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6 Differential Equations

6.1 Examples of Differential Equations

A differential equation is an equation that relates a function y of a variable
x to its derivatives. Such a differential equation can usually be written in

the form PR p
p p—
F(—y y...—y,y,x>—0,

dar’ dap=1" " da
where p is a positive integer and F' is a real-valued (or complex-valued)
function with p + 2 arguments. If the differential equation can be expressed
in the above form for some positive integer p, but cannot be expressed in this
form with p replaced by any smaller integer, then the differential equation is
said to be of order p.
The following are typical examples of differential equations:

%—1—23; = 0 (1)
%— Zi—i—lly _— 2)
Z—Z—%y = 0 (3)
(%)2+y2—1 = 0. (4)

Equation (2) is a 2nd order differential equation. The other three equations
are first order differential equations.

The function y = e~2* is the solution to the differential equation (1),
since

d
—e TP 4 207 = —2e7 4+ 27 = (.
dz
It follow easily from this that the function y = Ae=2* solves this differential
equation for any constant A.

The function y = €2* solves the differential equation (2), since

d2 2x d 2x 2x 2x 2x 2x
%e —4%6 + 4e*" = 4e™" — 8e™ 4 4e*" = 0.
The function y = ze?* also solves this differential equation, since
d2 2z d 2x 2x
%(xe ) — 4%(1‘6 )+ 4ze

d
= d—((2:c +1)e*™) — 4(2x + 1)e** + dae®
x

= (4o +4)e* — 4(2r + 1)e* + 42e** =0
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Now if y = (Az + B)e®® then y = Au+ Bv, where u = xe** and v = €2?, and
therefore

d?y dy d*u du d*v dv
—— —4—44dy=A(— —4—+4 B|———-4—+4v ) =0.
d’x  dx T (d% dx N u> N (d% dx i U)

We conclude that, for any given values of the constants A and B, the function
(Ax + B)e** solves the differential equation (2).

The function y = ¢** is a solution of the differential equation (3). And the
functions y = sinz and y = cos z are solutions of the differential equation (4).

6.2 Real-Analytic Functions and Power Series

We shall solve certain important types differential equation by representing
the solutions that we are seeking as a power series, and then determining the
constraints on the coefficients of the power series.

Many familiar functions of mathematics may be represented through
power series. Let f:D — R be a function whose domain D is a subset
of the real numbers, and whose values are real numbers, and let s € D. The
function f is said to be real-analytic at s if there exists some positive real

number § and real numbers ag, ai, az, as, ... such that (s —d,s+4d) C D and
+oo
f(s+h)= Zanh”
n=0

for all real numbers h satisfying —6 < h < 9. The above equation represents
the value of f(s + h) as a power series in the variable h (for values of h

sufficiently close to zero.) The constants ag,aj, as, ... that determine this
power series are referred to as the coefficients of the power series. The Nth
N—1

partial sum Y a,h™ of the power series provides a good approximation to
n=0
f(s+ h) for sufficiently large values of N, where

N-1
Z anh™ = ag + a1h + agh® + ash® + - + ay_1hV 1,

n=0

and the value of this approximation converges on f(s+ h) as the value of N

increases so that
N—1

f(s+h)= NEIEOO Z anh

for all real numbers h satisfying —6 < h < 9.
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Polynomial functions are real-analytic. Also trigonometrical functions
such as sin and cos are real-analytic everywhere, as is the exponential func-
tion. Other functions such as the logarithm function are real-analytic over
their domains.

A power series representation of a real-analytic function may be differen-
tiated term by term. Thus if f is a real-analytic function, and if

—+00

f(s+h)= Zanhn

n=0

for all real numbers h satisfying — < h < 9, where the coefficients
ap, a1, Az, . . .

are real numbers, then the derivative f’ of the function f satisfies

f'(s+h) = d (s+h) Z dh (a,h") = f na,h" .
n=1

Repetition of this process yields the power series representation of the kth
derivative f*)(s 4 h) of the function f at s+ h:

“+00 “+o00 '
n

f®(s+h) = Zn(n — 1) (n—k+1a,h"F = Z Manh"’k.

