
Course MA2C03, Michaelmas Term 2013
Section 4: Formal Languages

David R. Wilkins

Copyright c© David R. Wilkins 2000–2013

Contents

4 Formal Languages 47
4.1 Alphabets and Words . 47
4.2 Simple Grammars to Generate English Sentences 49
4.3 Well-Formed Formulae in Logic 54
4.4 Context-Free Grammars . 67
4.5 Phrase Structure Grammars 68
4.6 Regular Languages . 69
4.7 Regular Grammars . 71
4.8 Finite State Acceptors . 72

i

4 Formal Languages

4.1 Alphabets and Words

Let A be a finite set. We shall refer to this set A as an alphabet and we may
refer to the elements of A as letters. (For example, the set A might be the set
of letters in the English language, or in any other world language, or the set
{0, 1} of binary digits, or the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of decimal digits.)

For any natural number n, we define a word of length n over the alpha-
bet A to be a string of the form a1a2 . . . an in which ai ∈ A for i = 1, 2, . . . , n.
We shall denote by An the set of all words of length n over the alphabet A.
In particular, A1 = A.

Example Let A = {a, b, c}. Then

A2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
A3 = {aaa, aab, aac, aba, abb, abc, . . . , ccc}

Remark The set An can be identified with the Cartesian product A×A×
· · · ×A of n copies of the set A. The elements of this Cartesian product are
ordered n-tuples (a1, a2, . . . , an) whose components a1, a2, . . . , an are elements
of the set A. However, in the interests of brevity, it is convenient to drop
the parentheses and commas, denoting any element (a1, a2, . . . , an) of this
Cartesian product by the corresponding string or word a1a2 . . . an of length n.

We denote by A+ the union of the sets An for all natural numbers n, so
that

A+ =
∞⋃
n=1

An = A ∪ A2 ∪ A3 ∪ A4 ∪ · · · .

The set A+ is thus the set of all words of positive length over the alphabet n.

Example Let A = {0, 1}. Then A+ is the set of all binary strings whose
length is finite and non-zero, and contains strings such as 1, 0, 10, 101, 010,
010101, and 000010010.

We introduce also an empty word ε, which we regard as a word of length
zero. This may be thought of as the empty string, not involving any of the
letters from the alphabet A. We define A0 = {ε}, and we denote by A∗ the
set {ε}∪A+ obtained by adjoining the empty word ε to the set A+ of words
of positive length over the alphabet A. Thus

A∗ = {ε} ∪ A+ =
∞⋃
n=0

Ai = {ε} ∪ A ∪ A2 ∪ A3 ∪ A4 ∪ · · · .

47

Each word in A∗ has a length which is a non-negative integer. The empty
word is the only word in A∗ whose length is zero.

We denote the length of a word w by |w|.

Definition Let A be a finite set, and let w1 and w2 be words over the
alphabet A, with w1 = a1a2 . . . am and w2 = b1b2 . . . bn. The concatenation
of the words w1 and w2 is the word w1 ◦ w2, where

w1 ◦ w2 = a1a2 . . . amb1b2 . . . bn.

The concatenation w1 ◦ w2 of two words w1 and w2 may also be denoted
by w1w2.

Example Let A be the set of lower case letters in the English alphabet, and
let w1 and w2 be the words ‘book’ and ‘case’ respectively. Then w1 ◦ w2 is
the word ‘bookcase’ and w2 ◦ w1 is the word ‘casebook’. Note that, in this
instance, w1 ◦ w2 6= w2 ◦ w1.

Note that |w1 ◦ w2| = |w1| + |w2| for all words w1 and w2 over some
alphabet.

The operation ◦ of concatenation on the set of words over some alphabet
is not commutative if that alphabet has more than one element. Indeed if a
and b are distinct elements of this alphabet then a ◦ b is the string ab, and
b ◦ a is the string ba, and therefore a ◦ b 6= b ◦ a.

Let w1, w2 and w3 be words over some alphabet A. Then (w1 ◦w2)◦w3 =
w1 ◦ (w2 ◦ w3). Indeed if

w1 = a1a2 . . . am, w2 = b1b2 . . . bn, w3 = c1c2 . . . cp,

then (w1 ◦ w2) ◦ w3 and w1 ◦ (w2 ◦ w3) both denote the word

a1a2 . . . amb1b2 . . . bnc1c2 . . . cp.

The empty word ε has the property that ε◦w = w◦ε = w for all words w
over an alphabet A.

The following theorem follows directly from these observations.

Theorem 4.1 Let A be a finite set. Then (A∗, ◦) is a monoid, where the
set A∗ is the set of words over the alphabet A, and ◦ is the operation of
concatenation of words. The identity element of this monoid is the empty
word ε.

48

Definition Let A be a finite set. A language over A is a subset of A∗. A
language L over A is said to be a formal language if there is some finite set
of rules or algorithm that will generate all the words that belong to L and
no others.

Let A be a finite set. The union and intersection of any finite collection of
languages over A are themselves languages over A. In particular, the union
L1 ∪ L2 and intersection L1 ∩ L2 of two languages L1 and L2 over A is a
language over A.

The concatenation of languages L1 and L2 over A is the language L1 ◦L2,
where

L1 ◦ L2 = {w1 ◦ w2 ∈ A∗ : w1 ∈ L1 and w2 ∈ L2}.

The concatenation L1 ◦ L2 of the languages L1 and L2 may also be denoted
by L1L2.

Given any language L, we can form languages Ln for all natural num-
bers n, where L1 = L and Ln = L ◦ Ln−1 for all natural numbers n. The
associativity of the concatenation operation ensures that Lm ◦ Ln = Lm+n

for all natural numbers m and n. We define L0 = {ε}. The language L then
determines languages L+ and L∗ over A, where

L+ =
∞⋃
n=1

Ln = L ∪ L2 ∪ L3 ∪ L4 ∪ · · ·

and

L∗ = {ε} ∪ L+ =
∞⋃
n=0

Ln = {ε} ∪ L ∪ L2 ∪ L3 ∪ L4 ∪ · · · .

