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1 Real-Analytic Functions

1.1 The Definition of Real-Analyticity

We consider functions f: D — R that are defined on open subsets D of the
set R and take values in the set of real numbers itself. An open subset D of
R is a subset of R that completely surrounds all its elements. The concept
of open set can be more formally defined as follows:—

Definition A subset D of the set R of real numbers is said to be open if,
given any element s of D, there exists some strictly positive real number r
that is small enough to ensure that D contains all real numbers z that satisty
the inequalities s —r <z < s+ 7.

The purpose of introducing this definition is to ensure that, if a function
f:D — R is defined on an open subset D of R, and if s is an element of D,
then there exists some strictly positive real number r that is small enough to
ensure that f(x) is defined for all real numbers x satisfying s —r < z < s+r.
The value f(x) of the function f is then defined for all real numbers x that
lie sufficiently close to s. Thus if the function f is defined at s then it is
defined around s.



Definition Let f: D — R be a function defined over an open subset D of
the set R of real numbers and taking values in R. The function f is said to
be real-analytic on D if, given any point s of D, there exists a positive real

number r, and real numbers ¢y, ¢1, ¢, ¢3, ... such that
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for all real numbers z satisfying |z| < r.

A real-valued function f: D — R defined over an open subset D of R is
thus real-analytic on D if, given any element s of D, the values of the function
in a sufficiently small neighbourhood of s can be determined by means of a
convergent power series.

Example Let D = {x € R : = # 0}, and let f: D — R be defined such

that f(z) = — for all non-zero real numbers x. Then the function f is real

analytic. Indeed, given any non-zero real number s, the function f can be
expressed in a neighbourhood of s by means of the power series
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which converges for all real numbers satisfying |z| < |s|.

Many of the standard functions of a real-variable are real-analytic func-
tions wherever they are defined. Thus polynomial functions, exponential
functions, logarithm functions and trigonometric functions such as the sine,
cosine, tangent, cotangent, secant and cosecant functions are real-analytic
functions wherever they are defined. Also sums, differences, products, quo-
tients and compositions of real-analytic functions are real-analytic wherever
they are defined.

However there exist functions that can be differentiated any number of
times that are not real-analytic. A standard example of such a function is
the function s: R — R defined such that

1 .
s(z) = exp (_ﬁ> if © #0;
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It turns out that this function can be differentiated any number of times,
and its derivatives of all orders are equal to zero. This function is very flat
around z = 0. However the function cannot be expressed as the sum of a
power series that converges around = = 0.

Thus, if one is, for example, using methods based on the use of power se-
ries to determine solutions of differential equations, such methods determine
solutions of the differential equations that are real-analytic. However if a
differential equation is expressed in terms of functions that are real-analytic
then its solutions can be expected to be real-analytic. Therefore one can find
all solutions of the differential equation by searching for the real-analytic
solutions.

1.2 Fundamental Properties of Real-Analytic Functions

1. Any function expressible as the sum of a convergent power series is
real-analytic. In particular any polynomial function is real analytic.

2. Sums, differences, products, quotients and compositions of real analytic
functions are real-analytic wherever they are defined.

3. The exponential, logarithm, sine, cosine, tangent, cotangent, secant and
cosecant functions are real-analytic.

4. The inverse function of a real-analytic function is real-analytic wher-
ever it is defined.

5. Convergent power series can be differentiated and integrated term by

term.
Thus if
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where C' is some constant of integration.



6. Let f: D — R is a real-analytic function defined over some open sub-
set D of R, let s be an element of D, let r be a positive real number
chosen such that s +x € D for all real numbers x satisfying |x| < r,
and let ¢y, c1,Ca,C3. .. are real constants such that
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for all real numbers x satisfying |x| < r. Then
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for all non-negative integers n, where f™(s) denotes the nth derivative

of f(x) at x = s.

Indeed
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On setting z = 0, we find that
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7. If r is a positive real number, and if cy,cq,co, 3. .. are real constants
with the property that
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for all real numbers x satisfying —r < x < r, then ¢, = 0 for all

non-negative integers n.



8. Let f: D — R be a real-analytic function defined over some open sub-
set D of R, and let s be an element of D. Then
fO(s) 4
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for all values of x sufficiently close to zero, where where f denotes the
function in question, and f™(a) denotes the nth derivative of f(x) at
T =a.

1.3 Taylor Series expansions of some Standard Func-
tions

The following Taylor Series expansions of the corresponding functions are
well-known:—
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