(Note that 0! = 1 by definition. This ensures that n! = (n — 1)In) for all
positive integers n.) In particular, we may set h = 0 in the above identity.
Now if h = 0 then A = 1, and A" % = 0 whenever n > k. It follows that all
terms of the power series for f*)(s 4+ h) after the first term are zero when
h = 0, and therefore

k!

f(k)( ) = O,Gkho = klay,

for all positive integers k. We see from this that the real coefficients
ap, A2, asg, . ..

are determined by the derivatives of the function f at s. Specifically a, =

f(s)
|

n!
when n = 0.) It follows that

for all non-negative integers n. (Note that f™(s) = f(s) and n! =0

L h2 h3
f(s+h) = Z () = f(s) + hf'(s) + 5 () + 5 7 (s) +
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for all real numbers h satisfying —d < h < 4. This power series representation
of the values of f around s is referred to as the Taylor series of the real-
analytic function f.

One can show that a number of important functions are real-analytic
using a theorem of calculus known as Taylor’s Theorem. We now state this
theorem without proof.

Theorem 6.1 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s + h. Then

fls+h)= +Zhnf(” )+ f"“)(s+0h)

for some real number 0 satisfying 0 < 6 < 1.

Example Consider the exponential function exp, where expx = e” for all
real numbers x. This function has the property that

d

—exXpT = expr

dx
for all real numbers x. Also expO = 1. Therefore, on applying Taylor’s
Theorem (setting s = 0 and h = z in the identity above in the statement of
that theorem), we find that, given any real number z, and given any positive

integer k, there exists some real number 6 satisfying 0 < 6 < 1 such that
L k

expr = Z I— + % exp(6z).
n=0

The quantity
k

x
o exp(fz)

then represents the remainder, or error, that results when the exponential
function is approximated by the first k terms of its Taylor series about zero.
Now

‘ exp(fz)| < by(z)
whenever 0 < 6 < 1, where
k
x
be(a) = 21 s
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for all real numbers z. Now by 1(z) = |z|br(x)/(k + 1). Therefore byq(x) <
by, (x) when k > 2|z|. Tt follows that lim by(z) = 0. It follows that

k—+o00

+oo  n 22 23 24 e

x
expr = z%n'—1+x+§+§+z+a+
: z2 2% 2t A

-1 Lo L2
+9§+2+6+24+120+

for all real numbers z.
Example We use Taylor’s Theorem to derive power series representations

of the sine and cosine functions. Now the derivatives of these functions are
as follows:

d—Slnﬁ—COSl‘ d—COSfL':—SiIll’.
X Xz
It follows that
d4m d4m+1
dx4m SNy = ST, WSIH.T:COS(E,
d4m+2 d4m+3
WSIHI’:—SIHZE, WS]H:E:—COS$7

for all non-negative integers m and real numbers z. Also

dn dnfl
— COS T =

dxn dxn—1

sin x

for all positive integers n and real numbers x. Thus, if we apply Taylor’s
Theorem to the sine function on the interval between zero and x, we see that
given any real number x, there exists some real number 6 satisfying 0 < 6 < 1
such that

N-— 1 ym p2mt1 (_1)Nx2N+1 cos(fz)

sin(@ 2% 2m+¢ T aN )

(Note that if f(x) = sinx for all real numbers = then f™(0) = 0 whenever
n is even, and f?m(0) = (—1)™ for all non-negative integers m.) The
expression

(—1)N 22N+ cos(O)

2N +1)!

therefore represents the remainder, or error, that results when we approxi-
mate sinz by the sum of the first m non-zero terms of the Taylor series of
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the sine function about zero. Now the sine and cosine functions take values
between —1 and +1. Therefore

(—=1)Nz*N+ cos(Ox) |2V
(2N +1)! 2N+ 1)

whenever 0 < § < 1. Moreover
‘x|2N+1
li —_ =
Nortoo (2N + 1)

Indeed let
|2V

(2N +1)!

for all non-negative integers N. Then

N =

|z
bn
(2N + 2)(2N + 3)

bN—H =

for all non-negative integers N. It follows that by, < Llle whenever N >
2|z|. This is sufficient to ensure that by — 0 as n — +oc.
We conclude therefore that

oo p2m+1 o S S
Z o Bt Sl
for all real numbers z. Similarly
cos(z ino m2m—1—§—?+i—?—z—?—l—z—?—---
for all real numbers z.
Example Let .
fla) =

for all real numbers x satisfying x # 1. A straightforward proof by induction
on n, using standard rules such as the Quotient Rule for differentiation, shows

that
n!