4.2 Simple Grammars to Generate English Sentences

We describe a simple grammar to construct a certain collection of English
sentences. This grammar is specified by the following collection of produc-
tions or replacement rules:

〈S〉 → 〈NP〉〈VP〉
〈VP〉 → 〈V〉〈NP〉
〈NP〉 → 〈T〉〈QN〉
〈QN〉 → 〈Adj〉〈QN〉
〈QN〉 → 〈N〉
〈T〉 → the

〈N〉 → cat

49

〈N〉 → dog

〈Adj〉 → black

〈Adj〉 → old

〈Adj〉 → small

〈V〉 → saw

〈V〉 → chased

Here 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉, 〈V〉, represent certain
phrases or words that may form part of sentences generated by the grammar.
They may be interpreted as follows:—

• 〈S〉 represents the sentence to be generated by the grammar;

• 〈VP〉 represents a ‘verb phrase’;

• 〈NP〉 represents a ‘noun phrase’;

• 〈QN〉 represents a noun optionally preceded by one or more adjectives;

• 〈T〉 represents the definite article ‘the’ (which will subsequently replace
it);

• 〈N〉 represents a noun chosen from the set the set {dog, cat};

• 〈Adj〉 represents an adjective chosen from the set {black, old, small};

• 〈V〉 represents a verb chosen from the set {saw, chased};

Each of these productions specifies that the entity on the left hand side of
the arrow may be replaced by the string on the right hand side of the arrow.

We may apply these productions successively, starting with the symbol
〈S〉, in order to obtain the sentences generated by the grammar.

Example We may generate the sentence ‘The dog chased the old black cat’

50

as follows:

〈S〉 ⇒ 〈NP〉〈VP〉 (〈S〉 → 〈NP〉〈VP〉)
⇒ 〈T〉〈QN〉〈VP〉 (〈NP〉 → 〈T〉〈QN〉)
⇒ the 〈QN〉〈VP〉 (〈T〉 → the)
⇒ the 〈N〉〈VP〉 (〈QN〉 → 〈N〉)
⇒ the dog 〈VP〉 (〈N〉 → dog)
⇒ the dog 〈V〉〈NP〉 (〈VP〉 → 〈V〉〈NP〉)
⇒ the dog chased 〈NP〉 (〈V〉 → chased)
⇒ the dog chased 〈T〉〈QN〉 (〈NP〉 → 〈T〉〈QN〉)
⇒ the dog chased the 〈QN〉 (〈T〉 → the)
⇒ the dog chased the 〈Adj〉〈QN〉 (〈QN〉 → 〈Adj〉〈QN〉)
⇒ the dog chased the old 〈QN〉 (〈Adj〉 → old)
⇒ the dog chased the old 〈Adj〉〈QN〉 (〈QN〉 → 〈Adj〉〈QN〉)
⇒ the dog chased the old black 〈QN〉 (〈Adj〉 → black)
⇒ the dog chased the old black 〈N〉 (〈QN〉 → 〈N〉)
⇒ the dog chased the old black cat. (〈N〉 → cat)

The production used at each step of the derivation is specified on the right.
At each stage a single instance of 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉 or
〈V〉 is replaced by the appropriate string.

In grammars such as the one we are studying, words such as ‘the’, ‘black’,
‘old’, ‘small’, ‘cat’, ‘dog’, ‘chased’, ‘saw’ are referred to as terminals. Entities
such as 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉 and 〈V〉 are referred to as
nonterminals. Each production in a context-free grammar specifies that a
single occurrence of the nonterminal specified to the left of the arrow may be
replaced by the string specified to the right of the arrow. Such replacements
are applied, one at a time, to transform strings made up of terminals and
nonterminals to other strings of the same kind.

Grammars defined by means of productions may be specified in a more
compact form, introduced by John Backus and Peter Naur, and employed
in a report on the high-level programming language ALGOL-60 published
in 1960. Our grammar for simple English sentences may be presented in
Backus-Naur form as follows:

〈S〉 → 〈NP〉〈VP〉
〈VP〉 → 〈V〉〈NP〉
〈NP〉 → 〈T〉〈QN〉
〈QN〉 → 〈Adj〉〈QN〉 | 〈N〉
〈T〉 → the

51

〈N〉 → cat | dog

〈Adj〉 → black | old | small

〈V〉 → saw | chased

Each item in this list specifies that the nonterminal occurring to the left of
the arrow may be replaced by one of various alternatives; the alternatives
are separated by the meta-character |.

One may verify that the sentences generated by the grammar are of the
following form: the sentence consists of the definite article ‘the’, optionally
followed by one or more of the adjectives ‘black’, ‘old’ and ‘small’, followed
by one of the nouns ‘cat’ and ‘dog’, followed by one of the verbs ‘saw’ and
‘chased’, followed by the definite article ‘the’, optionally followed by one or
more of the listed adjectives, followed by one of the listed nouns. From this
description one may verify that the sentences generated by simple grammar
we have described are the same as those generated by the grammar specified
in Backus-Naur form as follows:—

〈S〉 → the 〈T1〉
〈T1〉 → black 〈T1〉 | old 〈T1〉 | small 〈T1〉 | cat 〈T2〉 | dog 〈T2〉
〈T2〉 → saw 〈T3〉 | chased 〈T3〉
〈T3〉 → the 〈T4〉
〈T4〉 → black 〈T4〉 | old 〈T4〉 | small 〈T4〉 | cat 〈F〉 | dog 〈F〉
〈F〉 → ε

This grammar is an example of a regular grammar. A regular grammar is
determined by productions in which a single nonterminal is replaced, either
by a terminal followed by a nonterminal, or by a single terminal, or by the
empty string ε.

Example The sentence ‘The dog chased the old black cat’ is generated in
the regular grammar presented above as follows:

〈S〉 ⇒ the 〈T1〉
⇒ the dog 〈T2〉
⇒ the dog chased 〈T3〉
⇒ the dog chased the 〈T4〉
⇒ the dog chased the old 〈T4〉
⇒ the dog chased the old black 〈T4〉
⇒ the dog chased the old black cat 〈F〉
⇒ the dog chased the old black cat.

52

If a language is generated by a regular grammar then it is possible to
construct a finite state acceptor for that language. This is a finite state
machine which may be used to determine whether or not a given string
belongs to the language.

