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36. Vectors in Three-Dimensional Space

36.1. Vector Quantities

Vector quantities are objects that have attributes of magnitude and
direction. Many physical quantities, such as velocity, acceleration,
force, electric field and magnetic field are examples of vector
quantities. Displacements between points of space may also be
represented using vectors.
Quantities that do not have a sense of direction associated with
them are known as scalar quantities. Such physical quantities as
temperature and energy are scalar quantities. Scalar quantities are
usually represented by real numbers.
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36.2. Displacement Vectors

Points of three-dimensional space may be represented, in a
Cartesian coordinate system, by ordered triples (x , y , z) of real
numbers. Two ordered triples (x1, y1, z1) and (x2, y2, z2) of real
numbers represent the same point of three-dimensional space if
and only if x1 = x2, y1 = y2 and z1 = z2. The point whose
Cartesian coordinates are given by the ordered triple (0, 0, 0) is
referred to as the origin of the Cartesian coordinate system.



36. Vectors in Three-Dimensional Space (continued)

It is usual to employ a Coordinate system such that the points
(1, 0, 0), (0, 1, 0) and (0, 0, 1) are situated at a unit distance from
the origin (0, 0, 0), and so that the three lines that join the origin
to these points are mutually perpendicular. Moreover it is
customary to require that if the thumb of your right hand points in
the direction from the origin to the point (1, 0, 0), and if the first
finger of that hand points in the direction from the origin to the
point (0, 1, 0), and if the second finger of that hand points in a
direction perpendicular to the directions of the thumb and first
finger, then that second finger points in the direction from the
origin to the point (0, 0, 1). (Thus if, at a point on the surface of
the earth, away from the north and south pole, the point (1, 0, 0) is
located to the east of the origin, and the point (0, 1, 0) is located
to the north of the origin, then the point (0, 0, 1) will be located
above the origin.
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Let P1, P2, P3 and P4 denote four points of three-dimensional
space, represented in a Cartesian coordinate system by ordered
triples as follows:

P1 = (x1, y1, z1), P2 = (x2, y2, z2),

P3 = (x3, y3, z3), P4 = (x4, y4, z4).

The displacement vector
−→

P1,P2 from the point P1 to the point P2

measures the distance and the direction in which one would have
to travel in order to get from P1 to P2. This displacement vector
may be represented by an ordered triple as follows:

−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1).
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The displacement vector
−→
P3P4 is equal to the displacement vector

−→
P1P2 if and only if

x2 − x1 = x4 − x3,

y2 − y1 = y4 − y3,

z2 − z1 = z4 − z3,

in which case we represent the fact that these two displacement
vectors are equal by writing

−→
P1P2 =

−→
P3P4.
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Note:
−→
P1P2 =

−→
P3P4 and therefore

x2 − x1 = x4 − x3,

y2 − y1 = y4 − y3,

z2 − z1 = z4 − z3,
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Now

x2 − x1 = x4 − x3

⇐⇒ x2 + x3 = x1 + x4

⇐⇒ x3 − x1 = x4 − x2

Thus

x2 − x1 = x4 − x3 if and only if x3 − x1 = x4 − x2.

Similarly

y2 − y1 = y4 − y3 if and only if y3 − y1 = y4 − y2,

z2 − z1 = z4 − z3 if and only if z3 − z1 = z4 − z2.
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Geometrically, these two displacement vectors are equal if and only
if P1, P2, P4 and P3 are the vertices of a parallelogram in
three-dimensional space, in which case

x3 − x1 = x4 − x2,

y3 − y1 = y4 − y2,

z3 − z1 = z4 − z2,

and thus −→
P1P3 =

−→
P2P4.
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Note:
x2 − x1 = x4 − x3,
y2 − y1 = y4 − y3,
z2 − z1 = z4 − z3,

 ⇐⇒


x3 − x1 = x4 − x2,
y3 − y1 = y4 − y2,
z3 − z1 = z4 − z2,

 .
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These displacement vectors may be regarded as objects in their
own right, and denoted by symbols of their own: we use a symbol

such as u to denote the displacement vector
−→
P1P2 from the point

P1 to the point P2, and we write u = (ux , uy , uz) where
ux = x2 − x1, uy = y2 − y1 and uz = z2 − z1.

