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1 Real-Analytic Functions

1.1 The Definition of Real-Analyticity

We consider functions f :D → R that are defined on open subsets D of the
set R and take values in the set of real numbers itself. An open subset D of
R is a subset of R that completely surrounds all its elements. The concept
of open set can be more formally defined as follows:—

Definition A subset D of the set R of real numbers is said to be open if,
given any element s of D, there exists some strictly positive real number r
that is small enough to ensure that D contains all real numbers x that satisfy
the inequalities s− r ≤ x ≤ s + r.

The purpose of introducing this definition is to ensure that, if a function
f :D → R is defined on an open subset D of R, and if s is an element of D,
then there exists some strictly positive real number r that is small enough to
ensure that f(x) is defined for all real numbers x satisfying s−r ≤ x ≤ s+r.
The value f(x) of the function f is then defined for all real numbers x that
lie sufficiently close to s. Thus if the function f is defined at s then it is
defined around s.
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Definition Let f :D → R be a function defined over an open subset D of
the set R of real numbers and taking values in R. The function f is said to
be real-analytic on D if, given any point s of D, there exists a positive real
number r, and real numbers c0, c1, c2, c3, . . . such that

f(s + x) =
+∞∑
n=0

cnx
n

for all real numbers x satisfying |x| ≤ r.

A real-valued function f :D → R defined over an open subset D of R is
thus real-analytic on D if, given any element s of D, the values of the function
in a sufficiently small neighbourhood of s can be determined by means of a
convergent power series.

Example Let D = {x ∈ R : x 6= 0}, and let f :D → R be defined such

that f(x) =
1

x
for all non-zero real numbers x. Then the function f is real

analytic. Indeed, given any non-zero real number s, the function f can be
expressed in a neighbourhood of s by means of the power series

f(x) =
1

s + x
=

1

s
− 1

s2
x +

1

s3
x2 − 1

s4
x3 +

1

s5
x4 − 1

s6
x5 + · · ·

=
+∞∑
n=0

(−1)n

sn+1
xn

which converges for all real numbers satisfying |x| < |s|.

Many of the standard functions of a real-variable are real-analytic func-
tions wherever they are defined. Thus polynomial functions, exponential
functions, logarithm functions and trigonometric functions such as the sine,
cosine, tangent, cotangent, secant and cosecant functions are real-analytic
functions wherever they are defined. Also sums, differences, products, quo-
tients and compositions of real-analytic functions are real-analytic wherever
they are defined.

However there exist functions that can be differentiated any number of
times that are not real-analytic. A standard example of such a function is
the function s:R→ R defined such that

s(x) =

 exp

(
− 1

x2

)
if x 6= 0;

0 if x = 0.
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It turns out that this function can be differentiated any number of times,
and its derivatives of all orders are equal to zero. This function is very flat
around x = 0. However the function cannot be expressed as the sum of a
power series that converges around x = 0.

Thus, if one is, for example, using methods based on the use of power se-
ries to determine solutions of differential equations, such methods determine
solutions of the differential equations that are real-analytic. However if a
differential equation is expressed in terms of functions that are real-analytic
then its solutions can be expected to be real-analytic. Therefore one can find
all solutions of the differential equation by searching for the real-analytic
solutions.

1.2 Fundamental Properties of Real-Analytic Functions

1. Any function expressible as the sum of a convergent power series is
real-analytic. In particular any polynomial function is real analytic.

2. Sums, differences, products, quotients and compositions of real analytic
functions are real-analytic wherever they are defined.

3. The exponential, logarithm, sine, cosine, tangent, cotangent, secant and
cosecant functions are real-analytic.

4. The inverse function of a real-analytic function is real-analytic wher-
ever it is defined.

5. Convergent power series can be differentiated and integrated term by
term.

Thus if

y = f(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · ,

then
dy

dx
= c1 + 2c2x + 3c3x

2 + 4c4x
3 + · · ·

and ∫
y dx = C + c0x +

1

2
c1x

2 +
1

3
c2x

3 +
1

4
c3x

4 +
1

5
c4x

5 + · · · ,

where C is some constant of integration.
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6. Let f :D → R is a real-analytic function defined over some open sub-
set D of R, let s be an element of D, let r be a positive real number
chosen such that s + x ∈ D for all real numbers x satisfying |x| ≤ r,
and let c0, c1, c2, c3 . . . are real constants such that

f(s + x) =
+∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + c3x
3 + c4x

4 + · · ·

for all real numbers x satisfying |x| ≤ r. Then

cn =
f (n)(s)

n!

for all non-negative integers n, where f (n)(s) denotes the nth derivative
of f(x) at x = s.

Indeed

dk

dxk

(
f(s + x)

)
=

dk

dxk

(
+∞∑
n=0

cnx
n

)
=

+∞∑
n=0

cn
dk

dxk
(xn)

= k!ck +
+∞∑

n=k+1

n!cn
(n− k)!

xn−k.

On setting x = 0, we find that

f (k)(s) =
dk

dxk

(
f(s + x)

)∣∣∣∣
x=0

= k!ck.

Therefore ck =
f (k)(s)

k!
.

7. If r is a positive real number, and if c0, c1, c2, c3 . . . are real constants
with the property that

0 =
+∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + c3x
3 + c4x

4 + · · ·

for all real numbers x satisfying −r ≤ x ≤ r, then cn = 0 for all
non-negative integers n.
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8. Let f :D → R be a real-analytic function defined over some open sub-
set D of R, and let s be an element of D. Then

f(s + x) = f(s) + f ′(s)x +
f ′′(s)

2
x2 +

f ′′′(s)

6
x3 +

f (4)(s)

24
x4 + · · ·

=
+∞∑
n=0

f (n)(s)

n!
xn,

for all values of x sufficiently close to zero, where where f denotes the
function in question, and f (n)(a) denotes the nth derivative of f(x) at
x = a.

1.3 Taylor Series expansions of some Standard Func-
tions

The following Taylor Series expansions of the corresponding functions are
well-known:—

1

1− x
= 1 + x + x2 + x3 + x4 + x5 + · · ·

=
+∞∑
n=0

xn, (−1 < x < 1),

(1 + x)s = 1 + sx +
s(s− 1)

2
x2 +

s(s− 1)(s− 2)

6
x3

+
s(s− 1)(s− 2)(s− 3)

24
x4 + · · ·

=
+∞∑
n=0

s(s− 1) · · · (s− n + 1)

n!
xn (−1 < x < 1),

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 + · · ·

=
+∞∑
n=0

(−1)n−1xn

n
(−1 < x < 1),

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+ · · ·

=
+∞∑
n=0

xn

n!
(x ∈ R),

sinx = x− x3

6
+

x5

120
− x7

5040
+ · · ·

5



=
+∞∑
k=0

(−1)kx2k+1

(2k + 1)!
(x ∈ R),

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · ·

=
+∞∑
k=0

(−1)kx2k

(2k)!
(x ∈ R).
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