We describe a finite state acceptor for the collection of sentences generated
by the regular grammar described above. This machine has a finite number of
internal states. One of these states is the initial state of the machine. Some
of the states of a finite state acceptor are regarded as final states. Words
taken from the list

the, black, old, small, cat, dog, saw, chased

are successively input into the machine. Each time one of these words is
input the machine either remains in the state it is currently in, or it makes
a transition to some other internal state, determined by the current state
and the input word. We consider such a machine with seven internal states,
which we label as S, T1, T2, T3, T4, F and E. The following table describes
the effect of inputting each word:

the black old small cat dog saw chased
S T1 E E E E E E E

T1 E T1 T1 T1 T2 T2 E E
T2 E E E E E E T3 T3
T3 T4 E E E E E E E
T4 E T4 T4 T4 F F E E
F E E E E E E E E
E E E E E E E E E

The words label the columns of the table, the internal states label the rows,
and each entry in the table specifies the state that results when the current
state is that labelling the row and the input word is that labelling the column.
For example, if the machine is in state T1, and if the input word is ‘cat’, then
the internal state of the machine is changed to the state T2. The state E
may be regarded as an ‘error state’: the machine enters this state whenever
a word is input that may not occur at the relevant position in the sentence.
Moreover, once the machine is in the state E, it remains in this state, no
matter which word is input. The state S is the initial or starting state.
There is a single final state, which is the state F. A finite sequence of words
is accepted by the machine if and only if successively inputting these words
causes the machine to move from state S to state F.

53

4.3 Well-Formed Formulae in Logic

We shall investigate the grammar of well-formed formulae in the Proposi-
tional Calculus. We begin with a discussion of basic principles of this calcu-
lus.

Let p and q be Boolean variables. Such variables may represent proposi-
tions that might be true in certain circumstances, or false in other circum-
stances. A Boolean variable may therefore take on one of two values: true
(T) or false (F).

Example Let the Boolean variable p represent the proposition (x > y),
where x and y are arbitrary real numbers. If x = 10 and y = 5 then p is
true. But if x = 5 and y = 10 then p is false.

In the Propositional Calculus we also have two Boolean constants. We
shall denote one of these by T: it may represent a proposition that is true in
all circumstances. We shall denote the other constant by F: it may represent
a proposition that is false in all circumstances.

In the Propositional Calculus we may build more complicated formulae
out of simpler formulae using the operations of negation ¬, conjunction ∧
and and disjunction ∨. Negation is a unary operation, whereas conjunction
and disjunction are binary operations.

Let p be a Boolean variable. The negation ¬p of p has the property that it
is true whenever p is false, and it is false whenever p is true. The relationship
between p and ¬p is therefore expressed by the following truth table:—

p ¬p
T F
F T

Let p and q be Boolean variables. The conjunction p ∧ q of p and q is
true if and only if both p and q are true. The disjunction p ∨ q of p and q is
true if and only if at least one of p and q is true. The relationship between
p, q, p ∧ q and p ∨ q are therefore expressed by the following truth tables:—

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

The conjunction p ∧ q may be thought of as representing the proposition
p AND q. Similarly the disjunction p ∨ q may be thought of as representing
the proposition p OR q.

54

We may build up more complicated formulae using these basic operations
of negation, conjunction and disjunction. For example, if p, q and r are
Boolean variables, and if the Boolean variable s is used to represent the
conjunction p ∧ q of p and q, then we may write

¬s = ¬(p ∧ q), s ∧ r = (p ∧ q) ∧ r,

s ∨ r = (p ∧ q) ∨ r, r ∨ s = r ∨ (p ∧ q), etc.

Consider the propositions represented by the formulae (p∧ q)∧ r and p∧
(q∧r). These two propositions are true if and only if each of the propositions
p, q and r is true. They are false if any one of the propositions p, q and r is
false. It follows that no ambiguity will result if we write p∧ q ∧ r in place of
(p∧ q)∧ r or p∧ (q∧ r). More generally, we can define the conjunction of any
finite number of propositions: the conjunction p1∧p2∧· · ·∧pn of propositions
p1, p2, . . . , pn is true if and only if every one of the propositions p1, p2, . . . , pn is
true. We may define in a similar fashion the disjunction of any finite number
of propositions: the disjunction p1∨p2∨· · ·∨pn of propositions p1, p2, . . . , pn
is true if and only if at least one of the propositions p1, p2, . . . , pn is true.

Let us now consider what meaning, if any, one might assign to a formula
such as ‘p ∧ q ∨ r’. One might consider interpreting a formula of this form
either as (p ∧ q) ∨ r or as p ∧ (q ∨ r). The following truth table exhibits the
dependence of the truth values of these two latter formulae on those of p, q
and r:—

p q r p ∧ q q ∨ r (p ∧ q) ∨ r p ∧ (q ∨ r)
T T T T T T T
T T F T T T T
T F T F T T T
T F F F F F F
F T T F T T F
F T F F T F F
F F T F T T F
F F F F F F F

We see from this truth table that (p∧ q)∨ r and p∧ (q ∨ r) do not represent
equivalent propositions. For example, if p is false, q is true and r is true,
then (p ∧ q) ∨ r is true, but p ∧ (q ∨ r) is false.

We would need to resolve this ambiguity in some way if we were to ad-
mit expressions such as ‘p ∧ q ∨ q’. One approach would be to assign higher
precedence to one or other of the binary operations ∧ and ∨. (This would
correspond to the convention in evaluating expressions in ordinary arithmetic

55

and algebra, where multiplication is assigned a higher precedence than addi-
tion.) A second possible approach would involve assigning equal precedence
to the two operations ∧ and ∨ whilst adopting the convention that evalu-
ations of formulae in the Propositional Calculus involving these operations
proceed from left to right in the absence of any parentheses indicating the
order in which the operations are to be performed. (This would correspond
to a standard convention in evaluating expressions in ordinary arithmetic
and algebra involving additions and subtractions.)

