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33. Spanning Trees

33. Spanning Trees

Definition

A spanning tree in a graph (V ,E ) is a subgraph of the graph
(V ,E ) that is a tree which includes every vertex of the graph
(V ,E ).



33. Spanning Trees (continued)

Theorem 33.1

Every connected graph contains a spanning tree

Proof
Let (V ,E ) be a connected graph. The collection consisting of all
the connected subgraphs of (V ,E ) with the same vertices as
(V ,E ) is non-empty, since it includes the graph (V ,E ) itself.
Choose a subgraph (V ,E ′) in this collection such that the number
#(E ′) of edges in this subgraph is less than or equal to the
number of edges of any other subgraph in the collection. We claim
that (V ,E ′) is the required spanning tree. Clearly (V ,E ′) is
connected and has the same vertices as V . It only remains to show
that (V ,E ′) does not contain any circuits.
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Suppose that (V ,E ′) were to contain a circuit. Let v w be an edge
traversed by some circuit in (V ,E ′), and let E ′′ = E ′ \ {v w}.
There would then exist a walk from v to w whose edges belong to
E ′′. (Such a walk could consist of the remaining edges of the
circuit traversing the edge v w .) Moreover every vertex in V could
be joined to v by a walk whose edges belong to E ′, and could
therefore be joined either to v or to w by a walk whose edges
belong to E ′′. It would then follow that every vertex of V could be
joined to v by a walk whose edges belong to E ′′, and therefore the
graph (V ,E ′′) would be a connected subgraph of (V ,E ) with the
same vertices as (V ,E ) and with fewer edges than (V ,E ′), which
is impossible. We conclude therefore that the subgraph (V ,E ′) of
(V ,E ) cannot contain any circuits and is therefore the required
spanning tree.



33. Spanning Trees (continued)

Corollary 33.1

Let (V ,E ) be a connected graph with #(V ) vertices and #(E )
edges. Suppose that #(E ) = #(V )− 1. Then the graph (V ,E ) is
a tree.

Proof
A connected graph (V ,E ) contains a spanning tree, by
Theorem 33.1. This spanning tree must have #(V )− 1 edges, by
Theorem 32.3. But the spanning tree then has the same number
of edges as the original graph (V ,E ), and must therefore be the
same as this graph. It follows that the graph (V ,E ) must be a
tree, since it is a spanning tree of itself.



33. Spanning Trees (continued)

The proof of Theorem 33.1 corresponds to an algorithm for finding
a spanning tree for a connected graph. The algorithm proceeds as
follows. We start with a subgraph consisting of all the vertices and
vertices of the original graph. If that subgraph contains a circuit,
then we can remove one of the edges of that circuit. The resultant
subgraph will still be a connected subgraph of the original graph
that includes all the vertices of the original graph. We can then
iteratively break remaining circuits in the subgraph, one by one, so
that, at each stage of the algorithm, we have a current subgraph
that is connected and includes all the vertices of the original graph.
We proceed in this fashion until the current subgraph has no more
circuits to break. The subgraph will then be the required spanning
tree.



33. Spanning Trees (continued)

Example
We find a spanning tree for the connected graph with vertices A,
B, C , D, E , F , G , H, and edges AB, AC , B C , B D, B E , C F ,
D E , D F , D G , D H, E H, F G and F H. This graph is pictured
below.

AA BB

CC DD EE

FF GG HH
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Starting with the current subgraph equal to the given graph, we
note that the subgraph has a circuit B C F D B. We may therefore
remove one of the edges of this circuit. Let us therefore remove
the edge B D from the subgraph. The resultant subgraph is then
represented by the thick edges of the diagram below:—

AA BB

CC DD EE

FF GG HH

This is the current subgraph for the second removal.
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We then break the circuit D F G D of the current subgraph by
removing the edge D G . The resulting subgraph is then the current
subgraph for the third removal, and is pictured below.

AA BB

CC DD EE

FF GG HH
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We then break the circuit AB C A of the current subgraph by
removing the edge AC . The resulting subgraph is then the current
subgraph for the fourth removal, and is pictured below.

AA BB

CC DD EE

FF GG HH
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We then break the circuit D F G H D of the current subgraph by
removing the edge G H. The resulting subgraph is then the current
subgraph for the fifth removal, and is pictured below.

AA BB

CC DD EE

FF GG HH
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We then break the circuit B C F D H E B of the current subgraph
by removing the edge E H. The resulting subgraph is then the
current subgraph for the sixth removal, and is pictured below.

