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2 Solving Ordinary Differential Equations by

the Method of Power Series

2.1 Summary and Essential Points of the Discussion

Subsection 2.2 summarizes basic facts concerning Taylor series expansions of
the exponential, sine and cosine functions.

Subsection 2.3 covers the differentiation of power series term by term. It

is shown that if y =
+∞∑
n=0

yn
n!

xn then
dy

dx
=

+∞∑
n=0

yn+1

n!
xn. The coefficient of xn in

the power series is expressed in the form
yn
n!

, where yn is some real constant.

The reason for expressing the coefficient of xn in this moderately complicated
fashion is that it leads to a memorable formula for the derivatives of the power
series, so that, to write down the power series for the kth derivative of y with
respect to x, we have merely to replace yn by yn+k in the formula expressing
y as a power series in x.

Subsection 2.4 shows that if there exists some strictly positive real num-

ber r such that
+∞∑
n=0

cnx
n converges for all real numbers x satisfying −r ≤

x ≤ r then the coefficients cn are given by the formula cn =
f (n)(0)

n!
, where

f(x) =
+∞∑
n=0

cnx
n (Proposition A). It follows that if the power series con-

verges to the zero function then its coefficients c0, c1, c2, c3, . . . must all be
zero (Corollary B). This result is used frequently in the examples that fol-
low.

Subsection 2.5 describes the use of the method of power series to solve
the differential equation

d6y

dx6
− 64y = 0.

A key step is to use the fact that if
+∞∑
n=0

cnx
n = 0 for all (sufficiently small)

values of the independent variable x, then the coefficients cn of the power
series must satisfy cn = 0 for all non-negative integers n. This result is
Corollary B.

Subsection 2.6 applies the same method to solve the differential equation

d3y

dx3
+ 343y = 0.
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Subsection 2.7 and following subsections provide a discussion of the dif-

ferential equation
d2y

dx2
+b

dy

dx
+cy = 0, solving this equation by the method of

power series in the case where the roots of the auxiliary polynomial s2+bs+0
are real and distinct.

First it is shown that if there exists a solution y of the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0 that can be represented in the form y =

+∞∑
n=0

yn
n!

xn, then

yn+2 + byn+1 + cyn = 0 for all non-negative integers n. The cases when
b2 > 4c, b2 = 4c and b2 < 4c are then investigated separately, and the
standard solutions are obtained in those cases.

In Subsection 2.11 the method employed in previous subsections is gen-
eralized to show that if y is a solution of the differential equation

ck
dky

dxk
+ ck−1

dk−1y

dxk−1 + · · · c1
dy

dx
+ c0y = 0,

where ck 6= 0, and if y =
+∞∑
n=0

yn
n!

xn, then

ckyn+k + ck−1yn+k−1 + · · ·+ c1yn+1 + c0yn = 0

for all non-negative integers n. It follows that yk, yk+1, yk+2, . . . may be de-
termined recursively from the values of y0, y1, . . . , yk−1.

Subsection 2.12 contains a brief discussion of solutions of linear homo-
geneous differential equations with variable coefficients, using the method
of power series. The method is used to find the solution to the differential
equation

dy

dx
− 2xy = 0.

by representing the solution to that equation in the form y =
+∞∑
n=0

anx
n.

2.2 Taylor Series expansions of Exponential and Trigono-
metric Functions

The following Taylor Series expansions of the exponential, sine and cosine
functions are as follows:—

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+ · · ·
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=
+∞∑
n=0

xn

n!
(x ∈ R),

sinx = x− x3

6
+

x5

120
− x7

5040
+ · · ·

=
+∞∑
k=0

(−1)kx2k+1

(2k + 1)!
(x ∈ R),

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · ·

=
+∞∑
k=0

(−1)kx2k

(2k)!
(x ∈ R).

This power series expansions are Taylor series of the form

f(a + x) = f(a) + f ′(a)x +
f ′′(a)

2
x2 +

f ′′′(a)

6
x3 +

f (4)(a)

24
x4 + · · ·

=
+∞∑
n=0

f (n)(a)

n!
xn,

where f denotes the function in question, and f (n)(a) denotes the nth deriva-
tive of f(x) at x = a. One can calulate the value of f(x) to whatever accuracy
is desired by adding sufficiently many terms of the infinite series.

