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2 Abstract Algebra

2.1 Binary Operations on Sets

Definition A binary operation ∗ on a set A is an operation which, when
applied to any elements x and y of the set A, yields an element x ∗ y of A.

Example The arithmetic operations of addition, subtraction and multipli-
cation are binary operations on the set R of real numbers which, when ap-
plied to real numbers x and y, yield the real numbers x + y, x − y and xy
respectively.

However division is not a binary operation on the set of real numbers,
since the quotient x/y is not defined when y = 0. (Under a binary operation ∗
on a set must determine an element x∗ y of the set for every pair of elements
x and y of that set.)

2.2 Commutative Binary Operations

Definition A binary operation ∗ on a set A is said to be commutative if
x ∗ y = y ∗ x for all elements x and y of A.

Example The operations of addition and multiplication on the set R of real
numbers are commutative, since x+ y = y + x and x× y = y× x for all real
numbers x and y. However the operation of subtraction is not commutative,
since x− y 6= y− x in general. (Indeed the identity x− y = y− x holds only
when x = y.)

2.3 Associative Binary Operations

Let ∗ be a binary operation on a set A. Given any three elements x, y and
z of a set A, the binary operation, applied to the elements x ∗ y and z of A,
yields an element (x ∗ y) ∗ z of A, and, applied to the elements x and y ∗ z of
A, yields an element x ∗ (y ∗ z) of A.

Definition A binary operation ∗ on a set A is said to be associative if
(x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y and z of A.

Example The operations of addition and multiplication on the set R of real
numbers are associative, since (x+y) + z = x+ (y+ z) and (x×y)× z = x×
(y× z) for all real numbers x, y and z. However the operation of subtraction
is not associative. For example (1− 2)− 3 = −4, but 1− (2− 3) = 2.
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When a binary operation ∗ is associative it is not necessary to retain
the parentheses in expressions such as (x ∗ y) ∗ z or x ∗ (y ∗ z). These two
expressions may both be written without ambiguity as x ∗ y ∗ z.

2.4 Semigroups

Definition A semigroup consists of a set on which is defined an associative
binary operation.

We may denote by (A, ∗) a semigroup consisting of a set A together with
an associative binary operation ∗ on A.

Definition A semigroup (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of natural numbers, with the operation of addition, is a
commutative semigroup, as is the set of natural numbers with the operation
of multiplication.

Let (A, ∗) be a semigroup. Given any element a of A, we define

a1 = a,

a2 = a ∗ a,
a3 = a ∗ a2 = a ∗ (a ∗ a),

a4 = a ∗ a3 = a ∗ (a ∗ (a ∗ a)),

a5 = a ∗ a4 = a ∗ (a ∗ (a ∗ (a ∗ a))),
...

In general we define an recursively for all natural numbers n so that a1 = a
and an = a ∗ an−1 whenever n > 1.

Remark In the case of the semigroup consisting of the set of natural num-
bers with the operation of multiplication, the value of ‘an’ given by the above
rule is the nth power of a natural number a. However in the case of the semi-
group consisting of the set of natural numbers with the operation of addition
it is not the nth power of a, but is na.

Theorem 2.1 Let (A, ∗) be a semigroup, and let a be an element of A. Then
am ∗ an = am+n for all natural numbers m and n.
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Proof We prove this theorem by induction on m.
Now it follows immediately from the definition of an+1 that a ∗ an = a1+n

for all natural numbers n. Thus the theorem is true in the case when m = 1.
Suppose that the required result is true in the case when m = s for some

natural number s, so that as ∗ an = as+n for all natural numbers n. Then

as+1 ∗ an = (a ∗ as) ∗ an = a ∗ (as ∗ an) = a ∗ as+n = as+1+n

for all natural numbers n. Thus if the required result is true when m = s
then it is also true when m = s + 1. We conclude using the Principle of
Mathematical Induction that the identity am∗an = am+n holds for all natural
numbers m and n, as required.

Theorem 2.2 Let (A, ∗) be a semigroup, and let a be an element of A. Then
(am)n = amn for all natural numbers m and n.

Proof The result may be proved by induction on the natural number n.
The identity (am)n = amn clearly holds whenever n = 1. Suppose that
s is a natural number with the property that (am)s = ams for all natural
numbers m. Then

(am)s+1 = (am)s ∗ am = ams ∗ am = ams+m = am(s+1).

