Course MA2C03: Michaelmas Term 2014. Assignment I.

To be handed in by Friday 21st November, 2014. Please include both name and student number on any work handed in.

1. Let A, B and C be sets. Prove that

 $(A \setminus B) \cap C = A \cap (C \setminus B).$

- 2. Let S be the relation on the set Z of integers, where integers x and y satisfy xSy if and only if $x^2 + y^2$ is divisible by 2. Determine
 - (i) whether or not the relation S is *reflexive*,
 - (ii) whether or not the relation S is symmetric,
 - (iii) whether or not the relation S is *anti-symmetric*,
 - (iv) whether or not the relation S is *transitive*,
 - (v) whether or not the relation S is a *equivalence relation*,
 - (vi) whether or not the relation S is a *partial order*.

[Justify your answers with short proofs and/or counterexamples.]

- 3. Let $f: [0,3] \to [0,9]$ be the function defined so that $f(x) = x^3 3x^2 + 3x$ for all $x \in [0,3]$. Determine whether or not this function is injective, and whether or not it is surjective, giving brief reasons for your answers. (Note that [0,3] denotes the set of all *real numbers* between 0 and 3 inclusive.)
- 4. Let \mathbb{R} be the set of all real numbers, and let * be the binary operation on \mathbb{R} defined such that

$$x * y = 3xy + 2x + 2y + \frac{2}{3}.$$

for all $x, y \in \mathbb{R}$. Prove that $(\mathbb{R}, *)$ is a monoid. What is the identity element of this monoid? Determine which elements of the monoid are invertible. Is the monoid $(\mathbb{R}, *)$ a group?