However a sensible approach would involve regarding a formula such as
‘p∧ q∨ r’ as being ill-formed, on the grounds that it is inherently ambiguous
in the absence of parentheses that would specify the order in which the
operations ∧ and ∨ are to be performed. One would not then seek to assign
any truth value to such a formula, any more than one would seek to assign
a truth value to a jumble of symbols such as ‘p) ∧ ∨(((qr’.

We are then led to the problem of providing a formal specification to
determine which strings of characters involving ‘p’, ‘q’, ‘r’ etc., ‘¬’, ‘∧’, ‘∨’
‘(’ and ‘)’ are to be regarded as well-formed formulae in the Propositional
Calculus. A related problem is that of designing an algorithm to determine
whether or not a string involving these characters is to be regarded as a
well-formed formula of the Propositional Calculus.

A formula of the Propositional Calculus consists of a string of characters
taken from some finite set. This set would contain characters such as ¬,
∧ and ∨ to denote the operations of negation, conjunction and disjunction
respectively. It might also contain parentheses ‘(’ and ‘)’ that can be used to
determine in the usual fashion the order in which the binary operations are
to be performed and the subformulae to which they are to be applied. We
could introduce characters T and F to denote the Boolean constants ‘true’
and ‘false’ respectively. It remains to consider how Boolean variables are to
be represented. We could certainly use single letters p, q, r, s. But this would
only enable us to write down formulae with at most four distinct proposi-
tional variables. Were we to use single letters from the English alphabet
in both upper and lower case to denote propositional variables, this would
restrict us to formulae with at most fifty-two distinct Boolean variables. But
there should be no limit to the number of distinct Boolean variables that we
could introduce into a well-formed formula. We therefore need a scheme for
representing unlimited quantities of Boolean variables within our formula.
We could do this by using p′, p′′, p′′′, p′′′′ etc., in addition to single letters
such as p. Here p′′′′, for example, is to be regarded as a string of length 5,
consisting of the letter p, followed by four instances of the prime character ′.
Accordingly we shall specify that a propositional variable is to be represented
by the letters p, q, r, s, either alone or else followed by a string consisting

56

of any number of prime characters. (The choice of which letters to use is of
course arbitrary; any similar choice would serve just as well.) The formulae
of the Propositional Calculus may then be regarded as strings (or words)
over the alphabet A, where

A = {¬,∧,∨, (,),T,F, p, q, r, s, ′}.
The elements of A∗ (i.e., the words over the alphabet A) are then strings of
characters taken from the set A. Some of them, such as ‘(p∧ p′)∨ (p′′ ∧ p′′′)’,
represent propositions whose truth values are determined unambiguously
from the truth values of the Boolean variables occurring within them. Oth-
ers, such as ‘)p¬)∧∨∨ (Tp′′′’ are pure gibberish. Our task is then to provide
some sort of formal specification which determines which of the strings be-
longing to A∗ are to be regarded as well-formed formulae of the Propositional
Calculus. The collection of well-formed formulae is then a language over the
alphabet A.

The method by which we specify the well-formed formulae is an example
of a context-free grammar. For this, we introduce a set N of nonterminals.
We represent each nonterminal by an appropriate identifier enclosed within
angle brackets ‘〈’ and ‘〉’. For example we shall use the nonterminal ‘〈wff〉’
to represent an arbitrary well-formed formula. Other nonterminals shall be
used to represent well-formed formulae that are of a special form. For exam-
ple, the nonterminal ‘〈negation〉’ will represent a well-formed formula that
is the negation of some other well-formed formula. Other nonterminals may
represent things such as the letters p, q, r and s of the English alphabet.

We shall refer to elements of the set A as terminals. (In any context-
free grammar, the terminals are the elements of the alphabet over which the
language specified by that grammar is defined.)

The context-free grammar will then consist of a finite collection of produc-
tions. Each production specifies that a certain nonterminal may be replaced
by some string whose elements are terminals or nonterminals. A word in A∗ is
then said to be generated by the grammar if some succession of replacements
determined by productions in the grammar transforms the nonterminal 〈wff〉
into the given word.

Our grammar will include three productions in which the nonterminal
〈wff〉 occurs on the left hand side. These are

〈wff〉 → (〈wff〉)
〈wff〉 → 〈atom〉
〈wff〉 → 〈compound〉

The effect of including the first of these productions is to ensure that, when-
ever a well-formed formula is enclosed within parentheses, the resulting for-

57

mula is also well-formed. For example, the formulae (p ∧ q), ((p ∧ q)),
(((p∧ q))), etc., are obtained in this way from the well-formed formula p∧ q,
and our grammar will therefore ensure that these formulae are also well-
formed.

If a well-formed formula is not merely other well-formed formulae enclosed
within parentheses, then it may be regarded as being either an atomic formula
or a compound formula. The atomic formulae are the Boolean constants T
and F and variables such as p, q, r, s, p′, p′′ etc. The compound formulae
are those that are constructed out of shorter well-formed formulae using the
operations of negation, conjunction and disjunction. The production

〈wff〉 → 〈atom〉

allows us to replace the nonterminal 〈wff〉 by 〈atom〉 when the well-formed
formula we are seeking to generate is a Boolean constant or a Boolean vari-
able. The production

〈wff〉 → 〈compound〉
allows us to replace the nonterminal 〈wff〉 by 〈compound〉 when the well-
formed formula we are seeking to generate is a compound formula. Successive
applications of these three productions to the nonterminal 〈wff〉 yield strings
such as

〈atom〉, 〈compound〉, (〈atom〉), (((〈compound〉))).

The sequence of steps that transform 〈wff〉 into (((〈compound〉))) may be
presented as follows:

〈wff〉 ⇒ (〈wff〉)
⇒ ((〈wff〉))
⇒ (((〈wff〉)))
⇒ (((〈compound〉)))

The first three steps apply the production 〈wff〉 → (〈wff〉) to the nonterminal
〈wff〉 in the relevant formula, replacing this nonterminal by (〈wff〉). The final
step applies the production 〈wff〉 → 〈compound〉 to the nonterminal 〈wff〉 in
the penultimate formula, replacing this nonterminal by 〈compound〉. (Where
the symbol ⇒ occurs between two strings, this indicates that the first string
can be transformed into the second string on applying one of the productions
of the grammar to a single nonterminal occuring in the first string to replace
that nonterminal by the appropriate string.) We write

〈wff〉 ∗⇒ (((〈compound〉)))

58

to indicate that the string on the left can be transformed into the string
on the right through the successive application of a finite number of pro-
ductions belonging to the grammar. (In general, where the symbol

∗⇒ is
placed between two strings, this indicates either that the first string is iden-
tical to the second, or else that the first string can be transformed into the
second through the successive application of a finite number of productions
belonging to the relevant grammar.)