AA BB

CC DD EE

FF GG HH



33. Spanning Trees (continued)

Finally break the circuit B C F D E B of the current subgraph by
removing the edge D F . The resulting subgraph has no circuits,
but is connected and includes all the vertices of the given graph. It
is thus a spanning tree for the given graph. This spanning tree is
then the subgraph with edges AB, B C , B E , C F , D E , D H, F G
represented by the thick edges of the following diagram:—

AA BB

CC DD EE

FF GG HH
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There is an alternative algorithm for finding spanning trees of
connected graphs. The procedure is to start with current subgraph
of the given graph consisting of just a single vertex. We then add
edges one by one, together with any extra vertices incident on
those added edges, so as to ensure that, at each stage, the current
subgraph is acyclic. When we reach the stage that no further
edges can be added to the subgraph without introducing a circuit
then the subgraph must be connected and must include all the
vertices of the given graph. The subgraph at the final stage must
therefore be a spanning tree of the given graph. We illustrate this
algorithm by showing how to apply it to find a spanning tree of the
graph considered in the previous example.
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Example
We seek a spanning tree of the graph with vertices A, B, C , D, E ,
F , G , H, and edges AB, AC , B C , B D, B E , C F , D E , D F ,
D G , D H, E H, F G and F H. This graph is pictured below.

AA BB

CC DD EE

FF GG HH
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We first add the edge B E to obtain the acyclic graph pictured
below.

AA BB

CC DD EE

FF GG HH
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Let us then successively add the edges D F , D G and D H (which
we can do) to build up the acyclic subgraph, so as to obtain the
subgraph pictured below.

AA BB

CC DD EE

FF GG HH

It would not then be possible to proceed by adding any of the
edges F G or G H to the acyclic subgraph at the following stage.
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We can, for example, add the edge D E . Adding this edge joins the
two components of the acyclic subgraph so as to obtain the acyclic
subgraph pictured below.

AA BB

CC DD EE

FF GG HH

It would not then be possible to proceed by adding any of the
edges B D, E H, F G or G H to the acyclic subgraph at the
following stage.
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The possibilities for the remaining two steps can then be
enumerated as follows:—

(i) add AB and then AC ;

(ii) add AB and then B C ;

(iii) add AB and then C F ;

(iv) add AC and then AB;

(v) add AC and then C B;

(vi) add AC and then C F ;

(vii) add B C and then AB;

(viii) add B C and then AC ;

(ix) add C F and then AB;

(x) add C F and then AC .
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For example, opting for possibility (vii) results in the subgraph with
vertices A, B, C , D, E , F , G , H and edges AB, B C , B E , D E ,
D F , D G and D H. This subgraph is pictured below.

AA BB

CC DD EE

FF GG HH
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We now consider the reasons why adding edges to an acyclic
subgraph of a given connected graph so as to ensure that the
resulting graph remains acyclic is guaranteed to arrive at a
spanning tree for the given connected graph.

Suppose that some connected graph is given and that an acyclic
subgraph of the given graph has been constructed. Suppose first
that the acyclic subgraph does not contain all the vertices of the
given graph. Let v be a vertex of the given connected graph that
does not belong to the acyclic subgraph. Then, if any edge
incident on the vertex v is added to the acyclic subgraph, the
resulting subgraph will be acyclic, because the addition of an edge
incident on the vertex v cannot result in the formation of a cycle in
the resulting larger subgraph.
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Next suppose that we have constructed an acyclic subgraph that
contains all the vertices of the given connected graph. If this
acyclic subgraph is connected then it is a spanning tree. Otherwise
there will exist a walk in the given connected graph from a vertex
in one connected component of the acyclic subgraph to a vertex in
some other connected component. This walk must contain at least
one edge whose endpoints are in distinct connected components of
the acyclic subgraph. If this edge is added to the acyclic subgraph
the resultant subgraph will be acyclic. (The addition of the edge
with reduce the number of connected components of the acyclic
subgraph by one.)
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These observations ensure that if we are given a connected graph,
if we have constructed an acyclic subgraph, and if it is impossible
to add an edge to that acyclic subgraph so as to ensure that the
resulting subgraph is also acyclic, then the acyclic subgraph that
has been constructed is a spanning tree for the given connected
graph.
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This methodology leads to an alternative proof of Theorem 33.1,
which asserts that any connected graph has a spanning tree.
Indeed any connected graph must contain an acyclic subgraph,
where the number of edges in that acyclic subgraph is greater than
or equal to the number of edges in any other acyclic subgraph of
the given connected graph. It will not then be possible to add an
edge to the acyclic subgraph so as to obtain a larger acyclic
subgraph. It follows that the acylic subgraph with the maximum
possible number of edges must be a spanning tree of the given
connected graph.
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