
MA2C03 Mathematics
School of Mathematics, Trinity College

Hilary Term 2016
Lecture 36 (January 27, 2016)

David R. Wilkins



34. Kruskal’s Algorithm (continued)

Example
We apply Kruskal’s Algorithm to find a minimal spanning tree for
the following graph:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

(Costs are specified next to the relevant edge.)



34. Kruskal’s Algorithm (continued)

We order the edges so that the associated costs are
non-decreasing. The edges are listed in order with their associated
costs as follows:—

AD BC DE BD CH DH AB
2 3 4 5 5 5 6

CD DF EF AE FH FG GH
6 6 7 8 9 12 13

We build up an acyclic subgraph of the given connected graph as
follows. We start with an acyclic subgraph consisting of the
vertices of the original graph. We then treat the above list of edges
as a queue, taking edges in turn from the head of the queue, and
add them to the subgraph if and only if doing so does not create
any circuits in the subgraph.



34. Kruskal’s Algorithm (continued)

In the first five iterations we add the edges AD, BC , DE , BD and
CH. No circuit is created at any stage, and the resultant acyclic
subgraph is represented by the vertices and thick edges in the
following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Adding the edge DH would create a circuit DBCHD; therefore the
edge DH is discarded. Adding the edge AB would create a circuit
ABDA; therefore the edge AB is discarded. Adding the edge CD
would create a circuit DBCD; therefore the edge CD is discarded.



34. Kruskal’s Algorithm (continued)

The next edge in the queue is DF . We can add this edge to the
acyclic subgraph. However the edges EF , AE and FH must be
discarded, since adding any of those edges to the subgraph would
create a circuit. The current acyclic subgraph is now as follows:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

We add the edge FG to the subgraph, as this is the next in the
queue that may be added without creating a circuit in subgraph.
We cannot then add GH. Thus the minimal spanning tree
generated by Kruskal’s Algorithm is as follows:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

The minimal spanning tree generated by Kruskal’s Algorithm thus
consists of the vertices A, B, C , D, E , F G and H of the given
connected graph, together with the edges e1, e2, e3, e4, e5, e6 and
e7, where e1, . . . , e7 denote the edges of the minimal spanning tree
listed in the order in which they were added to the acyclic graph,
so that

e1 = AD, e2 = BC , e3 = DE , e4 = BD,

e5 = CH, e6 = DF , e7 = FG .

We refer to the spanning tree generated by Kruskal’s Algorithm as
the Kruskal tree.



34. Kruskal’s Algorithm (continued)

However we have not yet shown that the Kruskal tree has minimal
cost.

We claim that, given any integer k satisfying 0 < k ≤ 7, and given
any spanning tree that includes edges ei of the Kruskal tree
whenever i < k but does not include the edge ek , this spanning
tree can be modified to yield a spanning tree that includes edges ei
of the Kruskal tree for i ≤ k , where the cost of the modified tree
does not exceed that of the given spanning tree.



34. Kruskal’s Algorithm (continued)

We consider the example below. The spanning tree T represented
by the edges with circles includes edges e1, e2, e3 and e4 of the
Kruskal tree (i.e., the edges AD, BC , DE and BD), but does not
include the edge e5 where e5 = CH:–

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

Adding any edge to a spanning tree creates a circuit. In particular,
if we add the edge CH to the spanning tree T , then the resultant
subgraph of the original connected graph must contain a circuit. In
the present example the circuit created is CHFDBC . Now not all
edges of that circuit can belong to the Kruskal tree, because trees
cannot contain circuits. Therefore at least one edge of the circuit
CHFDBC does not belong to the Kruskal tree.



34. Kruskal’s Algorithm (continued)

In the example under consideration, the edge FH does not belong
to the Kruskal tree. Now if the cost of FH were less than that of
CH then the Kruskal algorithm would have required the edge FH
to be added to the Kruskal tree before CH. It follows that the cost
of the edge FH cannot be less than CH. Indeed FH has cost 9,
whereas CH has cost 5.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

It follows that we can modify the spanning tree T to obtain a new
spanning tree T ′, where T ′ includes the edges e1, e2, e3, e4 and e5
of the Kruskal tree, and where the cost of T ′ does not exceed that
of T . The resultant tree T ′ consists of the edges with circles in
the following figure:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

The spanning tree T ′ includes edges ei of the Kruskal spanning
tree for i < 7 but does not include the edge e7, where e7 = FG .
Now addition of the edge e7 to the spanning tree creates a circuit
FGHCBDF in the resultant subgraph. This circuit cannot consist
entirely of edges of the Kruskal tree. Therefore at least one edge of
the circuit does not belong to the Kruskal tree. That edge is GH.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13



34. Kruskal’s Algorithm (continued)

The cost of the edge GH cannot exceed that of the edge e7,
because otherwise GH would have been added to the Kruskal tree
before FG was considered in the application of Kruskal’s
Algorithm. Therefore replacement of GH by FG results in a
spanning tree T ′′ whose cost does not exceed that of T ′. This
spanning tree T ′′ then includes all the edges of the Kruskal tree,
and must therefore be identical to the Kruskal tree. It follows that
the cost of the Kruskal tree cannot exceed that of the tree T ′, and
therefore cannot exceed that of the tree T .

We claim that the procedure just described can be applied to
demonstrate that the cost of the Kruskal tree is less than or equal
to the cost of any spanning tree for the given connected graph.


	Forests and Trees
	Spanning Trees
	Kruskal's Algorithm