The three productions which we can apply to the nonterminal 〈wff〉 can
be specified more compactly in Backus-Naur form by means of the following:

〈wff〉 → (〈wff〉) | 〈atom〉 | 〈compound〉

This indicates that the nonterminal 〈wff〉 occurring on the left hand side may
be replaced by any one of a list of alternatives presented on the right hand
side. The meta-character | is used to separate the alternatives within this
list.

We next consider the productions for producing atomic formulae. Any
atomic formula represents either a Boolean constant or a Boolean variable.
Moreover the Boolean constants are T and F. This leads us to introduce the
following four productions:

〈atom〉 → 〈constant〉
〈atom〉 → 〈variable〉

〈constant〉 → T

〈constant〉 → F

These four productions may be specified in Backus-Naur form by the follow-
ing:

〈atom〉 → 〈constant〉 | 〈variable〉
〈constant〉 → T | F

Using these productions we find that

〈atom〉 ⇒ 〈constant〉 ⇒ T, 〈atom〉 ⇒ 〈constant〉 ⇒ F,

and thus
〈atom〉 ∗⇒ T, 〈atom〉 ∗⇒ F.

We also need to specify the productions that transform the nonterminal
〈variable〉 into the formulae

p, q, r, s, p′, q′, r′, s′, p′′, q′′, r′′, s′′, p′′′, q′′′, r′′′, s′′′,

59

These transformations may be accomplished using the following productions:

〈variable〉 → 〈variable〉′

〈variable〉 → 〈letter〉
〈letter〉 → p

〈letter〉 → q

〈letter〉 → r

〈letter〉 → s

These productions can be specified in Backus-Naur form as follows:

〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

For example, the formula p′′′ is generated from the nonterminal 〈variable〉 by
the following sequence of transformations:

〈variable〉 ⇒ 〈variable〉′ ⇒ 〈variable〉′′ ⇒ 〈variable〉′′′ ⇒ 〈letter〉′′′ ⇒ p′′′.

The first three transformations use the production 〈variable〉 → 〈variable〉′,
the fourth uses the production 〈variable〉 → 〈letter〉, and the final trans-

formation uses the production 〈letter〉 → p. Thus 〈variable〉 ∗⇒ p′′′. The
formulae representing Boolean constants and variables can now all be gener-
ated from the nonterminal 〈wff〉. For example, 〈wff〉 ∗⇒ q′, since

〈wff〉 ⇒ 〈atom〉 ⇒ 〈variable〉 ⇒ 〈variable〉′ ⇒ 〈letter〉′ ⇒ q′.

Our grammar now has productions to generate any atomic formula. We
now need to add productions that will generate compound formulae. A
compound formula is either the negation of some other well-formed formula,
or the conjunction of two well-formed formulae, or the disjunction of two
such formulae. This leads us to introduce the productions

〈compound〉 → 〈negation〉
〈compound〉 → 〈conjunction〉
〈compound〉 → 〈disjunction〉

which may be specified in Backus-Naur form as

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

Let us consider negations. If F is any well-formed formula, then ¬(F) is
a well-formed formula that represents the negation of the formula F . Also we

60

shall regard ¬F as being a well-formed formula representing the negation of F
in the cases when F is atomic or when F is itself a negation. However we will
adopt the convention that the negation operation ¬ has higher precedence
than either ∧ or ∨. Thus if F is of the form G ∧ H then ¬G ∧ H will be
equivalent to (¬G) ∧H and will not represent the negation ¬(G ∧H) of F .
Similarly ¬G ∨H is to be interpreted as (¬G) ∨H, and is not equivalent to
¬(G∨H). Therefore we only denote the negation of a well-formed formula F
by ¬F in the cases when F is atomic or a negation, and not in the cases
when F is a conjunction or disjunction. We therefore introduce the following
productions into our grammar:

〈negation〉 → ¬〈nf〉
〈nf〉 → 〈atom〉
〈nf〉 → 〈negation〉
〈nf〉 → (〈wff〉)

These productions are specified in Backus-Naur form as follows:

〈negation〉 → ¬〈nf〉
〈nf〉 → 〈atom〉 | 〈negation〉 | (〈wff〉)

Next let us consider conjunctions. If G and H are well-formed formulae
then (G) ∧ (H) is a well-formed formula representing the conjunction of G
and H. We may replace (G) ∧ (H) by G ∧ (H) without introducing any
ambiguity in the cases when G is atomic, the negation of a well-formed
formula or a conjunction of well-formed formulae. (Our rules of precedence
ensure that ¬G∧H is interpreted as (¬G)∧H and not as ¬(G∧H), since we
regard negation has having higher precedence than conjunction.) We shall
not allow ourselves to replace (G)∧ (H) by G∧ (H) when G is a disjunction
of well-formed formulae. Similarly we may replace (G)∧ (H) and G∧ (H) by
(G) ∧ H and G ∧ H respectively when the formula H is an atomic formula
or the negation of a well-formed formula, or a conjunction of well-formed
formulae, but not when H is a disjunction of well-formed formulae. These
considerations are respected if we introduce the productions

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉
〈cf〉 → 〈negation〉
〈cf〉 → 〈conjunction〉
〈cf〉 → (〈wff〉)

61

which may be specified in Backus-Naur form as follows:

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈wff〉)

With these productions we find, for example, that

〈conjunction〉 ⇒ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈negation〉
⇒ 〈atom〉 ∧ ¬〈nf〉
⇒ 〈atom〉 ∧ ¬〈atom〉

and

〈conjunction〉 ⇒ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈conjunction〉
⇒ 〈atom〉 ∧ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈atom〉 ∧ 〈atom〉.