The power series expansions for ex, sinx and cosx given above are par-
ticularly relevant when obtaining solutions of ordinary differential equations
with constant coefficients. Note that

ecx = 1 + cx +
c2x2

2
+

c3x3

6
+

c4x4

24
+

c5x5

120
+

c6x6

720
+

c7x7

5040
+ · · ·

=
+∞∑
n=0

cnxn

n!
,

sin cx = cx− c3x3

6
+

c5x5

120
− c7x7

5040
+ · · ·

=
+∞∑
k=0

(−1)kc2k+1x2k+1

(2k + 1)!
,

cos cx = 1− c2x2

2
+

c4x4

24
− c6x6

720
+ · · ·

=
+∞∑
k=0

(−1)kc2kx2k

(2k)!
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for all real numbers x.

2.3 Differentiating Power Series Term by Term

Let

y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·

=
+∞∑
n=0

anx
n,

where the coefficients a0, a1, a2, a3, . . . are real numbers. The derivative of y
with respect to x may then be found by differentiating term by term. We
find that

dy

dx
= a1 + 2a2x + 3a3x

2 + 4a4x
3 + 5a5x

4 + · · ·

=
+∞∑
k=1

kakx
k−1.

Now we can substitute k = n+1 in the above identity to obtain a summation
over values of n satisfying n ≥ 0. We find that

dy

dx
=

+∞∑
n=0

(n + 1)an+1x
n.

It is convenient to express an in terms of yn, where yn = n!an. Then
y0, y1, y2, y3, . . . are real constants that determine the power series. We find
that

an =
yn
n!

and (n + 1)an+1 = (n + 1)× yn+1

(n + 1)!
=

yn+1

n!
.

We conclude that if y =
+∞∑
n=0

yn
n!

xn then

dy

dx
=

+∞∑
n=0

yn+1

n!
xn,

d2y

dx2
=

+∞∑
n=0

yn+2

n!
xn,

d3y

dx2
=

+∞∑
n=0

yn+3

n!
xn. etc.

In general we find that if y =
+∞∑
n=0

yn
n!

xn then
dky

dxk
=

+∞∑
n=0

yn+k

n!
xn.

The above discussion implicitly assumes that it is permissible to differ-
entiate power series term by term. This is a result that is proved in courses
whose purpose is to develop rigorous proofs of the main theorems of differ-
ential and integral calculus.
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2.4 Uniqueness of Power Series Representations

Proposition A. Let
+∞∑
n=0

cnx
n be a power series whose coefficients

c0, c1, c2, c3, . . .

are real numbers. Suppose that there exists some positive integer r with the
property that the power series converges whenever −r ≤ x ≤ r. Let

f(x) =
+∞∑
n=0

cnx
n

for all real numbers x satisfying −r ≤ x ≤ r. Then

cn =
f (n)(0)

n!

for all non-negative integers n, where f (n)(0) denotes the nth derivative of
the f(x) at x = 0.

Proof. On calculating the kth derivative of xn we find that

dk

dxk

(
xn
)

=


0 if n < k;
k! if n = k;

n!xn−k

(n− k)!
if n > k.

(This result may be proved by induction on k.)
Power series may be differentiated term by term. Therefore,

f (k)(x) =
dk

dxk

(
f(x)

)
= k!ck +

+∞∑
n=k+1

n!cn
(n− k)!

xn−k.

On setting x = 0, we find that f (k)(0) = k!ck. The result follows. Q. E. D.

Corollary B. Let
+∞∑
n=0

cnx
n be a power series whose coefficients

c0, c1, c2, c3, . . .

are real numbers. Suppose that there exists a strictly positive real number r
such that

+∞∑
n=0

cnx
n = 0

for all real numbers x satisfying −r ≤ x ≤ r. Then cn = 0 for all non-
negative integers n.
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Proof. This result follows immediately from Proposition A, because the
infinite series converges to the zero function when −r ≤ x ≤ r. Q. E. D.

Corollary C. Let f(x) =
+∞∑
n=0

anx
n and g(x) =

+∞∑
n=0

bnx
n for all values

of x sufficients close to zero. Suppose that f(x) = g(x) for all values of x
sufficiently close to zero. Then an = bn for all non-negative integers n.

Proof. Note that

f(x)− g(x) =
+∞∑
n=0

(an − bn)xn.

Thus if f(x) = g(x) for all values of x sufficiently close to zero then it follows
from Corollary B that an− bn = 0 for all non-negative integers n. The result
follows. Q. E. D.

