{w} \in V;$$

3
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;

- Solution is the exists a zero element 0 of V characterized by the property that v + 0 = 0 + v = v for all v ∈ V;
- given any element v ∈ V, there exists an element -v of V characterized by the property that v + (-v) = (-v) + v = 0,

3
$$t(\mathbf{v} + \mathbf{w}) = t\mathbf{v} + t\mathbf{w}$$
 for all $\mathbf{v}, \mathbf{w} \in V$ and for all real numbers t ;

- $(s+t)\mathbf{v} = s\mathbf{v} + t\mathbf{v}$ for all $\mathbf{v} \in V$ and for all real numbers s and t;
- $s(t\mathbf{v}) = (st)\mathbf{v}$ for all $\mathbf{v} \in V$ and for all real numbers s and t;
- **3** $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$.

The first four axioms in the definition of a vector space are equivalent to the requirement that a vector space be an Abelian group (or commutative group) with respect to the operation of vector addition. Thus a vector space is an Abelian group provided with an additional algebraic operation of multiplication-by-scalars that satisfies the last four axioms listed above.

All the real vector space axioms are satisfied by the set of vectors in three-dimensional Euclidean space, with the standard operations of vector addition and multiplication-by-scalars. Therefore vectors in three-dimensional space constitute a real vector space. There is a corresponding real vector space whose elements are vectors in the Euclidean plane. Cartesian coordinates of points of the plane are represented as ordered pairs of real numbers. Given points P_1 and P_2 of the plane, where

$$P_1 = (x_1, y_1)$$
 and $P_2 = (x_2, y_2)$,

the displacement vector $\overrightarrow{P_1P_2}$ is represented by the ordered pair defined so that

$$P_1P_2 = (x_2 - x_1, y_2 - y_1).$$

Vector addition and multiplication-by-scalars is defined for vectors in two dimensions in the obvious fashion, so that

$$(v_x, v_y) + (w_x, w_y) = (v_x + w_x, v_y + w_y)$$
 and $t(v_x, v_y) = (tv_x, tv_y)$

for all two-dimensional vectors (v_x, v_y) and (w_x, w_y) and for all real numbers *t*.

Example

Let *m* be a positive integer, and let V_m be the set of all polynomials with real coefficients consisting of the zero polynomial together with all non-zero polynomials whose degree does not exceed *m*. (The degree of a polynomial is defined only for non-zero polynomials: it is the degree of the highest term for which the corresponding coefficient is non-zero.) If p(x) and q(x) are polynomials with real coefficients belonging to V_m then so is p(x) + q(x). Also tp(x) is a polynomial belonging to V_m for all (constant) real numbers *t*. The operation of addition of two polynomials belonging to V_m to yield another polynomial belonging to V_m can be considered to be an operation of "vector addition" on the set V_m . Similarly the operation of multiplying a polynomial by a constant real number can be considered to be an operation of "multiplication by scalars". The set V_m , with all these algebraic operations, is a real vector space: all the axioms in the definition of a vector space as satisfied when the non-zero "vectors" are polynomials whose degree does not exceed m.

37.2. Linear Dependence and Independence in Vector Spaces

Let V be a real vector space. Elements $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ of V are said to be be *linearly dependent* if there exist real numbers t_1, t_2, \dots, t_k , not all zero, such that

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0}.$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are not linearly dependent, then they are said to be *linearly independent*.

Note that if any of the elements $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k$ of V is the zero element of V then those elements of V are linearly dependent. Indeed if $\mathbf{v}_i = \mathbf{0}$ then these vectors satisfy a relation of the form

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0}$$

where $t_j = 0$ if $j \neq i$ and $t_i \neq 0$. We conclude that, in any list of linearly independent elements of a real vector space V, the vectors are all non-zero.

If an element **v** of a real vector space V is expressible as a linear combination of elements $\mathbf{v}_1, \ldots, \mathbf{v}_k$ of V then the elements $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}$ are linearly dependent. For there exist real numbers s_1, \ldots, s_k such that

$$\mathbf{v} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k.$$

But then

$$s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_k\mathbf{v}_k-\mathbf{v}=\mathbf{0}.$$