We can then apply further productions in order to obtain formulae such as
p ∧ ¬q and p′ ∧ p′′ ∧ p′′′.

Finally we have to specify the productions for handling disjunction. These
are analogous to those for conjunctions, and are the following:—

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉
〈df〉 → 〈negation〉
〈df〉 → 〈disjunction〉
〈df〉 → (〈wff〉)

These can be presented in Backus-Naur form as follows:

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈wff〉)

62

With these productions we can generate formulae such as p ∨ (q ∧ r) by
applying productions successively as follows:

〈disjunction〉 ⇒ 〈df〉 ∨ 〈df〉
⇒ 〈atom〉 ∨ 〈df〉
⇒ 〈atom〉 ∨ (〈wff〉)
⇒ 〈atom〉 ∨ (〈compound〉)
⇒ 〈atom〉 ∨ (〈conjunction〉)
⇒ 〈atom〉 ∨ (〈cf〉 ∧ 〈cf〉)
⇒ 〈atom〉 ∨ (〈atom〉 ∧ 〈cf〉)
⇒ 〈atom〉 ∨ (〈atom〉 ∧ 〈atom〉)

This completes our construction of a context-free grammar that generates
the well-formed formulae of the Propositional Calculus.

This grammar is specified in Backus-Naur form by the following:—

〈wff〉 → (〈wff〉) | 〈atom〉 | 〈compound〉
〈atom〉 → 〈constant〉 | 〈variable〉

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉 | 〈negation〉 | (〈wff〉)
〈conjunction〉 → 〈cf〉 ∧ 〈cf〉

〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈wff〉)
〈disjunction〉 → 〈df〉 ∨ 〈df〉

〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈wff〉)
〈constant〉 → T | F
〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

The following are the productions of this grammar:—

〈wff〉 → (〈wff〉)
〈wff〉 → 〈atom〉
〈wff〉 → 〈compound〉
〈atom〉 → 〈constant〉
〈atom〉 → 〈variable〉

〈compound〉 → 〈negation〉

63

〈compound〉 → 〈conjunction〉
〈compound〉 → 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉
〈nf〉 → 〈negation〉
〈nf〉 → (〈wff〉)

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉
〈cf〉 → 〈negation〉
〈cf〉 → 〈conjunction〉
〈cf〉 → (〈wff〉)

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉
〈df〉 → 〈negation〉
〈df〉 → 〈disjunction〉
〈df〉 → (〈wff〉)

〈constant〉 → T

〈constant〉 → F

〈variable〉 → 〈variable〉′

〈variable〉 → 〈letter〉
〈letter〉 → p

〈letter〉 → q

〈letter〉 → r

〈letter〉 → s

The well-formed formulae of the Propositional Calculus are those words F
over the alphabet

{¬,∧,∨, (,),T,F, p, q, r, s, ′}

for which 〈wff〉 ∗⇒ F .

Example We verify that the formula

(p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬r′′′)

is a well-formed formula of the Propositional Calculus. This formula may be
obtained from the nonterminal 〈wff〉 by applying successive productions as

64

follows:

〈wff〉 ⇒ 〈compound〉
⇒ 〈disjunction〉
⇒ 〈df〉 ∨ 〈df〉
⇒ (〈wff〉) ∨ 〈df〉
⇒ (〈compound〉) ∨ 〈df〉
⇒ (〈conjunction〉) ∨ 〈df〉
⇒ (〈cf〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈atom〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈variable〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈letter〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (p ∧ 〈cf〉) ∨ 〈df〉
⇒ (p ∧ 〈atom〉) ∨ 〈df〉
⇒ (p ∧ 〈variable〉) ∨ 〈df〉
⇒ (p ∧ 〈variable〉′) ∨ 〈df〉
⇒ (p ∧ 〈letter〉′) ∨ 〈df〉
⇒ (p ∧ r′) ∨ 〈df〉
⇒ (p ∧ r′) ∨ (〈wff〉)
⇒ (p ∧ r′) ∨ (〈compound〉)
⇒ (p ∧ r′) ∨ (〈conjunction〉)
⇒ (p ∧ r′) ∨ (〈cf〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈wff〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈compound〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈negation〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈nf〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈atom〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈letter〉′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈conjunction〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈cf〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈atom〉 ∧ 〈cf〉)

65

⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈variable〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈letter〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ 〈negation〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈nf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈atom〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈letter〉′′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬r′′′)

Remark The grammar we have constructed to describe the well-formed for-
mulae of the Propositional Calculus generates formulae such as (((p∧q))) and
p∨((((((q)))))) which are unambiguous but which contain superfluous paren-
theses which serve no useful purpose. It is possible to modify the grammar
to ensure that the modified grammar does not generate formulae with such
superfluous parentheses. In particular we can ensure that a formula gener-
ated by the modified grammar is never enclosed within parentheses, that no
Boolean constant or variable within the formula is enclosed by itself within
parentheses, and that no subformula is enclosed by itself within two or more
sets of parentheses. This modified grammar is expressed in Backus-Naur
form as follows:—

〈wff〉 → 〈atom〉 | 〈compound〉
〈atom〉 → 〈constant〉 | 〈variable〉

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉 | 〈negation〉 | (〈compound〉)
〈conjunction〉 → 〈cf〉 ∧ 〈cf〉

〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈compound〉)
〈disjunction〉 → 〈df〉 ∨ 〈df〉

〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈compound〉)
〈constant〉 → T | F
〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

66

4.4 Context-Free Grammars

We have discussed examples of context-free grammars. We now present and
discuss a formal definition of such grammars.

Definition A context-free grammar (V,A, 〈S〉, P) consists of a finite set V ,
a subset A of V , an element 〈S〉 of V \A, and a finite subset P of (V \A)×V ∗.

Let (V,A, 〈S〉, P) be a context-free grammar. The elements of A are
referred to as terminals. Let N = V \ A. The elements of N are referred
to as nonterminals. The nonterminal 〈S〉 is the start symbol. The set N of
nonterminals is non-empty since 〈S〉 ∈ N .