2.5 Solving the Differential Equation
d6y

dx6
− 64y = 0 us-

ing the Method of Power Series

Consider the differential equation

d6y

dx6
− 64y = 0.

Note that 24 = 26. We suppose that the solution y can be represented by

a power series of the form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants

to be determined. Then
d6y

dx6
=

+∞∑
n=0

yn+6

n!
xn. It follows that

+∞∑
n=0

yn+6 − 64yn
n!

xn =
d6y

dx6
− 64y = 0.

Now the above identity is an identity of the form
+∞∑
n=0

cnx
n = 0, where

c0, c1, c2, . . . are real constants. The left hand side must be zero for all val-
ues of the independent variable x. It follows from this that cn = 0 for all
non-negative integers n. This result is a consequence of Corollary B.

Corollary B thus ensures that yn+6 = 64yn = 26yn for all non-negative in-
tegers n. Thus the values of yn for all non-negative integers n are determined
by the values of y0, y1, y2, y3, y4 and y5.
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Suppose that y0 = 1, y1 = 2, y2 = 4, y3 = 8, y4 = 16 and y5 = 32. Then
the recursion relation yn+6 = 26yn ensures that yn = 2n for all non-negative
integers n. It then follows that

y =
+∞∑
n=0

2n

n!
xn =

+∞∑
n=0

(2x)n

n!
= e2x.

Next suppose that y0 = 1, y1 = −2, y2 = 4, y3 = −8, y4 = 16 and
y5 = −32. Then the recursion relation yn+6 = 26yn = (−2)6yn ensures that
yn = (−2)n for all non-negative integers n. It then follows that

y =
+∞∑
n=0

(−2)n

n!
xn =

(−2x)n

n!
= e−2x.

Next suppose that y0 = 1, y1 = 0, y2 = 0, y3 = 8, y4 = 0 and y5 = 0.
Then

yn =

{
2n if n is divisible by 3;
0 if n is not divisible by 3.

It would be possible with a bit of work to express the solution to the differ-
ential equation in terms of exponential and trigonometrical functions.

2.6 Solving the Differential Equation
d3y

dx3
+ 343y = 0

using the Method of Power Series

Consider the differential equation

d3y

dx3
+ 343y = 0.

Note that 343 = 73. We suppose that the solution y can be represented by

a power series of the form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants

to be determined.

Now
d3y

dx3
=

+∞∑
n=0

yn+3

n!
xn. It follows that

+∞∑
n=0

yn+3 + 343yn
n!

xn =
d3y

dx3
+ 343y = 0.

Now because the power series on the left hand side of the above identity
converges to zero for all values of the independent variable x, its coefficients
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must all be equal to zero. Therefore yn+3 + 343yn = 0 for all non-negative
integers n. It follows that yn+3 = (−7)3yn for all non-negative integers n.

The values of yn for all non-negative integers n will be determined by the
values of y0, y1 and y2.

Suppose that y0 = 1, y1 = −7 and y2 = 49. Then yn = (−7)n for all
non-negative integers n. In this case we find that

y =
+∞∑
n=0

(−7x)n

n!
= e−7x.

Next suppose that y0 = 5, y1 = 0 and y2 = 0. Then yn = 5 × (−7)n

whenever n is divisible by 3, and yn = 0 whenever n is not divisible by 3.
(With some work, one could then find an expression for y as a function of x
expressed in terms of exponential and trigonometrical functions.)

2.7 The Difference Equation that determines the Solu-

tion of the Differential Equation
d2y

dx2
+ b

dy

dx
+ cy = 0.

Consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0.

We suppose that the solution y can be represented by a power series of the

form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants to be determined.

Now
dy

dx
=

+∞∑
n=0

yn+1

n!
xn and

d2y

dx2
=

+∞∑
n=0

yn+2

n!
xn.

It follows that

+∞∑
n=0

yn+2 + byn+1 + cyn
n!

xn =
d2y

dx2
+ b

dy

dx
+ cy = 0.

Because the power series on the left hand side of the above identity converges
to the zero function, the coefficient of xn must be equal to zero for all non-
negative integers n. Therefore

yn+2 + byn+1 + cyn = 0 for n = 0, 1, 2, 3, . . ..
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Note that yn+2 = −byn+1−cyn for all non-negative integers n. Thus if y0 and
y1 are given, the values of y2, y3, y3, . . . could be successively computed (e.g.,
by means of a computer program utilizing an appropriate recursive function).

