Course MA2C03: Michaelmas Term 2013. Assignment I—Worked Solutions.

1. Use the Principle of Mathematical Induction to prove that

$$\sum_{k=1}^{n} 7^{k} k = \frac{7}{36} \Big((6n-1)7^{n} + 1 \Big)$$

for all positive integers n.

The required equality holds when n = 1, since both sides are then equal to 7. Suppose that the equality holds when n = m for some natural number m, so that

$$\sum_{k=1}^{m} 7^{k} k = \frac{7}{36} \Big((6m-1)7^{m} + 1 \Big).$$

Then

$$\sum_{k=1}^{m+1} 7^k k = \sum_{k=1}^m 7^k k + 7^{m+1} (m+1)$$

= $\frac{7}{36} ((6m-1)7^m + 1) + 7^{m+1} (m+1)$
= $\frac{7}{36} ((6m-1)7^m + 1 + 36(m+1)7^m)$
= $\frac{7}{36} ((42m+35)7^m + 1) = \frac{7}{36} ((6m+5)7^{m+1} + 1))$
= $\frac{7}{36} ((6(m+1)-1)5^{m+1} + 1).$

and thus the equality holds when n = m + 1. It follows from the Principle of Mathematical Induction that the equality holds for all natural numbers n.

2. Let A and B be sets. Prove that

$$(A \cup B) \setminus (A \setminus B) = B.$$

We prove that every element of the set on the left hand side is an element of the set on the right hand side, and vice versa. Let $x \in (A \cup B) \setminus (A \setminus B)$. Then $x \in A \cup B$ and $x \notin A \setminus B$. Now $x \notin A \setminus B$

implies that either $x \notin A$ or else $x \in A \cap B$. Thus $x \in A$ and $x \notin A \setminus B$ together imply that $x \in A \cap B$ and thus $x \in B$. Thus if $x \in A \cup B$ and $x \notin A \setminus B$ then $x \in B$. We have thus shown that $(A \cup B) \setminus (A \setminus B)$ is a subset of B.

Now let $x \in B$. Then $x \in A \cup B$ and $x \notin A \setminus B$, and thus $x \in (A \cup B) \setminus (A \setminus B)$. We have thus shown that B is a subset of $(A \cup B) \setminus (A \setminus B)$. Therefore $(A \cup B) \setminus (A \setminus B) = B$, as required.

- 3. Let S be the relation on the set \mathbb{Z} of integers, where integers x and y satisfy xSy if and only if $x^3 x \ge y^3 y$. Determine
 - (i) whether or not the relation S is reflexive,
 - (ii) whether or not the relation S is symmetric,
 - (iii) whether or not the relation S is anti-symmetric,
 - (iv) whether or not the relation S is transitive,
 - (v) whether or not the relation S is a equivalence relation,
 - (vi) whether or not the relation S is a partial order.

[Justify your answers with short proofs and/or counterexamples.]

If integers x and y satisfy x = y then $x^3 - x = y^3 - y$, and therefore xSy. Thus xSx for all integers x. We conclude that the relation S on the set \mathbb{Z} of integers is reflexive.

The relation S on Z is not symmetric. Indeed if x = 3 and y = 2 then $x^3 - x = 24$ and $y^3 - y = 6$. Thus xSy, but $y \not Sx$.

The relation S is not anti-symmetric. Note that $x^3 - x = 0$ when x = 0 and x = 1 (and also when x = -1). It follows that 0S1 and 1S0 but $0 \neq 1$.

The relation S is transitive. Indeed let x, y and z be integers satisfying xSy and ySz. Then $x^3 - x \ge y^3 - y \ge z^3 - z$, and therefore $x^3 - x \ge z^3 - z$, and thus xSz.

The relation S on \mathbb{Z} is not an equivalence relation because it is not symmetric.

The relation S on \mathbb{Z} is not a partial order relation because it is not anti-symmetric.

4. Let f: [1,4] → [0,6] be the function defined so that f(x) = x²-4x+4 for all x ∈ [1,4]. Determine whether or not this function is injective, and whether or not it is surjective, giving brief reasons for your answers. (Note that [1,4] denotes the set of all real numbers between 1 and 4 inclusive, and therefore includes fractions such as ³/₂ and irrational numbers like √2 and π.)

We consider the behaviour of the function f on the interval [1,4]. Now f'(x) = 2x - 4 (where f'(x) denotes the derivative of the function f at x for all $x \in [1,4]$. It follows that f'(x) < 0 when $1 \le x < 2$ and f'(x) > 0 when $2 < x \le 4$. Thus the function f is strictly decreasing on the interval [1,2] and is strictly increasing on the function [2,4]. Also f(1) = 1, f(2) = 0 and f(4) = 4. The function f therefore will not be injective, and indeed f(1) = f(3) = 1.

Now the range of the function is the interval [0, 4], since f maps the interval [1, 2] onto the whole of the interval [0, 1], and maps the interval [2, 4] onto the whole of the interval [0, 4]. Therefore there does not exist any $x \in [1, 4]$ satisfying f(x) = 5, though 5 is an element of the codomain [0, 6] of the function. Therefore the function $f: [1, 4] \to [0, 6]$ is not surjective.