Remark
It is traditional in mathematics texts to denote vectors with
boldface letters (e.g., u, v, w). The traditional way of writing the
equivalent on paper or blackboards is to put a tilde underneath the
letter (e.g., u

∼
, v

∼
, w

∼
). When vectors are taught at second level,

they are often written with an arrow on top (e.g., ~u, ~v , ~w).
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Vectors are used to record displacements and positions. Let P1 and
P2 be points of three-dimensional Euclidean space with Cartesian
coordinates (x1, y1, z1) and (x2, y2, z2) respectively. The

displacement vector
−→
P1P2 from P1 to P2 is the vector with

components
(x2 − x1, y2 − y1, z2 − z1)

that contains the information necessary to determine the distance
of P2 from P1 and also the direction of P2 in relation to P1.

A Cartesian coordinate system in three-dimensional space
determines an origin O that is the point whose Cartesian
coordinates are (0, 0, 0). The position of a point P of the plane

with respect to the origin is specified by a vector r, where r =
−→
OP.

This vector r is the position vector of the point P. It represents
the displacement of the point P from the origin of the Cartesian
coordinate system.
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O = (0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

P = (5,−2, 3)

−→
OP

Note: The position vector
−→
OP of the point P, where

P = (5,−2, 3).
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36.3. The Parallelogram Law of Vector Addition

Let P1, P2, P3 and P4 denote four points of three-dimensional

space, located such that
−→
P1P2 =

−→
P3P4. Then (as we have seen)

−→
P1P3 =

−→
P2P4 and the geometrical figure P1P2P4P3 is a

parallelogram. Let

u =
−→
P1P2 =

−→
P3P4, v =

−→
P1P3 =

−→
P2P4.

Let
P1 = (x1, y1, z1), P2 = (x2, y2, z2),

P3 = (x3, y3, z3), P4 = (x4, y4, z4).
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Then u = (ux , uy , uz) and v = (vx , vy , vz), where

ux = x2 − x1 = x4 − x3,

uy = y2 − y1 = y4 − y3,

uz = z2 − z1 = z4 − z3,

vx = x3 − x1 = x4 − x2,

vy = y3 − y1 = y4 − y2,

vz = z3 − z1 = z4 − z2,

Let e =
−→
P1P4. Then e = (ex , ey , ez), where

ex = x4 − x1 = ux + vx ,

ey = y4 − y1 = uy + vy ,

ez = z4 − z1 = uz + vz ,
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Note: u =
−→
P1P2 =

−→
P3P4 and v =

−→
P1P3 =

−→
P2P4, and

ux = x2 − x1 = x4 − x3 &c.,

vx = x3 − x1 = x4 − x2 &c.,

ex = x4 − x1 = ux + vx &c..
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We say that the vector e is the sum of the vectors u and v, and
denote this fact by writing

e = u + v.

This rule for addition of vectors is known as the parallelogram rule,
due to its association with the geometry of parallelograms. Note
that vectors are added, by adding together the corresponding
components of the two vectors. For example,

(0, 3, 2) + (4, 8,−5) = (4, 11,−3).
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Note that −→
AB +

−→
BC =

−→
AC

for all points A, B and C of space.
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The identity
u + v = v + u

holds for all vectors u and v in three-dimensional space.
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The identity u + v = v + u may be interpreted geometrically as

follows. Let u =
−→
AB and v =

−→
BC , where A, B and C are points of

three-dimensional space. Then there exists a point F in

three-dimensional space such that
−→
AF =

−→
BC . Then ABCF is a

parallelogram, and
−→
FC =

−→
AB. It follows that

−→
AC =

−→
AB +

−→
BC = u + v,

−→
AC =

−→
AF +

−→
FC = v + u.
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v
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In Cartesian coordinates

u + v = v + u = (ux + vx , uy + vy , uz + vz),

where
u = (ux , uy , uz) and v = (vx , vy , vz).
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Let u, v and w be vectors in three-dimensional space. Then

(u + v) + w = u + (v + w).

This identity may be verified algebraically as follows. Let

u = (ux , uy , uz), v = (vx , vy , vz), w = (wx ,wy ,wz).

Then

u+v = (ux+vx , uy+vy , uz+vz), v+w = (vx+wx , vy+wy , vz+wz),

and therefore

(u + v) + w = (ux + vx + wx , uy + vy + wy , uz + vz + wz)

= u + (v + w).
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This identity can be interpreted geometrically as follows. Let A be
a point of three-dimensional space. Then there exist points B, C
and D of three-dimensional space such that

u =
−→
AB, v =

−→
BC , w =

−→
CD.

