MA2C03 Mathematics
School of Mathematics, Trinity College

Hilary Term 2016
Lecture 38 (February 3, 2016)

David R. Wilkins



34. Kruskal's Algorithm (continued)

We now analyze Kruskal's Algorithm in order to show that if that
algorithm is applied to a given connected graph, then the spanning
tree generated by that algorithm minimizes cost.

First we recall the specification of the algorithm.

We are given a connected graph. Let V denote the set of vertices
of the given graph, and let E denote the set of edges of the given
graph. There is a cost function c¢: E — R defined on the set of
edges of the given graph. The cost of any spanning tree is defined
to be the sum of the costs of the edges of that spanning tree. The
objective is to find a spanning tree of the connected graph whose
cost is less than or equal to that of every other spanning tree of
the connected graph.



34. Kruskal's Algorithm (continued)

To implement Kruskal's Algorithm we order the edges of the given
connected graph in a finite sequence, or queue, so that, given any
pair of edges e and €’ for which c(e) < c(€’), the edge e precedes
the edge €’ in the queue.

We start with a acyclic subgraph of the given connected graph
consisting of all the vertices of the given graph. We build up an
acyclic subgraph through the addition of edges. This initial
subgraph has no edges. We then take edges in order from the the
front of the queue. Having taken an edge from the front of the
queue, we determine whether or not addition of that edge to the
current acyclic subgraph would create a circuit in the resultant
graph. If a circuit would be created, then we discard the edge.
Otherwise we add the edge to the acyclic subgraph so as to create
a larger acyclic subgraph. We continue until the queue has been
exhausted.



34. Kruskal's Algorithm (continued)

Proposition 34.1

Let a connected graph be given, together with a cost function
defined on its set of edges, and let Kruskal’'s Algorithm be applied
to determine a spanning tree K. Let T be a spanning tree in the
connected graph that does not coincide with the spanning tree K
resulting from application of Kruskal's Algorithm. Then there
exists a spanning tree T', where the cost of T’ does not exceed
that of T, such that T' includes more edges of K than does T.

v




34. Kruskal's Algorithm (continued)

Proof

Let us refer to the spanning tree of the given connected graph
constructed using Kruskal's Algorithm as the Kruskal spanning
tree.

Let the given connected graph have m + 1 vertices. Then any
spanning tree for this graph has m edges and m + 1 vertices (see
Theorem 32.3). Moreover any connected subgraph of the given
connected graph with m edges and m + 1 vertices is a spanning
tree for that graph (see Corollary 33.1).

Let the edges of the Kruskal spanning tree be denoted by
e1, e, ..., emn, where the order of these edges is the order
established by the queue constructed in applying the algorithm.



34. Kruskal's Algorithm (continued)

Now let T be an spanning tree for the given connected graph that
is distinct from the Kruskal spanning tree. Both spanning trees
have the same number of edges. It follows that the Kruskal
spanning tree must have at least one edge that does not belong to
the spanning tree T. Therefore there exists some integer k
satisfying 0 < k < m such that ¢; is an edge of T whenever i < k
but ey is not an edge of T.

Because T is connected, there is a path in T between any two
vertices of T. It follows that if the edge ey is added to T, then the
resultant graph contains a circuit. This circuit must include the
edge e,. But it cannot be contained within the Kruskal spanning
tree, because the Kruskal spanning tree is acyclic. Therefore the
circuit must include at least one edge €’ that does not belong to
the Kruskal spanning tree.



34. Kruskal's Algorithm (continued)

Now there cannot exist any circuit in the subgraph of the given
connected graph consisting of the vertices of that graph, the edge
e’ and the edges e; for i < k, because that subgraph is contained
in the spanning tree T. Had it been the case that c(€’) < c(ek),
then ¢’ would have preceded e in the queue in the application of
Kruskal's algorithm, and it would accordingly have been added to
the Kruskal spanning tree. Because ¢’ was not added to the
Kruskal spanning true, it must be the case that c(e’) > c(ek).



34. Kruskal's Algorithm (continued)

Suppose we modify the spanning tree T by adding the edge ex and
then removing the edge €’ to obtain a subgraph T’ of the given
connected graph. Once the edge e, is added, the resultant graph
contains a circuit which includes the edge €’. The removal of €
then breaks the circuit, leaving behind a connected graph T’ with
m edges and m + 1 vertices. This connected graph T’ must be a
spanning tree of the given connected graph. Its cost cannot exceed
that of the graph T, because c(¢e’) > c(ex). Moreover T’ includes
edges the e; of the Kruskal spanning tree corresponding to all
positive integers i satisfying i < k. Moreover the spanning tree T’
contains more edges of the Kruskal spanning tree than does the
spanning tree T, because an edge e’ that does not belong to the
Kruskal spanning tree has been replaced by an edge e, that does.
The result follows. |



34. Kruskal's Algorithm (continued)

Theorem 34.1

Let a connected graph be given, together with a cost function
defined on its set of edges, and let Kruskal’'s Algorithm be applied
to determine a spanning tree K. Then the cost of the spanning
tree generated by Kruskal's Algorithm is less than or equal to that
of every other spanning tree for the given connected graph.

Proof

The number of possible spanning trees of the connected graph is
finite. There is therefore a well-defined real number that is the
minimum of the costs of all spanning trees for the given connected
graph. Moreover there exists a spanning tree T with this minimum
cost that has the maximum possible number of edges in common
with the spanning tree K generated by Kruskal's Algorithm. But
then T must coincide with K.



34. Kruskal's Algorithm (continued)

Indeed if it were the case that T did not coincide with K, then
Proposition 34.1 would guarantee the existence of a spanning tree
T', where the cost of T’ does not exceed that of T, such that T’
includes more edges of K than does T. The cost of T’ would then
also be the minimum of the costs of all spanning trees for the
given connected graph. But the existence of such a spanning tree
T’ would contradict the choice of T as the spanning tree of
minimum cost with the maximum possible number of edges in
common with K. We conclude therefore that T must coincide
with K, and therefore the cost of K is less than or equal to every
other spanning tree. The result follows. |}



	Forests and Trees
	Spanning Trees
	Kruskal's Algorithm