Thus if the identity (am)n = amn holds when n = s then it also holds when
n = s + 1. We conclude from the Principle of Mathematical Induction that
this identity holds for all natural numbers n.

Remark Note that the above proof made use of the fact that the binary
operation on a semigroup is associative.

2.5 The General Associative Law

Let (A, ∗) be a semigroup, and let x, y, z and w be elements of A. We can use
the associative property of ∗ to show that the value of a product involving
x, y, z, w is independent of the manner in which that product is bracketed,
though it generally depends on the order in which x, y, z and w occur in that
product (unless that binary operation is also commutative). For example,

(x ∗ (y ∗ z)) ∗ w = ((x ∗ y) ∗ z) ∗ w
= (x ∗ y) ∗ (z ∗ w)

= x ∗ (y ∗ (z ∗ w))

= x ∗ ((y ∗ z) ∗ w)
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All the above products may therefore be denoted without ambiguity by the
expression x ∗ y ∗ z ∗ w from which the parentheses have been dropped.

The analogous property holds for products involving five or more elements
of the semigroup.

In any semigroup, the value of a product of three or more elements of the
semigroup depends in general on the order in which those elements occur in
the product (unless the binary operation is commutative), but the value of
the product is independent of the manner in which the product is bracketed.
This general result is often referred to as the General Associative Law, and
can be proved using induction on the number of elements that occur in the
product.

2.6 Identity elements

Definition Let (A, ∗) be a semigroup. An element e of A is said to be an
identity element for the binary operation ∗ if e∗x = x∗e = x for all elements
x of A.

Example The number 1 is an identity element for the operation of multi-
plication on the set N of natural numbers.

Example The number 0 is an identity element for the operation of addition
on the set Z of integers.

Theorem 2.3 A binary operation on a set cannot have more than one iden-
tity element.

Proof Let e and f be identity elements for a binary operation ∗ on a set A.
Then e = e∗f = f . Thus there cannot be more than one identity element.

2.7 Monoids

Definition A monoid consists of a set on which is defined an associative
binary operation with an identity element.

We see immediately from the above definition that a semigroup is a
monoid if and only if it has an identity element.

Definition A monoid (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

27



Example The set N of natural numbers with the operation of multiplica-
tion is a commutative monoid. Indeed the operation of multiplication is
both commutative and associative, and the identity element is the natural
number 1.

Example The set N of natural numbers with the operation of addition is
not a monoid, since there is no identity element for the operation of addition
that belongs to the set of natural numbers.

Let a be an element of a monoid (A, ∗). We define a0 = e, where e is the
identity element.

Theorem 2.4 Let (A, ∗) be a monoid, and let a be an element of A. Then
am ∗ an = am+n for all non-negative integers m and n.

Proof Any monoid is a semigroup. It therefore follows from Theorem 2.1
that am ∗ an = am+n when m > 0 and n > 0. It also follows directly from
the definition of the identity element that the result is also true if m = 0 or
if n = 0.

Theorem 2.5 Let (A, ∗) be a monoid, and let a be an element of A. Then
(am)n = amn for all non-negative integers m and n.

Proof It follows directly from Theorem 2.2 that (am)n = amn whenever m
and n are both positive. But this identity holds also when m or n is zero,
since both sides of the identity are then equal to the identity element of the
monoid.

2.8 Inverses

Definition Let (A, ∗) be a monoid with identity element e, and let x be an
element of A. An element y of A is said to be the inverse of x if x ∗ y =
y ∗x = e. An element x of A is said to be invertible if there exists an element
of A which is an inverse of x.

Theorem 2.6 An element of a monoid can have at most one inverse.

Proof Let (A, ∗) be a monoid with identity element e, and let x, y and z be
elements of A. Suppose that x ∗ y = y ∗ x = e and x ∗ z = z ∗ x = e. Then

y = y ∗ e = y ∗ (x ∗ z) = (y ∗ x) ∗ z = e ∗ z = z,

and thus y = z. Thus an element of a monoid cannot have more than one
inverse.
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Remark The above proof shows in fact that if x is an element of a monoid
(A, ∗), and if y and z are elements of A satisfying y ∗ x = x ∗ z = e, where e
is the identity element of the monoid, then y = z.