Then

−→
AC =

−→
AB +

−→
BC = u + v and

−→
BD =

−→
BC +

−→
CD = v + w,

and hence

−→
AD =

−→
AC +

−→
CD = (u + v) + w,

−→
AD =

−→
AB +

−→
BD = u + (v + w).

and thus

(u + v) + w =
−→
AD = u + (v + w).
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Note:

(u + v) + w =
−→
AC +

−→
CD =

−→
AD =

−→
AB +

−→
BD

= u + (v + w).
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The zero vector 0 is the vector (0, 0, 0) that represents the
displacement from any point in space to itself. The zero vector 0
has the property that

u + 0 = u

for all vectors u.

Given any vector u, there exists a vector, denoted by −u,
characterized by the property that

u + (−u) = 0.

If u = (ux , uy , uz), then −u = (−ux ,−uy ,−uz).
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We have shown that addition of vectors satisfies the Commutative
Law and the Associative Law.
Given three vectors u, v, w, we define their sum u + v + w so that

u + v + w = (u + v) + w = u + (v + w).

More generally, let v1, v2, . . . , vk be vectors in three-dimensional
space, and let P0 be a point of three-dimensional space. Then

there exist points P1,P2, . . . ,Pk such that vj =
−→

Pj−1,Pj for
j = 1, 2, . . . , n. We define the sum of the vectors v1, v2, . . . , vk
such that

v1 + v2 + . . . + vk =
−→
P0Pk .
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Note: case k = 9, with

S =
−→
P0P9 = v1 + v2 + · · ·+ v9,

where vj =
−→

Pj−1Pj for j = 1, 2, . . . , 9.
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Lemma 36.1

Let v1, v2, . . . , vk be vectors in three-dimensional space, where

vj = (v
(j)
x , v

(j)
y , v

(j)
z ) for j = 1, 2, . . . , n, and let

S = v1 + v2 + · · ·+ vk .

Then S = (Sx ,Sy ,Sz), where

Sx =
n∑

j−1
v
(j)
x , Sy =

n∑
j−1

v
(j)
y , Sz =

n∑
j−1

v
(j)
z .
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Proof
Let points P0 be a point in three-dimensional space, and let points

P1,P2, . . . ,Pk be successively constructed such that vj =
−→

Pj−1Pj

for j = 1, 2, . . . , k . Let Pj = (xj , yj , zj) for j = 0, 1, 2, . . . , k. Then

vj = (xj − xj−1, yj − yj−1, zj − zj−1)

for j = 1, 2, . . . , k . Thus if

S = v1 + v2 + · · ·+ vk ,

then

S =
−→
P0Pk = (xk − x0, yk − y0, zk − z0) = (Sx , Sy , Sz)

where
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Sx = xk − x0 =
k∑

j=1

(xj − xj−1) =
n∑

j−1
v
(j)
x ,

Sy = yk − y0 =
k∑

j=1

(yj − yj−1) =
n∑

j−1
v
(j)
y ,

Sz = zk − z0 =
k∑

j=1

(zj − zj−1) =
n∑

j−1
v
(j)
z ,

as required.
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36.4. Scalar Multiples of Vectors

Let P0,P1,P2,P3, . . . be an infinite sequence of points in
three-dimensional space, where

−→
P0P1 =

−→
P1P2 =

−→
P2P3 = · · · .

Let v =
−→
P0P1, and let v = (vx , vy , vz). Then

−→
PjPj+1 = v for all

positive integers j . It then follows immediately from Lemma 36.1
that

v =
−→
P0P1 = (vx , vy , vz)

v + v =
−→
P0P2 = (2vx , 2vy , 2vz)

v + v + v =
−→
P0P3 = (3vx , 3vy , 3vz)

v + v + v + v =
−→
P0P4 = (4vx , 4vy , 4vz)

...
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It follows that

v + v = 2v, v + v + v = 3v, v + v + v + v = 4v, &c.,

where

kv =
−→
P0Pk = (kvx , kvy , kvz)

for all non-negative integers k.
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More generally, let v be a vector, represented by the ordered triple
(vx , vy , vz), and let t be a real number. We define tv to be the
vector represented by the ordered triple (tvx , tvy , tvz). Thus tv is
the vector obtained on multiplying each of the components of v by
the real number t. The vector tv is said to be a scalar multiple of
the vector v, obtained by multiplying the vector v by the scalar t.

It follows from this definition of scalar multiples of vectors that

(s + t)u = su + tu, t(u + v) = tu + tv, and s(tu) = (st)u,

for all vectors u and v and real numbers s and t. Also 1v = v for
all vectors v.
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