Fw) =
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for all non-negative integers n and real numbers z. On setting x = 0 in this
formula, we see that f™(0) = n! for all non-negative integers n. One can
then apply Taylor’s Theorem to show that

1 X
:Zx”:1+x+x2+w3+m4+---
x
n=0

1—

when —1 < x < 1. The power series on the right hand side of this inequality
fails to converge when z > 1 and when x < —1.

Example The natural logarithm function log satisfies

d | 1
—logz = —
dx &
for all positive real numbers z. It follows that
dr | (n—1)!
—log(l —z) = — =—
dxm og(1 — ) dzn='1—x (1—z)n

for all positive integers n and for all real numbers z satisfying z < 1. One
can then apply Taylor’s Theorem to show that

log(l —x) = Z—

when —1 < z < 1.

d
6.3 The Differential Equation d—y +ay =0
x

Let a be a non-zero real number, and let us seek solutions to the differential
equation
dy

%—i-ay:(). (5)

We suppose that our function y can be represented as a power series in x, of
the form

y = y—’”,‘x”
“— nl
where yo, Y1, Y2, Y3, - . . are constants to be determined. Now
Y =10 + i Yn+1 CC'n+1
e (n+1)! ’

112



and

d yn+1 n+1 o (n + 1)yn+1 n __ yn+1 n
- — 7 = xr = T .
dx \ (n+1)! (n+1)! n!
It follows that -

dy Yot n

|
dx “—~ nl

(Here we have differentiated the power series for the function y term by term.
It can be proved that we are justified in doing so, but we do not attempt
such a proof here.) Therefore

Now if the right hand side is to be the zero function, then the coefficient of
2™ must be zero for all non-negative integers n, and therefore y,,1 + ay, = 0
for all non-negative integers n. Thus y, = C(—a)" for all non-negative
integers n, where C' = yy. But then

=, C(—a)"z"™ > (—azx
N Y

n=0

n

=Ce ™

We conclude, therefore, that any solution to the differential equation 5 that
can be represented as a power series must be a function y of the variable x
that is given by an equation of the form y = Ce™®" for some constant C.
(There are no other solutions to this differential equation.)

We have thus derived the following basic result that describes all possible
solutions to first order homogeneous first order linear differential equations
with constant coefficients.

Proposition 6.2 Let a be a real number, and let y be a differentiable func-
tion of a real variable x that satisfies the differential equation

dy
%—l-ay—().

Then y = Ce™* for all real numbers x, where C' = y(0).

d2
6.4 The Differential Equation d—?; — Ky =0
x

We now use the method of power series to find solutions to the equation

d?y
Tz k*y =0, (6)
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where k is a real number satisfing k # 0. Let

N Yan
Y= Z n! .
n=0
Then -
d_y — yn+1 xn
‘ )
dx “—~ nl
and hence .
d2_y _ Yn+2 "
dx? e n! ’

It follows that the function y satisfies the differential equation 6 if and only
if

= n _k2 n
— n!

and thus if and only if
Ynt+2 — kan =0

for all non-negative integers n. It is then easy to see that the values of
Y2, Y3, Y4, Ys, - - . are determined by the values of 3, and y;. Now we can find
constants A and B such that yo = A+ B and y; = Ak— Bk. (These constants
are given by the formulae A = (kyo+y1)/(2k) and B = (kyo—v1)/(2k).) One
then readily verify that y, = Ak™ + B(—k)™ for all non-negative integers n.
Therefore

n

= Ak 4 Be k.

