
MA2C03 Mathematics
School of Mathematics, Trinity College

Hilary Term 2016
Lecture 39 (February 3, 2016)

David R. Wilkins



35. Prim’s Algorithm

35. Prim’s Algorithm

There is an alternative algorithm for constructing a spanning tree
of minimal cost for a connected graph. This algorithm is known as
Prim’s Algorithm. It was first discovered by Vojtěch Jarńık and
published by him in 1930. It was subsequently rediscovered and
published by Robert Prim and published by him in 1957. It was
again rediscovered by Edsger Dijkstra in 1959.
A connected graph is given. A cost function is defined on the
edges of the graph. To apply Prim’s Algorithm, one first orders the
edges of the graph so that if e and e ′ are edges of the graph, and
if their costs c(e) and c(e ′) satisfy c(e) < c(e ′), then e precedes
e ′ in the ordering.



35. Prim’s Algorithm (continued)

A vertex of the graph is chosen. Each successive iteration of the
algorithm we have a subgraph that is a tree. We then identify the
first edge in the chosen ordering which has one vertex included in
the current subgraph and the other vertex not included in that
subgraph. We then add that edge to the current subgraph,
together with the endpoint of that edge that is not in the current
subgraph. The resultant subgraph of the given connected graph
will then be a tree. We continue this process until we can proceed
no further. At that point all vertices of the given connected graph
will be in the subgraph, and therefore the subgraph at that
iteration will be a spanning tree. It can be shown that this
spanning tree minimises cost amongst all spanning trees of the
given connected graph.



35. Prim’s Algorithm (continued)

Example
We apply Prim’s Algorithm to find a minimal spanning tree for the
following graph:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

(Costs are specified next to the relevant edge.)



35. Prim’s Algorithm (continued)

We order the edges so that the associated costs are
non-decreasing. The edges are listed in order with their associated
costs as follows:—

AD BC DE BD CH DH AB
2 3 4 5 5 5 6

CD DF EF AE FH FG GH
6 6 7 8 9 12 13

We build up an acyclic subgraph of the given connected graph as
follows. We start with a subgraph consisting of a single vertex. We
then build up in the graph a succession of subgraphs that are trees
(i.e., connected acyclic graphs). At each iteration we add to the
current subtree the first edge in the above list that joins a vertex in
that subtree to a vertex not in that subtree. We continue till we
can go no further. We will then have constructed a spanning tree
for the given connected graph.



35. Prim’s Algorithm (continued)

We start with the vertex A. In the first iteration we add the edge
AD, obtaining the tree in the connected graph indicated by the
thick edge in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

It is not then possible, applying Prim’s Algorithm, to add the edge
BC , because adding this edge would result in an acyclic subgraph.
The first edge in the list that we can add is the edge DE .



35. Prim’s Algorithm (continued)

We add the edge DE to obtain the tree in the given connected
graph represented by the thick edges in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

In the next step we add the edge BD of cost 5. We can then add
the edge BC of cost 3 and the edge CH of cost 5 to obtain the
following tree:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The edges of the tree obtained after applying the first five steps of
Prim’s algorithm are the same as those obtained after applying the
first five steps of Kruskal’s Algorithm.



35. Prim’s Algorithm (continued)

At the final two iterations we successively add the edges DF and
FG so as to obtain a minimal spanning tree that in this example is
identical to that generated by Kruskal’s Algorithm.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The minimal spanning tree generated by Prim’s Algorithm thus
consists of the vertices A, B, C , D, E , F G and H of the given
connected graph, together with the edges e1, e2, e3, e4, e5, e6 and
e7, where e1, . . . , e7 denote the edges of the minimal spanning tree
listed in the order in which they were added to the acyclic graph,
so that

e1 = AD, e2 = DE , e3 = BD, e4 = BC ,

e5 = CH, e6 = DF , e7 = FG .