We consider solutions to the above difference equation for the coeffi-
cients yn that grow as some power of n. Suppose that yn = Asn for all
non-negative integers n, where A and s are numerical constants. Then

yn+2 + byn+1 + cyn = (s2 + bs + c)yn.

It follows that the infinite sequence y0, y1, y2, y3 . . . satisfies the required dif-
ference equation if and only if s is a root of the auxiliary polynomial s2+bs+c.

2.8 Solution of the Differential Equation
d2y

dx2
+b

dy

dx
+cy =

0 when b2 > 4c.

Consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0.

We suppose that the solution y can be represented by a power series of the

form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants to be determined.

We have shown that

yn+2 + byn+1 + cyn = 0 for n = 0, 1, 2, 3, . . ..

Moreover if yn = Asn for all non-negative integers n, where A and s are
numerical constants, then the infinite sequence y0, y1, y2, y3 . . . satisfies the
above difference equation if and only if s2 + bs + c = 0.

Now suppose that b2 > 4c. Then the auxiliary polynomial s2 + bs+ c has
two distinct real roots u and v. Let A and B be real constants, and let

yn = Aun + Bvn

for all non-negative integers n. Then yn+2 + byn+1 + cyn = 0 for all n. Let

y =
∞∑
n=0

Aun + Bvn

n!
xn = A

∞∑
n=0

(ux)n

n!
+ B

∞∑
n=0

(vx)n

n!
= Aeux + Bevx.

Then y is a solution of the differential equation y′′ + by′ + c. Moreover the
constants A and B determine the values of y0 and y1, and therefore determine
the values of y2, y3, y4, . . .. We have thus found the general solution of the
differential equation when b2 > 4c.
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2.9 Solution of the Differential Equation
d2y

dx2
+b

dy

dx
+cy =

0 when b2 = 4c.

Consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0.

We suppose that the solution y can be represented by a power series of the

form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants to be determined.

We have shown that

yn+2 + byn+1 + cyn = 0 for n = 0, 1, 2, 3, . . ..

Moreover if yn = Asn for all non-negative integers n, where A and s are
numerical constants, then the infinite sequence y0, y1, y2, y3 . . . satisfies the
above difference equation if and only if s2 + bs + c = 0.

Suppose that b2 = 4c. Let r = −1
2
b. Then s2 + bs + c = (s − r)2. The

difference equation yn+2 + byn+1 + cyn = 0 is satisfied when yn = Arn for all
non-negative integers n. Also

(n + 2)rn+2 + b(n + 1)rn+1 + cnrn = n(r2 + br + c)rn + (2r + b)rn+1 = 0.

It follows that the difference equation yn+2+byn+1+cyn = 0 is satisfied when
yn = Bnrn. The sum of any two solutions to the difference equation also
solves the difference equation. Thus the solutions to the difference equation
yn+2 + byn+1 + cyn = 0 are of the form yn = Arn + Bnrn in the case where
b2 = 4c. Let

y =
∞∑
n=0

Arn + Bnrn

n!
xn = A

∞∑
n=0

(rx)n

n!
+ B

∞∑
n=1

(rx)n

(n− 1)!
= (A + Brx)erx.

Then y is a solution of the differential equation y′′+by′+cy = 0. Moreover the
constants A and B determine the values of y0 and y1, and therefore determine
the values of y2, y3, y4, . . .. We have thus found the general solution of the
differential equation when b2 = 4c.

2.10 Solution of the Differential Equation
d2y

dx2
+ b

dy

dx
+

cy = 0 when b2 < 4c.

Consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0.
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We suppose that the solution y can be represented by a power series of the

form y =
+∞∑
n=0

yn
n!

xn where y0, y1, y2, y3, . . . are constants to be determined.

We have shown that

yn+2 + byn+1 + cyn = 0 for n = 0, 1, 2, 3, . . ..

Moreover if yn = Asn for all non-negative integers n, where A and s are
numerical constants, then the infinite sequence y0, y1, y2, y3 . . . satisfies the
above difference equation if and only if s2 + bs + c = 0.

Suppose that the auxiliary polynomial s2 + bs+ c has no real roots. Then
it has two complex roots of the form p± iq, where p and q are real numbers
and i =

√
−1. Let C and D be complex constants, let un = (p + iq)n and

vn = (p− iq)n, and let

wn = Cun + Dun = C(p + iq)n + D(p− iq)n

for all non-negative integers n. Then

un+2 + bun+1 + cun = 0 and vn+2 + bvn+1 + cvn = 0,

and therefore
wn+2 + bwn+1 + cwn = 0

for all non-negative integers n. Now the numbers wn are real numbers for all
n if and only if D = C (i.e., if and only if D is the complex conjugate of C).
In this case we may write C = A + iB and D = A− iB, where A and B are
real constants.