Let (A, ∗) be a monoid, and let x be an invertible element of A. We
shall denote the inverse of x by x−1. (This inverse element x−1 is uniquely
determined by x, by Theorem 2.6.)

Theorem 2.7 Let (A, ∗) be a monoid, and let x and y be invertible elements
of A. Then x ∗ y is also invertible, and (x ∗ y)−1 = y−1 ∗ x−1.

Proof Let e denote the identity element of the monoid. Then x ∗ x−1 =
x−1 ∗ x = e and y ∗ y−1 = y−1 ∗ y = e, and therefore

(x ∗ y) ∗ (y−1 ∗ x−1) = ((x ∗ y) ∗ y−1) ∗ x−1 = (x ∗ (y ∗ y−1)) ∗ x−1

= (x ∗ e) ∗ x−1 = x ∗ x−1 = e,

(y−1 ∗ x−1) ∗ (x ∗ y) = y−1 ∗ (x−1 ∗ (x ∗ y)) = y−1 ∗ ((x−1 ∗ x) ∗ y)

= y−1 ∗ (e ∗ y) = y−1 ∗ y = e.

and thus the element y−1 ∗ x−1 has the properties required of an inverse of
the element x∗y. We conclude that x∗y is indeed invertible, and (x∗y)−1 =
y−1 ∗ x−1.

Theorem 2.8 Let (A, ∗) be a monoid, let a and b be elements of A, and let
x be an invertible element of A. Then a = b ∗ x if and only if b = a ∗ x−1.
Similarly a = x ∗ b if and only if b = x−1 ∗ a.

Proof Let e denote the identity element of the monoid. Suppose that a =
b ∗ x. Then

a ∗ x−1 = (b ∗ x) ∗ x−1 = b ∗ (x ∗ x−1) = b ∗ e = b.

Conversely, if b = a ∗ x−1, then

b ∗ x = (a ∗ x−1) ∗ x = a ∗ (x−1 ∗ x) = a ∗ e = a.

Similarly if a = x ∗ b then

x−1 ∗ a = x−1 ∗ (x ∗ b) = (x−1 ∗ x) ∗ b = e ∗ b = b,

and, conversely, if b = x−1 ∗ a then

x ∗ b = x ∗ (x−1 ∗ a) = (x ∗ x−1) ∗ a = e ∗ a = a.
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Let (A, ∗) be a monoid, and let a be an invertible element of A. We
extend the definition of an to negative integers n by defining an to be the
inverse (aq)−1 of aq whenever q > 0 and n = −q.

Theorem 2.9 Let (A, ∗) be a monoid, and let a be an invertible element of
A. Then am ∗ an = am+n for all integers m and n.

Proof The proof breaks down into a case-by-case analysis, depending on the
signs of the integers m and n.

The appropriate definitions ensure that the identity am ∗an = am+n holds
if m = 0 or if n = 0.

The result has already been verified if both m and n are positive (see
Theorem 2.1 and Theorem 2.4).

Suppose that m and n are both negative. Then am = (a−m)−1, an =
(a−n)−1 and am+n = (a−(m+n))−1. Now a−n ∗ a−m = a−n−m = a−(m+n). It
follows from Theorem 2.7 that

am+n = (a−(m+n))−1 = (a−n ∗ a−m)−1 = (a−m)−1 ∗ (a−n)−1 = am ∗ an.

The only remaining cases to consider are those when m and n have dif-
ferent signs.

Let p and q be non-negative integers. Now ap+q = ap ∗ aq = aq ∗ ap. It
follows from Theorem 2.8 that

ap = ap+q ∗ a−q = a−q ∗ ap+q, aq = ap+q ∗ a−p = a−p ∗ ap+q,

and hence

a−p = aq ∗ a−(p+q) = a−(p+q) ∗ aq, a−q = ap ∗ a−(p+q) = a−(p+q) ∗ ap.