We refer to the spanning tree generated by Prim’s Algorithm as
the Prim spanning tree.



35. Prim’s Algorithm (continued)

We now consider an example to show how successive modifications
can convert an arbitrary spanning tree for the connected graph into
the Prim spanning tree, whilst ensuring that the cost of each
successive modified spanning tree does not exceed that of the
spanning tree from which it is derived.

Now after the jth iteration of Prim’s Algorithm results in a
subgraph of the given connected graph that is a tree with edges
e1, e2, . . . , ej . This tree has j + 1 vertices. We refer to those
vertices as the visited vertices after the jth iteration. The
remaining vertices of the given connected graph are then referred
to as the unvisited vertices after the jth iteration.



35. Prim’s Algorithm (continued)

We start with the spanning tree T , where T consists of all vertices
of the original graph together with the edges AD, DE , BD, CD,
DH, FH and GH. It is represented by the edges with circles in the
following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The first three edges added to the Prim spanning tree are also
included in the spanning tree just specified. These edges are AD,
DE and BD, which are the edges e1, e2 and e3 respectively are the
first three edges added to the Prim spanning tree. Now the edge
BC is the fourth edge e4 added to the Prim spanning tree.
Addition of this edge to the tree T creates a circuit BCDB.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Let the vertices A, B, D, E incident on the edges AD, DE , BD be
referred to as the visited vertices after the first three iterations of
Prim’s Algorithm (with the given ordering of edges). Let the
remaining vertices C , F , G , H be referred to as the unvisited
vertices after the first three iterations.

(‘Visited vertices’ are indicated by solid dark red disks, and
‘unvisited vertices’ by light cyan disks bordered in black on the
following diagrams.)



35. Prim’s Algorithm (continued)

The circuit BCDB cannot be contained within the Prim spanning
tree, because a spanning tree has no circuits. The edge BC joins
the visited vertex B to the unvisited vertex C . Some other edge of
the circuit must also join a visited vertex to an unvisited vertex. At
this stage of the example under discussion that edge is the edge
CD.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Had the cost of CD been less than that of BC then Prim’s
Algorithm would have added CD to the Prim spanning tree in place
of BC . This did not happen. Therefore the cost of BC does not
exceed that of CD, and indeed the costs of BC and CD are 3 and
6 respectively. We now modify the tree T , replacing CD by BC , to
obtain the tree T ′ indicated by circles in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The modified spanning tree T ′ includes the edges e1, e2, e3 and e4
of the Prim spanning tree, and its cost does not exceed that of the
tree T .

Now the fifth edge e5 added to the Prim spanning tree is the edge
CH. Addition of this edge to the tree T ′ creates a circuit CHDBC
in the resultant subgraph.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Now the visited vertices after the fourth iteration of the Kruskal
algorithm are A, B, C , D and E , and the unvisited vertices are F ,
G and H. The edge CH joins a visited vertex to an unvisited
vertex. At least one other edge of the circuit CHDBC must also
join a visited vertex to an unvisited vertex. The edge DH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Had the cost of DH been less than that of CH then Prim’s
Algorithm would have added DH to the Prim spanning tree in
place of CH. This did not happen. Therefore the cost of CH does
not exceed that of DH, and indeed the costs of CH and DH are 5
and 5 respectively. We now modify the tree T ′, replacing DH by
CH, to obtain the tree T ′′ indicated by circles in the following
diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The modified spanning tree T ′′ includes the edges e1, e2, e3, e4
and e5 of the Prim spanning tree, and its cost does not exceed
that of the tree T ′. It follows that the cost of T ′′ does not exceed
that of T .