The finite set P specifies the productions of the grammar. An element of
P is an ordered pair of the form (〈T 〉, w) where 〈T 〉 ∈ N is a nonterminal
and w ∈ V ∗ is a word over the alphabet V (i.e, a finite string, where each
constituent of the string is either a terminal or a nonterminal). We denote
by

〈T 〉 → w

the production specified by an ordered pair (〈T 〉, w) belonging to the set P .

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

directly yields w′′ if there exist words u and v over the alphabet V and a
production 〈T 〉 → w of the grammar such that w′ = u〈T 〉v and w′′ = uwv.
(Either or both of the words u and v may be the empty word.)

We see therefore that a word w′ over the alphabet V directly yields an-
other such word w′′ if and only if there exists a production 〈T 〉 → w in the
grammar such that w′′ may be obtained from w′ by replacing a single oc-
currence of the nonterminal 〈T 〉 within w′ by the word w. If the word w′

directly yields w′′, then we denote this fact by writing

w′ ⇒ w′′.

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

yields w′′ if either w′ = w′′ or else there exist words w0, w1, . . . , wn over the
alphabet V such that w0 = w′, wn = w′′ and wi−1 ⇒ wi for all integers i
between 1 and n.

If the word w′ yields w′′, then we denote this fact by writing

w′
∗⇒ w′′.

67

Definition Let (V,A, 〈S〉, P) be a context-free grammar. The language gen-
erated by this grammar is the subset L of A∗ defined by

L = {w ∈ A∗ : 〈S〉 ∗⇒ w}.

We see therefore that the language L generated by a context-free grammar
(V,A, 〈S〉, P) consists of the set of all finite strings consisting entirely of
terminals that may be obtained from the start symbol 〈S〉 by applying a
finite sequence of productions of the grammar, where the application of a
production causes a single nonterminal to be replaced by the string in V ∗

specified by that production.

4.5 Phrase Structure Grammars

There is a class of formal grammars that includes all context-free grammars.
The grammars of this more general type are known as phrase structure gram-
mars

Definition A phrase structure grammar (V,A, 〈S〉, P) consists of a finite
set V , a subset A of V , an element 〈S〉 of V \ A, and a finite subset P of
(V ∗ \ A∗)× V ∗.

As in the case of context-free grammars, the elements of A are referred
to as terminals, the elements of V \ A are referred to as nonterminals, the
nonterminal 〈S〉 is the start symbol and the elements of P specify the pro-
ductions of the grammar. The production specified by an element (r, w) of P
is denoted by r → w. However the left hand side r of a production r → w in
a phrase structure grammar need not consist solely of a single nonterminal,
but may be a finite string r of elements of V ∗, provided that this string r
contains at least one nonterminal. (Note that V ∗ denotes the set of all finite
words over the alphabet V whose elements are terminals and nonterminals,
A∗ denotes the set of all finite words consisting entirely of terminals, and
thus V ∗ \A∗ denotes the set of all finite words belonging to V ∗ which contain
at least one nonterminal.)

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

directly yields w′′ if there exist words u and v over the alphabet V and a
production r → w such that w′ = urv and w′′ = uwv. (Either or both of the
words u and v may be the empty word.)

We see therefore that a word w′ over the alphabet V directly yields an-
other such word w′′ if and only if there exists a production r → w in the

68

grammar such that w′′ may be obtained from w′ by replacing a single occur-
rence of r as a substring of w′ by the string w. If the word w′ directly yields
w′′, then we denote this fact by writing

w1 ⇒ w2.

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

yields w′′ if either w′ = w′′ or else there exist words w0, w1, . . . , wn over the
alphabet w such that w0 = w′, wn = w′′ and wi−1 ⇒ wi for all integers i
between 1 and n.

If the word w′ yields w′′, then we denote this fact by writing

w′
∗⇒ w′′.

Definition Let (V,A, 〈S〉, P) be a phrase structure grammar. The language
generated by this grammar is the subset L of A∗ defined by

L = {w ∈ A∗ : 〈S〉 ∗⇒ w}.

4.6 Regular Languages

Definition Let A be a finite set, and let A∗ be the set of words over the
alphabet A. A subset L of A∗ is said to be a regular language over the
alphabet A if L = Lm for some finite sequence L1, L2, . . . , Lm of subsets of
A∗ with the property that, for each integer i between 1 and m, the set Li

satisfies at least one of the following conditions:—

(i) Li is a finite set;

(ii) Li = L∗j for some integer j satisfying 1 ≤ j < i;

(iii) Li = Lj ◦ Lk for some integers j and k satisfying 1 ≤ j < i, 1 ≤ k < i;

(iv) Li = Lj ∪ Lk for some integers j and k satisfying 1 ≤ j < i, 1 ≤ k < i.

(Here Lj ◦ Lk denotes the set of all words over the alphabet A that are
concatenations of the form w′w′′ with w′ ∈ Lj and w′′ ∈ Lk.)

Let A be a finite set, and let A∗ be the set of all words over the alphabet A.
The regular languages over the alphabet A constitute the smallest collection C
of subsets of A∗ which satisfies the following properties:—

(i) all finite subsets of A∗ belong to C;

69

(ii) if M is a subset of A∗ belonging to C then so is M∗;

(iii) if M and N are subsets of A∗ belonging to C then so is M ◦N .

(iv) if M and N are subsets of A∗ belonging to C then so is M ∪N .

Indeed the collection of regular languages over the alphabet A has all four
properties. Moreover any collection of languages over the alphabet A with
these properties includes all regular languages. Indeed if L is a regular lan-
guage then L = Lm for some finite sequence L1, L2, . . . , Lm of subsets of A∗

which each set Li is either a finite set, or of the form L∗j for some set Lj with
j < i, or of the form Lj ◦Lk for some sets Lj and Lk with j < i and k < i, or
of the form Lj ∪ Lk for some sets Lj and Lk with j < i and k < i. It follows
from this that if a collection C of subsets of A∗ with the four properties given
above contains Lj for all integers j satisfying 1 ≤ j < i then it also contains
Li. Therefore all of the sets L1, L2, . . . , Lm must belong to the collection C,
and, in particular, the regular language L must belong to C.