+13§3(—kfﬁ

n

_ - (k)
y—AZ n!
n=0

One can readily verify that any function of this form satisfies the differential
equation. There are no other solutions.

n=0

d2
6.5 The Differential Equation d_:g + Ky =0
x

Let y be a solution to the differential equation
d*y
dx?

where k is a real number satisfing k # 0, and let

+ K%y =0, (7)



Then
Yn+2 + k2yn =0

for all non-negative integers n. It is then easy to see that the values of
Yo, Y3, Ya, Ys, . . . are determined by the values of yy and y;. Let A = yo and
B = yi/k. Then ys,, = (=1)™AE*™ and vy, 1 = (—1)"BEk*™! for all non-
negative integers m. On referring to the Taylor series for the sine and cosine
functions, we find easily that

k?l' 2m+1

AZ) BZ 2m+1 = Acoskz + Bsinkzx.

It is then easy to verify that the function Acoskz + Bsinkx does indeed
satisfy the differential equation for any values of the constants A and B.
There are no other solutions.

. . d? dy
6.6 The Differential Equation —‘Z + b— cy=20
dx dx
Let y be a solution to the differential equation
d’y . dy
@—Fb%Jrcy—O, (8)

and let u = e%y. Then y = e’%xu, and therefore

dy _be du T

2 = e 2— —1lpe2y

dx de 2 ’
d?y be d2u e du
gz ¢ g g T

On substituting these values into the differential equation, we find that

d
e (dz ib2u+cu):0.

Thus the function u is a solution to the differential equation

If ¥ — 4¢ > 0, then our previous results show that u = Ae* + Be™** where
k= %\/ b2 — 4c. It follows that

y = AeP* + Be*
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where

1 1
p= 5(—1)—1— Vb2 —4c), q= 5(—()— Vb2 — 4c).

Note that p and ¢ are roots of the quadratic polynomial s? + bs + c.
If b> — 4¢ = 0, then the second derivative of the function u vanishes, and
therefore u = Ax + B. But then

y = (Az + B)e’%.
In this case —%b is a repeated root of the quadratic polynomial s? + bs + c.
If b — 4c < 0, then u = Acoskz + Bsinkz, where k = $v/4c — b2 It
follows that

o 1
y = e_%(Acos kx + Bsin kx) (k= 5\/40 —b?)

In this case —%b + ik are the roots of the quadratic polynomial s + bs + c.
From these observations, we see that the solutions of the differential equa-

tion P p

d_xz + b% +cy=0

can be found from the roots of the associated auziliary polynomial s*+bs+-c,

as described in the following theorem.

Theorem 6.3 Let b and ¢ be real numbers. Then the solutions of the differ-
ential equation
d’y . dy

— 4+ b= =0

dx? + dx ta=0
are determined by the roots of the auziliary polynomial

24+ bs+c

as follows:—

(i) if b* > 4c then the auziliary polynomial s*> + bs+ ¢ has two real roots ry
and ry, and the general solution of the differential equation is given by

y = Ae"* + Be™",
where A and B are constants;

(i) if b* = 4c then the auziliary polynomial s*+bs+c has a repeated root ,
and the general solution of the differential equation is given by

y = (Az + B)e™™,

where A and B are constants;
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(iii) if b* < 4c then the auxiliary polynomial s* + bs + ¢ has two non-real
roots p+iq and p—iq (where p and q are real numbers), and the general
solution of the differential equation is given by

y = e’ (Asingr + Bcosqzr),
where A and B are constants.

Example Consider the differential equation

d?y dy
— —11-—= + 24y = 0.
dz? dx +24y =0

The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s> — 11s + 24. This polynomial has two real roots with values 3 and
8. The general solution of this differential equation is therefore of the form

Y= A63x+Be8r7
where A and B are arbitrary real constants.
Example Consider the differential equation

d*y | dy

—2 4= 44y = 0.

dz? * dx 4
The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s? + 4s 4 4. This polynomial has a repeated real root with value —2.

The general solution of this differential equation is therefore of the form
y = (Az + B)e ™,

where A and B are arbitrary real constants.