Suppose that m < 0, n > 0 and m + n ≥ 0. On setting p = −m and
q = m + n we see that am+n = aq = a−p ∗ ap+q = am ∗ an. Next suppose
that m < 0, n > 0 and m + n < 0. On setting p = −m − n and q = n
we see that am+n = a−p = a−(p+q) ∗ aq = am ∗ an. Next suppose that
m > 0, n < 0 and m + n ≥ 0. On setting p = m + n and q = −n we
see that am+n = ap = ap+q ∗ a−q = am ∗ an. Finally suppose that m > 0,
n < 0 and m + n < 0. On setting p = m and q = −m − n we see that
am+n = a−q = ap ∗ a−(p+q) = am ∗ an. The result has now been verified for all
integers m and n, as required.

Theorem 2.10 Let (A, ∗) be a monoid, and let a be an invertible element
of A. Then (am)n = amn for all integers m and n.
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Proof Let m be an integer. First we prove by induction on n that (am)n =
amn for all positive integers n. The result clearly holds when n = 1. Suppose
(am)s = ams for some positive integer s. It then follows from Theorem 2.9
that

(am)s+1 = (am)s ∗ am = ams ∗ am = am(s+1).

It follows from the Principle of Mathematical Induction that (am)n = amn

for all positive integers n. The result is also true when n = 0, since both
sides of the identity are then equal to the identity element of the monoid.
Finally suppose that n is a negative integer. Then n = −q for some positive
integer q, and (am)q = amq. On taking the inverses of both sides of this
identity, we find that

(am)n = ((am)q)−1 = (amq)−1 = a−mq = amn,

as required. We can now conclude that the identity (am)n = amn holds for
all integers m and n.

2.9 Groups

Definition A group consists of a set A together with a binary operation ∗
on A with the following properties:—

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all elements x, y and z of A (i.e., the
operation ∗ is associative);

(ii) there exists an element e of A with the property that e ∗ x = x ∗ e = x
for all elements x of A (i.e., there exists an identity element e for the
binary operation ∗ on A);

(iii) given any element x of A, there exists an element y of A satisfying
x ∗ y = y ∗ x = e (i.e., every element of A is invertible).

We see immediately from this definition that a group can be characterized
as a monoid in which every element is invertible.

Definition A group (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of integers with the operation of addition is a commutative
group.

Example The set of real numbers with the operation of addition is a com-
mutative group.
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Example The set of non-zero real numbers with the operation of multipli-
cation is a commutative group.

Example The set of integers with the operation of multiplication is not a
group, since not every element is invertible. Indeed the only integers that
are invertible are +1 and −1.

Example Let n be a natural number, and let

Zn = {0, 1, . . . , n− 1}.

Any integer k may be expressed uniquely in the form k = qn + r for some
integers q and r with 0 ≤ r < n. (When k is positive, q and r are the quotient
and remainder respectively, when k is divided by n in integer arithmetic.)
Then r is the unique element of Zn for which k − r is divisible by n. In
particular, given any elements x and y of Zn, there exist unique elements s
and p of Zn such that x + y − s and xy − p are divisible by n. We define
x ⊕n y = s and x ⊗n y = p. Then ⊕n and ⊗n are binary operations on the
set Zn.

We show that the binary operation ⊕n is associative. Let x, y and z be
integers belonging to Zn, and let u = x⊕n y and v = y⊕n z. Then x+ y− u
and y + z − v are both divisible by n. Now

(u + z)− (x + v) = (y + z − v)− (x + y − u).

It follows that (u+ z)− (x+ v) is divisible by n, and hence u⊕n z = x⊕n v.
Thus (x⊕n y)⊕n z = x⊕n (y ⊕n z).

We also show that the binary operation ⊗n is associative. Let x, y and z
be integers belonging to Zn, and let p = x⊗n y and q = y⊗n z. Then xy− p
and yz − q are both divisible by n. Now

pz − xq = x(yz − q)− (xy − p)z.

It follows that pz − xq is divisible by n, and hence p ⊗n z = x ⊗n q. Thus
(x⊗n y)⊗n z = x⊗n (y ⊗n z).

Now 0 ⊕n x = x ⊕n 0 = x and 1 ⊗n x = x ⊗n 1 = x for all x ∈ Zn. It
follows that (Zn,⊕n) is a monoid with identity element 0, and (Zn,⊗n) is a
monoid with identity element 1.

Every element x of the monoid (Zn,⊕n) is invertible: the inverse of x is
n− x if x 6= 0, and is 0 if x = 0. Thus (Zn,⊕n) is a group.

