
Module MA2C03—Additional Notes

David R. Wilkins

April 2014

Contents

4 Computing Powers in Modular Arithmetic 1
4.1 Sequences of Elements of Finite Sets 1
4.2 Of Example of Computing Powers in Modular Arithmetic . . . 2
4.3 Computing congruence classes of numbers of the form a2

k
. . . 4

4 Computing Powers in Modular Arithmetic

4.1 Sequences of Elements of Finite Sets

Let A be a finite set, let f :A→ A be a function from the set A to itself, and
let x0 be an element of A. Then the element x0 of A and the function f :A→
A determine an infinite sequence x0, x1, x2, x3, . . ., where xn = f(xn−1) for
all positive integers n.

Now the sequence x0, x1, x2, x3, . . . will become periodic at some point.
The value of xn for large values of n can then be determined once the periodic
behavior of the sequence has been determined.

If the positive integer n is equal to or exceeds the number of elements of
the set A then the elements x0, x1, . . . , xn cannot be all distinct. It follows
that there exists a positive integer q which is the smallest positive integer
with the property that

x0, x1, x2, . . . , xq−1

are distinct. Then xq = xm for some integer m satisfying 0 ≤ m < q. Let
p = q−m. Then xm = xm+p. But then xm+1 = f(xm) = f(xm+p) = xm+p+1.
Moreover if xm+r = xm+p+r for some non-negative integer r then xm+r+1 =
f(xm+r) = f(xm+p+r) = xm+p+r+1. It follows easily by induction of k that

1

xm+k = xm+p+k for all non-negative integers k. Moreover on applying this
result with k = p, 2p, 3p, . . ., we find that

xm = xm+p = xm+2p = xm+3p = xm+4p = · · · .

A straightforward proof by induction on n shows that xm+kp = xm for all
non-negative integers k. It follows that xm+kp+r = xm+r for all non-negative
integers k and r. Thus in order to determine xn for large values of n, one
should determine the index m where the periodicity of the sequence begins,
and the smallest positive integer p for which xm = xm+p.

4.2 Of Example of Computing Powers in Modular Arith-
metic

Let m be a positive integer, and let a be an integer satisfying 0 ≤ a < m.
We wish to find the value of an modulo m for some fairly large value of n.

Let
Im = {n ∈ Z : 0 ≤ n < m},

and let f : Im → Im be the function defined such that f(x) ≡ ax modulo m
for all x ∈ Im. Let x0 = 1 and let xn = f(xn−1) for all positive integers n.
Suppose that xk ≡ ak (mod. m) for some non-negative integer k. Then

xk+1 ≡ axk ≡ ak+1 (mod. m).

It follows by induction on n that xn ≡ an modulo m for all non-negative
integers n.

In order to determine an modulo m for large values of n, it suffices to
determine the smallest index m such that the sequence xm, xm+1, xm2 , . . .
returns to xm, and the smallest integer p for which xm+p = xm.

The following simple Python program computes xn, where 0 ≤ xn < m
and xn ≡ an modulo m, for values of n less than 30:

#!/usr/bin/env python

import sys

def print_powers(m,a):

x = 1

for i in range(0,30):

print ’%d raised to the power %d modulo %d is %d’ % (a,i,m,x)

2

x = (x * a) % m

m = int(sys.argv[1])

a = int(sys.argv[2])

print_powers(m,a)

Running this simple program with command line arguments 60 and 2 to
compute succesive values of xn when m = 60 and a = 2, we find that the
values of xn for n ≤ 10 are as follows:—

2 raised to the power 0 modulo 60 is 1

2 raised to the power 1 modulo 60 is 2

2 raised to the power 2 modulo 60 is 4

2 raised to the power 3 modulo 60 is 8

2 raised to the power 4 modulo 60 is 16

2 raised to the power 5 modulo 60 is 32

2 raised to the power 6 modulo 60 is 4

2 raised to the power 7 modulo 60 is 8

2 raised to the power 8 modulo 60 is 16

2 raised to the power 9 modulo 60 is 32

2 raised to the power 10 modulo 60 is 4

Examining these values we see that m = 2 and p = 4. Thus x2+4k+r =
x2+r for all non-negative integers k and r. We conclude that

2n ≡ 16 (mod. 60) when n ≥ 2 and n ≡ 0 mod. 4;
2n ≡ 32 (mod. 60) when n ≥ 2 and n ≡ 1 mod. 4;
2n ≡ 4 (mod. 60) when n ≥ 2 and n ≡ 2 mod. 4;
2n ≡ 8 (mod. 60) when n ≥ 2 and n ≡ 3 mod. 4.

Suppose for example that we wish to find 22067 modulo 60. Now 2064
is divisible by 4. Therefore 2067 ≡ 3 mod. 4. It follows that 22067 ≡ 8
modulo 60.

Suppose now we take m = 360 and a = 54. Thus we wish to compute
54n modulo 360 for large values of n. We run the Python program with
command line arguments 360 and 54. The values of 54n modulo 360 for
n ≤ 8 are output as follows:—

54 raised to the power 0 modulo 360 is 1

54 raised to the power 1 modulo 360 is 54

54 raised to the power 2 modulo 360 is 36

3

54 raised to the power 3 modulo 360 is 144

54 raised to the power 4 modulo 360 is 216

54 raised to the power 5 modulo 360 is 144

54 raised to the power 6 modulo 360 is 216

54 raised to the power 7 modulo 360 is 144

54 raised to the power 8 modulo 360 is 216

We see that 54n ≡ 216 (mod. 360) when n is even and n ≥ 4, and
54n ≡ 144 (mod. 360) when n is odd and n ≥ 3.