Example Consider the differential equation

d’y  dy
722 4d:c + 5y = 0.
The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s> —4s+5. This polynomial has a a pair of non-real roots with values
2+ and 2 — 4. The general solution of this differential equation is therefore
of the form
y = Ae**sinz + Be** cosz,

where A and B are arbitrary real constants.
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We now present an alternative method for arriving at the results of The-
orem 6.3 in the cases (i) and (ii) where b > 4c and b* = 4c respectively.
Thus let y be a solution of the differential equation

dy . dy
— +b—= =0

da? * dr Ta=9
where b > 4c. Then the auxiliary polynomial s? 4 bs+ ¢ has two distinct real
roots r; and ro. Then s +bs +c = (s —ry)(s —ry) and thus b = —(r; + 7o)
and ¢ = riry. It follows that

4NN,
dz ! dz 2)y ="
Indeed

dx ! dx 2)Y = dr \ dx 2y "\ dx 2y

d? d

= d_:cz —(r+ 7”2)d—i +rirgy
Py dy

p— — b— pr—
dx? + dx + 0

It then follows from Proposition 6.2 that

dy
-d — C rlz,
dr Ty €

where C' is some real constant. Now

i —1ry | e = (r; —ry)e®
dz ’

(=) (- 7=5)
— =T Y — e =0.
dz T —To

Another application of Proposition 6.2 then shows that
C

r —rre

and therefore

e’l"l.’E — Be’l"g.’b’

where B is some real constant. But then
Y= Ae™® 4 Bergz)

where A and B are real constants.
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We can apply a similar argument in the case where b?> = 4c. In that case
the function y satisfies the differential equation

() (oo

where r = —%b = ++/c. In this case it follows from Proposition 6.2 that

d
% —ry = Ae’,

where A is a real constant. Now

() e =

(£ )ty awem o

Another application of Proposition 6.2 then shows that

and therefore

y = Aze"™ + Be'”,

where A and B are real constants. We have thus arrived at the results
previously obtained using the method of power series in cases (i) and (ii) of
Theorem 6.3

6.7 Inhomogeneous Linear Differential Equations of
the Second Order with Constant Coefficients

We now discuss the general solution of an inhomogenous linear differential
equation of the second order with constant coefficients. Such a differential
equation is of the form
d’y . dy

— +b—+cy = f(x),
T3 To ey = f(2)
where b and ¢ are real numbers.

Suppose that yp is some function of the variable x which satisfies this
differential equation. Let y be any twice-differentiable function of the vari-
able x, and let yo =y — yp. Then

Pye  dyc *y o dy Pyp  dyp
pYC = Y Yy 2P 0P
dx? + dx + e dx? * dx Tty dx? dx p
Py o dy
= g2 Vg T f(z)



It follows that the function y satisfies the inhomogeneous differential equation

Py dy
@—Fb%—l—cy— f(x),

if and only if y¢ satisfies the corresponding homogeneous differential equation

Pye | dyc

d—ny + b;—x + cyc =0,
We see therefore that, once a particular solution yp of the inhomogeneous
differential equation has been found, any other solution of the inhomogeneous
differential equation may be obtained by adding to yp a solution yo of the
corresponding homogeneous differential equation. The function yp is referred
to as a particular integral of the inhomogeneous differential equation, and the
function y¢ is referred to as the complementary function. Any solution y of
the given inhomogeneous differential equation

dy dy

— +b—+cy = f(x),

Tz T ey = fla)

is the sum of the particular integral yp, which satisfies the same differential
equation, and a complementary function yc, which satisfies the corresponding

homogeneous linear differential equation

Pyc  dyc
b—— =0.
I + I +cyc =0

Example Let us find the general solution of the differential equation

d’y dy
—2 + 7=+ 10y = 2.
dz? + dx 1y
We first find a particular integral of this equation. Examination of this
equation shows that it might be sensible to look for a particular integral
which is a quadratic polynomial in = of the form pxz? + qx + r, where the
coefficients p, ¢ and r are chosen appropriately. Now if y = px? + qx +r then
d? d
CY 7% 10y = 10pa? + (10g + 14p)z + 10r + Tq + 2p.
dx? dx
If the right hand side of this equation is to equal 22, then p, ¢ and r must be
chosen so as to satisfy the equations

10p=1, 10¢+14p =0, 10r+7q¢+ 2p = 0.
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The solution of these equations is given by

1 7 39

=75 "= oo

We conclude that a particular integral yp of the differential equation is given

by
1, 7 39

=—1'— —r— —.
10 50 500
The complementary function yo must satisfy the differential equation