However (Zn,⊗n) is not a group if n > 1. Indeed 0 is not an invertible
element, since 0⊗n x = 0 for all elements x of Zn, and therefore there cannot
exist any element x of Zn for which 0⊗n x = 1.
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It can be shown that an element x of (Zn,⊗n) is invertible in this monoid
if and only if the highest common factor of x and n is equal to 1. It follows
from this that the non-zero elements of Zn constitute a group under ⊗n if
and only if the natural number n is a prime number.

Let us consider the particular case when n = 9. The ‘multiplication table’
for the monoid (Z9,⊗9) is the following:—

⊗9 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

From this table we see that the invertible elements are 1, 2, 4, 5, 7 and 8.
Indeed 1⊗9 1 = 1, 2⊗9 5 = 1, 4⊗9 7 = 1, 8⊗9 8 = 1.

2.10 Homomorphisms and Isomorphisms

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f :A → B from A to B is said to be a homomorphism if f(x ∗ y) =
f(x) ∗ f(y) for all elements x and y of A.

Example Let q be an integer, and let f :Z→ Z be a the function from the
set of integers to itself defined by f(n) = qn for all integers n. Then f is a
homomorphism from the group (Z,+) to itself, since

f(m + n) = q(m + n) = qm + qn = f(m) + f(n)

for all integers m and n.

Example Let R∗ denote the set of non-zero real numbers, let a be a non-
zero real number, and let f :Z → R∗ be the function defined by f(n) = an

for all integers m and n. Then f :Z → R∗ is a homomorphism from the
group (Z,+) of integers under addition to the group (R∗,×) of non-zero real
numbers under multiplication, since

f(m + n) = am+n = aman = f(m)f(n)

for all integers m and n.
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Example This last example can be generalized. Let a be an invertible
element of a monoid (A, ∗), and let f :Z → A be the function from Z to
A defined by f(n) = an. Then this function is a homomorphism from the
group (Z,+) of integers under addition to the monoid (A, ∗) since it follows
from Theorem 2.9 that

f(m + n) = am+n = am ∗ an = f(m) ∗ f(n)

for all integers m and n.

We recall that a function f :A → B is said to be injective if distinct
elements of A get mapped to distinct elements of B (i.e., if x and y are
elements of A and if x 6= y then f(x) 6= f(y)). Also a function f :A → B is
said to be surjective if each element of B is the image f(a) of at least one
element a of A. A function f :A → B is said to be bijective if it is both
injective and surjective. One can prove that a function f :A → B has a
well-defined inverse f−1:B → A if and only if it is bijective.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f :A → B from A to B is said to be an isomorphism if it is both a
homomorphism and a bijective function.

Theorem 2.11 Let (A, ∗) and (B, ∗) be semigroups, monoids or groups.
Then the inverse f−1:B → A of any isomorphism f :A → B is itself an
isomorphism.

Proof The inverse f−1:B → A of an isomorphism f :A → B is itself a
bijective function whose inverse is the function f :A → B. It remains to
show that f−1:B → A is a homomorphism. Let u and v be elements of B,
and let x = f−1(u) and y = f−1(v). Then u = f(x) and v = f(y), and
therefore

f(x ∗ y) = f(x) ∗ f(y) = u ∗ v

and therefore
f−1(u ∗ v) = x ∗ y = f−1(u) ∗ f−1(v),

showing that the function f−1:B → A is a homomorphism from (B, ∗) to
(A, ∗), as required.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. If there
exists an isomorphism from (A, ∗) to (B, ∗) then (A, ∗) and (B, ∗) are said
to be isomorphic.
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Problems

1. Let E denote the set

{. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}

of even integers, let + and × denote the usual arithmetic operations of
addition and multiplication respectively, and let # denote the binary
operation on E defined by x # y = 1

2
xy for all even integers x and y.

(a) Is (E,+) a monoid?

(b) Is (E,×) a monoid?

(c) Is (E,#) a monoid?

[Briefly justify your answers.]

2. Let X denote the set

{. . . ,−5,−3,−1, 1, 3, 5, . . .}

of odd integers, and let # denote the binary operation on X defined
by x # y = 1

2
(xy − x− y + 3) for all odd integers x and y.