Now the sixth edge e6 added to the Prim spanning tree is the edge
DF . Addition of this edge to the tree T ′′ creates a circuit
DFHCBD in the resultant subgraph.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Now the visited vertices after the fifth iteration of the Kruskal
algorithm are A, B, C , D, E and H, and the unvisited vertices are
F and G . The edge DF joins a visited vertex to an unvisited
vertex. At least one other edge of the circuit DFHCBD must also
join a visited vertex to an unvisited vertex. The edge FH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Had the cost of FH been less than that of DF then Prim’s
Algorithm would have added FH to the Prim spanning tree in place
of DF . This did not happen. Therefore the cost of DF does not
exceed that of FH, and indeed the costs of DF and FH are 6 and 9
respectively. We now modify the tree T ′′, replacing FH by DF , to
obtain the tree T ′′′ indicated by circles in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The modified spanning tree T ′′′ includes the edges e1, e2, e3, e4,
e5 and e6 of the Prim spanning tree, and its cost does not exceed
that of the tree T ′′. It follows that the cost of T ′′′ does not exceed
that of T .

Now the seventh edge e7 added to the Prim spanning tree is the
edge FG . Addition of this edge to the tree T ′′′ creates a circuit
FGHCBDF in the resultant subgraph.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Now the visited vertices after the sixth iteration of the Kruskal
algorithm are A, B, C , D, E , F and H, and sole unvisited vertex is
G . The edge FG joins a visited vertex to an unvisited vertex. At
least one other edge of the circuit FGHCBDF must also join a
visited vertex to an unvisited vertex. The edge GH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

Had the cost of GH been less than that of FG then Prim’s
Algorithm would have added GH to the Prim spanning tree in
place of FG . This did not happen. Therefore the cost of FG does
not exceed that of GH, and indeed the costs of FG and GH are 12
and 13 respectively. We now modify the tree T ′′′, replacing GH by
DF , to obtain the tree T ′′′′ indicated by circles in the following
diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



35. Prim’s Algorithm (continued)

The modified spanning tree T ′′′′ includes all seven edges of the
Prim spanning tree, and its cost does not exceed that of the
tree T ′′′. It follows that the cost of T ′′′′ does not exceed that of
T . But T ′′′′ actually coincides with the Prim spanning tree. Thus
the cost of the Prim spanning tree P does not exceed that of the
tree T .

Given any spanning tree in the given connected graph, an
analogous procedure can be followed to modify it in stages,
without increasing cost at any stage, so that the ultimate
modification yields the Prim spanning tree itself. The following
proposition establishes this fact.



35. Prim’s Algorithm (continued)

Proposition 35.1

Let a connected graph be given, together with a cost function
defined on its set of edges, and let Prim’s Algorithm be applied to
determine a spanning tree P. Let e1, e2, . . . , em denote the edges
of the spanning tree P generated by Prim’s Algorithm, listed in the
order in which they are added to that spanning tree. Let T be a
spanning tree in the connected graph that does not coincide with
the spanning tree P resulting from application of Prim’s algorithm,
and let k be the smallest positive integer for which T does not
include the edge ek of P. Then there exists a spanning tree T ′,
where the cost of T ′ does not exceed that of T , such that T ′

includes the edges e1, e2, . . . , ek of P.



35. Prim’s Algorithm (continued)

Proof
Let us refer to the spanning tree P generated by the application of
Prim’s algorithm as the Prim spanning tree. This spanning tree
has m edges, and therefore the given connected graph has m + 1
vertices (see Theorem 32.3). Moreover any connected subgraph of
the given connected graph with m edges and m + 1 vertices is a
spanning tree for that graph (see Corollary 33.1).

The spanning tree T is a connected subgraph of the given
connected graph containing all the vertices of that given connected
graph. Therefore there is a path in T between any two vertices of
T . It follows that if any edge is added to T then the resultant
graph will contain a circuit.



35. Prim’s Algorithm (continued)

Let the vertices of the given connected graph that are incident on
the edges e1, e2, . . . , ek−1 be referred to as visited vertices, and let
the remaining vertices of the graph be referred to as unvisited
vertices. (The visited vertices are those that have been ‘visited’
once the first k − 1 edges have been added to the Prim spanning
tree.)