Yp

Pyo | dyc
7T— + 10yc = 0.
dx? + dx +Bye
The roots of auxiliary polynomial s? + 7s + 10 associated to this differential
equation are —2 and —5. The complementary function y¢ is then of the form

yo = Ae* + Be ™.

where A and B are arbitrary real constants. The general solution of the
differential equation
d’y _dy
—Z 4+ 72 4+ 10y = 22
dzx? + dx Ty =2
is then ] . 39
2 —2z —5z
=—ax'——r——+4+A B )
10" 50" 50 T4 TP
Remark Suppose that one is seeking a particular integral of an inhomoge-

neous differential equation of the form
d’y dy
_ b— g
a3 + . +cy = f(x),

where f(x) is a polynomial in z, and ¢ # 0. There will exist a particular
integral yp of the form yp = g(x), where g(x) is a polynomial in x of the
same degree as f(x). Let

Y

f(2) =po+p1z +p2x® + -+ pua”,  g(x) =qo + @ + @2’ + -+ + gua”,

If we equate coefficients of powers of x on both sides of the differential equa-
tion

d? d
a——g(x) +b—g(z) + cg(x) = f(x),
g(w) + b () + cgl) = £(2)
we obtain a system of simultaneous linear equations which determine the
coefficients qo, q1, - - ., gn of the polynomial g(z) in terms of the coefficients

Do, P1, - - - P Of the polynomial f(x). This enables us to find a particular
integral of the differential equation.
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Example Let us find the general solution of the differential equation

d*y  dy .
prch 6% + 9y =sinz.

First we seek a particular integral of this equation. Now
if y = sinz then y"” — 6y’ + 9y = 8sinz — 6 cos z,

if y = cosx then " — 6y + 9y = 8cosx + 6sin .

Thus if

1
P =55 (4sinz 4 3 cosx)

then y% — 6yp + 9yp = sinz, and thus yp is a particular integral of the
inhomogeneous differential equation

d?y dy .

i 6% + 9y = sinz.
The complementary function yo is then a solution of the corresponding ho-
mogeneous differential equation y/. — 6y, + 9y = 0. The associated auxiliary
polynomial s? — 6s + 9 has a repeated root, whose value is 3. The comple-
mentary function y¢ is then given by yo = (Ax + B)e®®, where A and B are
real constants. The general solution of the differential equation

dy  dy

is then given by

1
Yy = 50 (4sinx + 3cosx) + (Azx + B)esx-

Example Let us find the general solution of the differential equation

Py dy
—2 —2-% 4 5y = xe™.
dx? dx t oy =we

Examination of this differential equation suggests that it might be sensible
to look for a particular integral of the form yp = (p + qx)e®®, where p and ¢
are appropriately chosen real constants. Now if yp = (p + qx)e®® then

yp = (3p+ ¢+ 3qx)e™,  yp = (9p + 6q + 9gz)e™,

and thus
Y — 2 + dyp = (8p + 4q + 8qx)e”.
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Thus y} — 2yp + byp = x¢* if and only if p = —1z and ¢ = ;. A particular
integral yp of the differential equation is thus given by

1
Yyp = E(QZE — 1)€3x.

The complementary function yc satisfies the differential equation yg, — 2y +

5yc = 0. The roots of the associated auxiliary polynomial s* — 2s + 5 are

1+ 2¢ and 1 — 2¢. The complementary function y¢ is therefore of the form

Yo = Ae” sin 2x + Be® cos 2x.

where A and B are arbitrary real constants. The general solution of the
differential equation

d’y dy

—= —2-= 4 5y = ze*
dx? dr Y

is thus given by

1
(22 — 1) 4 Ae” sin 2z + Be” cos 2z.

y:E

6.8 Homogeneous and Inhomogeneous Linear Differ-
ential Equations of the First Order

We shall describe a method for solving differential equations of the form

dy
— +plx)y =r(x).
b pla)y = ()
Such an equation is a homogeneous linear first order differential equation if
r(z) = 0 for all x. It is inhomogeneous if the function r is not everywhere
Zero.
Consider the function ¢(z) where

ito) = e [ty ar).