4.3 Computing congruence classes of numbers of the
form a2

k

.

Let m be a positive integer, and let a be an integer satisfying 0 ≤ a < m.
We wish to find the value of a2

k
modulo m for some fairly large value of k.

Let
Im = {n ∈ Z : 0 ≤ n < m},

and let g: Im → Im be the function defined such that g(x) ≡ x2 modulo m
for all x ∈ Im. Let y0 = a and let yn = g(yn−1) for all positive integers n.
Suppose that yj ≡ a2

j
(mod. m) for some non-negative integer j. Then

yj+1 ≡ (yj)
2 ≡ (a2

j

)2 = a2×2j = a2
j+1

(mod. m).

It follows by induction on k that yk ≡ a2
k

modulo m for all non-negative
integers k.

The following simple Python program can be used to compute a2
k

mod-
ulo m, for values of m and a specified as the first and second arguments on
the command line:—

#!/usr/bin/env python

import sys

def print_twopowers(m,a):

y = a

for i in range(0,30):

print ’%d raised to the power (2^%d) modulo %d is %d’ % (a,i,m,y)

y = (y * y) % m

m = int(sys.argv[1])

4

a = int(sys.argv[2])

print_twopowers(m,a)

Running with m = 60 and a = 2 produces output that begins as follows:—

2 raised to the power (2^0) modulo 60 is 2

2 raised to the power (2^1) modulo 60 is 4

2 raised to the power (2^2) modulo 60 is 16

2 raised to the power (2^3) modulo 60 is 16

2 raised to the power (2^4) modulo 60 is 16

We see that 22k ≡ 16 (mod. 60) for all k ≥ 2. This is a consequence of
the fact that 16× 16 = 256 ≡ 16 (mod. 60).

Running the Python script with m = 360 and a = 2 generates output
beginning as follows:—

2 raised to the power (2^0) modulo 360 is 2

2 raised to the power (2^1) modulo 360 is 4

2 raised to the power (2^2) modulo 360 is 16

2 raised to the power (2^3) modulo 360 is 256

2 raised to the power (2^4) modulo 360 is 16

2 raised to the power (2^5) modulo 360 is 256

We conclude from this that if k is even, and if k ≥ 2, then 22k ≡ 16
(mod. 360), and if k is odd, and if k ≥ 3, then 22k ≡ 256 (mod. 360).

Running the Python program with m = 360 and a = 13 produces the
following output:—

13 raised to the power (2^0) modulo 360 is 13

13 raised to the power (2^1) modulo 360 is 169

13 raised to the power (2^2) modulo 360 is 121

13 raised to the power (2^3) modulo 360 is 241

13 raised to the power (2^4) modulo 360 is 121

13 raised to the power (2^5) modulo 360 is 241

We conclude from this that if k is even, and if k ≥ 2, then 132k ≡ 121
(mod. 360), and if k is odd, and if k ≥ 3, then 22k ≡ 241 (mod. 360).

Running the Python program with m = 227 and a = 13 produces the
following output:—

5

[dwilkins@mta106032 AdditionalNotes]$./twopowers.py 227 13

13 raised to the power (2^0) modulo 227 is 13

13 raised to the power (2^1) modulo 227 is 169

13 raised to the power (2^2) modulo 227 is 186

13 raised to the power (2^3) modulo 227 is 92

13 raised to the power (2^4) modulo 227 is 65

13 raised to the power (2^5) modulo 227 is 139

13 raised to the power (2^6) modulo 227 is 26

13 raised to the power (2^7) modulo 227 is 222

13 raised to the power (2^8) modulo 227 is 25

13 raised to the power (2^9) modulo 227 is 171

13 raised to the power (2^10) modulo 227 is 185

13 raised to the power (2^11) modulo 227 is 175

13 raised to the power (2^12) modulo 227 is 207

13 raised to the power (2^13) modulo 227 is 173

13 raised to the power (2^14) modulo 227 is 192

13 raised to the power (2^15) modulo 227 is 90

13 raised to the power (2^16) modulo 227 is 155

13 raised to the power (2^17) modulo 227 is 190

13 raised to the power (2^18) modulo 227 is 7

13 raised to the power (2^19) modulo 227 is 49

13 raised to the power (2^20) modulo 227 is 131

13 raised to the power (2^21) modulo 227 is 136

13 raised to the power (2^22) modulo 227 is 109

13 raised to the power (2^23) modulo 227 is 77

13 raised to the power (2^24) modulo 227 is 27

13 raised to the power (2^25) modulo 227 is 48

13 raised to the power (2^26) modulo 227 is 34

13 raised to the power (2^27) modulo 227 is 21

13 raised to the power (2^28) modulo 227 is 214

13 raised to the power (2^29) modulo 227 is 169

We see that 13229 ≡ 1321 (mod. 227). Moreover k = 29 is the smallest
value of k for which 132k ≡ 132j (mod. 227) for some value of j satisfying
j < k. It follows that, for values of k greater than 0, the value of 132k

(mod. 227) are determined by the congruence class of k modulo 28. Thus
in order to find this value for some fairly large value of k, one should divide
k by 28 in integer arithmetic, and determine the appropriate value of of a2

j

with 1 ≤ j ≤ 28. For example, 3853 ≡ 17 (mod. 28). Therefore 1323853 ≡
13217 ≡ 190 (mod. 28).

6