Thus let

y =
∞∑
n=0

(A + iB)(p + iq)n + (A− iB)(p− iq)n

n!
xn

= (A + iB)
∞∑
n=0

((p + iq)x)n

n!
+ (A− iB)

∞∑
n=0

((p− iq)x)n

n!

= (A + iB)e(p+iq)x + (A− iB)e(p−iq)x,

where ez =
+∞∑
n=0

zn

n!
for all complex numbers z. Then y is a solution of the

differential equation y′′+ by′+ cy when the roots of the auxiliary polynomial
s2 + bs + c are p ± iq. Standard properties of the exponential function,
applicable when the argument is a complex number, ensure that

e(p+iq)x = epxeiqx = epx(cos qx + i sin qx),

e(p−iq)x = epxeiqx = epx(cos qx− i sin qx).

12



It follows that

y = epx ((A + iB)(cos qx + i sin qx) + (A− iB)(cos qx− i sin qx))

= epx(2A cos qx− 2B sin qx).

The constants A and B determine the coefficients y0 and y1 in the represen-
tation of y as a power series. We have thus found the general solution to the
differential equation y′′ + by′ + c in the case where b2 < 4c.

2.11 Solution of Homogeneous Linear Ordinary Differ-
ential Equations with Constant Coefficients

Let y be a solution of a differential equation of the form

ck
dky

dxk
+ ck−1

dk−1y

dxk−1 + · · · c1
dy

dx
+ c0y = 0,

where ck 6= 0. We suppose that the solution y can be represented by a power

series of the form y =
+∞∑
n=0

yn
n!

xn Then

∞∑
n=0

ckyn+k + ck−1yn+k−1 + · · ·+ c1yn+1 + c0yn
n!

= 0.

It follows from Corollary B that

ckyn+k + ck−1yn+k−1 + · · ·+ c1yn+1 + c0yn = 0

for all non-negative integers n. But then

yn+k = − 1

ck
(ck−1yn+k−1 + · · ·+ c1yn+1 + c0yn)

for all non-negative integers k. Thus, given the values of y0, y1, y2, . . . , yk−1,
one can recursively determine the values of yk, yk+1, yk+2, yk+3, . . ., and it
would be a straightforward exercise to program a computer to carry out that
task. The values of the coefficients yn would then determine the solution of
the differential equation.

2.12 Solution of Homogeneous Linear Ordinary Differ-
ential Equations with Variable Coefficients

In seeking solutions of homogeneous linear differential equations with con-
stant coefficients, we have represented the desired solution y as the sum of
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a power series expressed in the form y =
+∞∑
n=0

yn
n!

xn. This representation is

convenient for finding solutions of homogeneous differential equations with
constant coefficients. It is less convenient when those coefficients are variable.

In that case it may be simpler to look for solutions of the form y =
+∞∑
n=0

anx
n,

where a0, a1, a2, . . . are the coefficients to be determined.
Consider, for example, the differential equation

dy

dx
− 2xy = 0.

We look for a solution of the form y =
+∞∑
n=0

anx
n. On substituting this ex-

pression for y in the differential equation, we find that

+∞∑
n=0

(
nanx

n−1 − 2anx
n+1
)

= 0.

Now

+∞∑
n=0

nanx
n−1 =

+∞∑
k=0

(k + 1)ak+1x
k and

+∞∑
n=0

2anx
n+1 =

+∞∑
k=1

2ak−1x
k.

Therefore

a1 +
+∞∑
k=1

((k + 1)ak+1 − 2ak−1)x
k = 0.

It then follows that a1 = 0 and (k+1)ak+1 = 2ak−1 whenever k ≥ 1. Applying
these identities for even values of k, we find that y3 = 0, y5 = 0, y7 = 0,
etc., and applying these identities when k = 2j + 1 for some non-negative
integer j, we find that (j + 1)a2j+2 = a2j for all non-negative integers j. It

follows that a2j =
a0
j!

for all non-negative integers j, and thus

y =
+∞∑
j=0

a0x
2j

j!
= a0e

x2

.

One may readily verify that this function does indeed satisfy the differential
equation.
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