(Here exp u = € for all real numbers u, and [ p(z) dz denotes some indefinite
integral of the function p.) On applying the Chain Rule and the Fundamental
Theorem of Calculus, we find that

@) =exo ([ pyde) o [ pla)ds = gl



Thus

where

dr
It follows that a function y of x is a solution of the differential equation

y'(z) + pla)y(x) = r(z).

if and only if
q(@)y' () + ¢ (2)y(x) = q(a)r(z).
But
q(2)y' (2) + ¢ (2)y(z) = — (a(2)y(@))

It follows that the function y satisfies the differential equation

y'(x) + p(a)y(x) = r(z)
if and only if

g(2)y(x) = / o(@)r(z) dz + C,

where C' is a constant of integration. The general solution of the differential
equation. On dividing this equation by ¢(z), we obtain the following result:

Theorem 6.4 The general solution of the differential equation

Yt plaly = r(a).

s thus given by

where

q(z) = exp ( / p(z) dw) ,

and where C' is some constant.

The function ¢ is referred to as an integrating factor for the differential
equation.
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Example Consider the differential equation

j—z +cy = .
The general solution then has the form
1 / C
y(x) = ——= [ q(x)r(x)de + —,
() ) (@)r(x) @)

where

o) = f o) -

and r(x) = z. Using the method of Integration by Parts, we find that

/ q(s)r(s)ds = / se® ds = {—secs} - —/ e ds
0 0 ¢ o €¢Jo

T 1
_ T cm_l'
P 1C )

Using this function as an indefinite integral of ¢(z)r(z), we find that the
general solution of the differential equation is given by

y(z) = eix (few L 1)) LC

c 02 ecx
Z 1 (1 —cac) + Cec®
= - — — — € e .
c 2

where C' is an arbitrary constant. We may write this general solution in the

simpler form
(@)= L= 2 4 A
r)=——— e
Y c 2
where A is an arbitrary constant. The constants A and C' in these two forms

of the general solution are related by the equation
1
A=C+ .
c

Remark The solution to the differential equation
dy
— +tcy=uw.
dz 4

is of the form yp + yo, where yp is a particular integral given by

and y¢ is the complementary function, given by yo = Ae .
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Example Consider the differential equation

dy
— + 22y = 0.
dx +ery

The integrating factor ¢(z) is given by

o(z) = exp ( / 2 dx) e

The solution to the differential equation therefore takes the form

Problems

1. (a) Obtain the general solutions of the following ordinary differential

equations:—
(i) %—8%%—1@:0;
(ii) %%—83—%—163;:0;
(iii) % - 6? + 34y = 0,

(b) Find the solutions of the differential equation (i), (ii) and (iii) above
that satisfy conditions y(0) = 1 and y/(0) = 2.

2. Obtain the general solutions of the following ordinary differential

equations:—
(i) %—5%—1—63/—5’;
(ii) Ziz 3% — 10y =
(iii) % + 63—3/ + 9y = ze;
(iv) % — G;Z—y + 10y = cos 2x;
( )%—%—2y—xsmx

126



d? d
(vi)—y—2—y+10y—x e

dx? dx
L APy dy
(vii) pi 2d— + 4y = cos 3x.
d2y dy 2x
(viii) i 12d— + Ty = e™* cos 3.
3. Any function y of a real variable x that solves the differential equation
d3y
— =27y =0
dxz3 Y

may be represented by a power series of the form

n=0

where the coefficients yo, y1, 2, y3, . . . of this power series are real num-
bers.

Find values of these coefficients vy, for n = 0,1, 2, 3,4, ... that yield a
solution to the above differential equation with yo = 1 and y; = 3 and
Yo = 9.

4. Any function y of a real variable x that solves the differential equation
d4y
Aot

may be represented by a power series of the form

where the coefficients v, y1, y2, ¥3, . . . of this power series are real num-
bers.

— 16y =0

Find values of these coefficients y, for n = 0,1,2,3,4,... that yield
a solution to the above differential equation with yg = 1 and y; = 0
and y» = —4 and y3 = 0. Hence or otherwise, find the solution to this
differential equation.

5. Find the general solution of the differential equation

d ,
& 322y = 2"
dx
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