Prim’s Algorithm then ensures that the edge ek joins a visited
vertex to an unvisited vertex. Moreover the cost of the edge ek is
less than or equal to the cost of any other edge of the given
connected graph that joins a visited to an unvisited vertex.



35. Prim’s Algorithm (continued)

Now suppose that we add the edge ek to T to obtain a subgraph
of the given connected graph which we denote by T + ek . This
graph T + ek has a circuit. This circuit includes the edge ek and
therefore there are both visited and unvisited vertices included in
the circuit. The circuit must therefore include at least one other
edge e ′ besides the edge ek that joins a visited vertex to an
unvisited vertex.

Now the edge ek added to the Prim spanning tree at the kth stage
must minimize cost amongst all edges of the given connected
graph that join a visited vertex to an unvisited vertex. Therefore
the costs c(ek) and c(e ′) of the edges ek and e ′ respectively satisfy
c(ek) ≤ c(e ′).



35. Prim’s Algorithm (continued)

Let T ′ be the subgraph of the given connected graph obtained by
removing the edge e ′ from T + ek . Then T ′ is connected, because
the edge e ′ is included in a circuit within the graph T + ek . Also
T ′ has m edges and m + 1 vertices. It is therefore a spanning tree.
The cost of T ′ is less than or equal to that of T . And the spanning
tree T ′ contains the edges e1, e2, . . . , ek . The result follows.



35. Prim’s Algorithm (continued)

Theorem 35.1

Let a connected graph be given, together with a cost function
defined on its set of edges, and let Prim’s Algorithm be applied to
determine a spanning tree. Then the cost of the spanning tree
generated by Prim’s Algorithm is less than or equal to that of
every other spanning tree for the given connected graph.

Proof
Let e1, e2, . . . , em be the edges of the spanning tree P generated by
Prim’s Algorithm, listed in the order in which they are added to
that spanning tree through the application of that algorithm.
Because the number of spanning trees of the given connected
graph is finite, there is a well-defined real number that is the
minimum cost of any spanning tree of the given graph.



35. Prim’s Algorithm (continued)

There then exists a spanning tree T with minimal cost which
maximizes the number k for which T contains edges
e1, e2, . . . , ek−1 of the spanning tree P generated by Prim’s
Algorithm. It then follows from Proposition 35.1, together with the
maximality of k , that the spanning tree T must include all the
edges of the Prim spanning tree P and must therefore coincide
with the Prim spanning tree. Therefore the Prim spanning tree has
minimal cost, as required.



35. Prim’s Algorithm (continued)

Remark
Let a connected graph be given, together with a cost function on
the vertices of the graph. Suppose that no two edges of this graph
have the same cost. Then there is only one ordering of the edges
of that graph consistent with the requirement that whenever e and
e ′ are edges of the graph whose costs c(e) and c(e ′) satisfy
c(e) < c(e ′) then e < e ′. We can apply Prim’s Algorithm to
construct a minimal spanning tree. We refer to this minimal
spanning tree as the Prim spanning tree.



35. Prim’s Algorithm (continued)

Let T be a spanning tree that is distinct from the Prim spanning
tree. If we apply to T the procedure used in the proof of
Proposition 35.1 to construct a modified spanning tree T ′, then, in
this situation where no two edges of the given connected graph
have the same cost, an appropriate edge of T is replaced in T ′ by
an edge of the Prim spanning tree whose cost is strictly lower, and
therefore the cost of the modified spanning tree T ′ is strictly less
than that of the tree T . It follows that if T does not coincide with
the Prim spanning tree then T cannot itself be a minimal spanning
tree.

We conclude from this that if no two edges of the given connected
graph have the same cost then the minimal spanning tree of that
graph is uniquely determined.


	Forests and Trees
	Spanning Trees
	Kruskal's Algorithm
	Prim's Algorithm