(a) Is (X,#) a monoid? If so, what is its identity element?

(a) Is (X,#) a group?

[Briefly justify your answers.]

3. Let ⊕ be the binary operation on the set Z of integers defined by
x⊕ y = x+ y− 7. Prove that (Z,⊕) is a monoid. What is the identity
element of this monoid? Is this monoid a group?

4. Let c be a fixed positive integer, and let ⊗ denote the binary operation
on the set Z of integers defined by the formula

x⊗ y = xy + c(x + y) + c2 − c

for all integers x, y and z.

(a) Is (Z,⊗) a semigroup? [Justify your answer.]
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(b) Is (Z,⊗) a monoid? If so, what is its identity element?

(c) Which of the elements of Z are invertible? Is (Z,⊗) a group?

5. Let R2 denote the set of all ordered pairs (x, y), where x and y are
real numbers, and let ⊗1 and ⊗2 denote the binary operations on R2

defined by the formulae

(x1, y1)⊗1 (x2, y2) = (x1y2 + y1x2, y1y2 + x1x2),

(x1, y1)⊗2 (x2, y2) = (x1x2 + 2y1y2, x1y2 + y1x2).

for all real numbers x, y, u, v? Prove that (R2,⊗1) are (R2,⊗2) a
monoids, and determine the identity elements of those monoids.

6. Let (A, ∗) be a monoid, let s be an invertible element of A, and let
f :A→ A be the function from A to itself defined by f(x) = (s∗x)∗s−1

for all elements x of A (where s−1 denotes the inverse of s).

(a) Prove that the function f is a homomorphism.

(b) Let g:A → A be the function defined by g(x) = (s−1 ∗ x) ∗ s for
all elements x of A. Prove that the function g is the inverse of the
function f .

(c) Is the function f an isomorphism?

7. Let c be a fixed positive integer, and let ⊗ denote the binary operation
on the set Z of integers defined by the formula

x⊗ y = xy + c(x + y) + c2 − c

for all integers x, y and z.

(a) Is (Z,⊗) a semigroup? [Justify your answer.]

(b) Is (Z,⊗) a monoid? If so, what is its identity element?

(c) Which of the elements of Z are invertible? Is (Z,⊗) a group?

8. (a) Let ∗ denote the binary operation on the set R3 of ordered triples
of real numbers defined such that

(a1, a2, a3) ∗ (b1, b2, b3)

=
(
a1b3 + a2b2 + a3b1, a1b1 + a2b3 + a3b2, a1b2 + a2b1 + a3b3,

)
.

Prove that R3, ∗) is a monoid. Is this monoid a group? [Justify your
answers.]
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(b) Let f :R3 → C be the function defined such that

f(a1, a2, a3) = a3 −
1

2
(a1 + a2) +

√
3

2
(a1 − a2)i

for all a1, a2, a3 ∈ R, where i2 = −1. Prove that f is a homomorphism
between the monoids (R3, ∗) and (C,×), where × denotes the standard
multiplication operation on the set C of complex numbers.

9. (a) Let A be the set C×C consisting of all ordered pairs (z, w), where
z and w are complex numbers. Let × denote the binary operation on A
defined by (z, w)× (u, v) = (zu−wv, zv+wu) for all complex numbers
z, w, u and v. Prove that (A,×) is a monoid. What is its identity
element? Prove that an element (z, w) of A is invertible if and only if
z2 + w2 6= 0.

(b) Let (C,×) be the monoid consisting of the set of complex numbers
with the usual operation of multiplication, let (A,×) be the monoide
defined in (a), and let f :C → A be the function from C to A which
sends the complex number x + iy to the ordered pair (x, y) for all real
numbers x and y. Is the function f a homomorphism from (C,×) to
(A,×)? Is this function an isomorphism?

10. Let R3 be the set of all ordered triples of numbers, and let ⊗ be the
binary operation on R3 defined such that

(x1, y1, z1)⊗ (x2, y2, z2) = (x1x2, x1y2 + y1z2, z1z2)

for all (x1, y1, z1), (x2, y2, z2) ∈ R3. Prove that (R3,⊗) is a monoid.
What is the identity element of this monoid? Is the monoid (R3,⊗) a
group?
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