Example Let L be the set of decimal representations of integers. We give
each integer a unique decimal representation in L, so that the decimal rep-
resentation of any positive integer in L begins with a non-zero digit, the
decimal representation of zero is ‘0’, and the decimal representation of any
negative number begins with a minus sign followed by a non-zero digit. The
set L is a language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Moreover L = L9, where

L1 = {0},
L2 = {1, 2, 3, 4, 5, 6, 7, 8, 9},
L3 = L1 ∪ L2,

L4 = L∗3,

L5 = L2 ◦ L4,

L6 = {−},
L7 = L6 ◦ L5,

L8 = L5 ∪ L7,

L9 = L8 ∪ L1.

Note that L3 is the set of decimal digits, L4 is the set of finite strings of
decimal digits (including the empty string), L5 is the set of decimal repre-
sentations of positive integers, L7 is the set of decimal representations of

70

negative integers, and L8 is the set of decimal representations of non-zero
integers. We conclude that L is a regular language over the alphabet A.

The regular languages may be characterised as those languages that are
generated by regular grammars. They may also be characterised as those
languages that are recognized by finite state acceptors. We shall give below
formal definitions of regular grammars and finite state acceptors.

4.7 Regular Grammars

Definition A context-free grammar is said to be a regular grammar if every
production is of one of the three forms

(i) 〈A〉 → b〈B〉,
(ii) 〈A〉 → b,

(iii) 〈A〉 → ε,

where 〈A〉 and 〈B〉 represent nonterminals, b represents a terminal, and ε
denotes the empty word. A regular grammar is said to be in normal form if
all its productions are of types (i) and (iii).

Lemma 4.2 Any language generated by a regular grammar may be generated
by a regular grammar in normal form.

Proof Let L be a language over an alphabet A, and let (V,A, 〈S〉, P) be
a regular grammar generating the language L. We may construct a new
regular grammar in normal form by first adding a nonterminal 〈F 〉 that
does not already belong to V , and then replacing any production which is
of the form 〈A〉 → b for some nonterminal 〈A〉 and terminal b by the pair of
productions 〈A〉 → b〈F 〉 and 〈F 〉 → ε. (Indeed the replacement of 〈A〉 by
b in any word may be accomplished in two steps, by first replacing 〈A〉 by
b〈F 〉 and then replacing 〈F 〉 by the empty word ε.) The resultant regular
grammar is in normal form and generates the same language as the given
regular grammar.

Example Let L be the set of decimal representations of integers, in which
the most significant digit of a non-zero integer is non-zero, and in which zero
is represented by ‘0’. L is a regular language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

71

This language is generated by the regular grammar whose nonterminals are
〈S〉, 〈A〉, 〈B〉 and whose productions are

〈S〉 → −〈A〉
〈S〉 → 0

〈S〉 → 1〈B〉
〈S〉 → 2〈B〉

...

〈S〉 → 9〈B〉
〈A〉 → 1〈B〉
〈A〉 → 2〈B〉

...

〈A〉 → 9〈B〉
〈B〉 → 0〈B〉
〈B〉 → 1〈B〉
〈B〉 → 2〈B〉

...

〈B〉 → 9〈B〉
〈B〉 → ε

This regular grammar is not in normal form, but to obtain a regular grammar
in normal form it suffices to introduce a new nonterminal 〈C〉, and replace
the production 〈S〉 → 0 by the two productions

〈S〉 → 0〈C〉
〈C〉 → ε

4.8 Finite State Acceptors

Definition A finite state acceptor (S,A, i, t, F) consists of finite sets S and
A, an element i of S, a function t:S × A → S from S × A to S and a
subset F of S. The set S is the set of states, the set A is the input alphabet,
the element i of S is the starting state, the function t:S × A → S is the
transition mapping and F is the set of finishing states.

A finite state acceptor is a particular type of finite state machine. Such
a machine has a finite number of internal states. Data is input discretely,

72

and each datum causes the machine either to remain in the same internal
state or else to make a transition to some other internal state determined
solely by the current state and the input datum. In a finite state acceptor
(S,A, i, t, F) the set S represents of the internal states of the machine and is
finite, and each datum is an element of the input alphabet A. The machine
is initially in the starting state i. The transition function t specifies how the
internal state of the machine changes on inputting a datum: if the machine
is currently in state s, and if the input datum is a, then the internal state
of the machine becomes s′ where s′ = t(s, a). Any finite state acceptor
determines a language L over the alphabet A, consisting of those words
a1a2 . . . an which, when the elements a1, a2, . . . , an ofA are successively input,
cause the machine initially in the starting state to end up in one of the
finishing states specified by the subset F of S.

Definition Let (S,A, i, t, F) be a finite state acceptor, and let A∗ denote
the set of words over the input alphabet A. A word a1a2 . . . an of length n
over the alphabet A is said to be recognized or accepted by the finite state
acceptor if there are states s0, s1, s2, . . . , sn belonging to S such that s0 = i,
sn ∈ F , and si = t(si−1, ai) for each integer i between 1 and n.

Definition Let (S,A, i, t, F) be a finite state acceptor. A language L over
the alphabet A is said to be recognized or accepted by the finite state acceptor
if L is the set consisting of all words recognized by the finite state acceptor.

It can be proved that a language over some alphabet A is a regular lan-
guage if and only if that language is recognized by some finite state acceptor
with input alphabet A.

Example Let L be the set of decimal representations of integers, in which
the most significant digit of a non-zero integer is non-zero, and in which zero
is represented by ‘0’. L is a regular language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let S = {i, a, b, c, e}, let F = {b, c}, and let t:S × A → S be the transition
mapping determined by the following transition table:—

- 0 1 2 3 4 5 6 7 8 9
i a c b b b b b b b b b
a e e b b b b b b b b b
b e b b b b b b b b b b
c e e e e e e e e e e e
e e e e e e e e e e e e

73

(Here the value of t(s, α) for a state s and character α is listed in the row of
the table labelled by s and the column labelled by α.) Then (S,A, i, t, F) is
a finite state acceptor for the regular language L.

Problems

1. Devise a context-free grammar to generate the language over the al-
phabet {0, 1} consisting of the strings

01, 0011, 000111, 00001111, . . .

(i.e., consisting of m zeros, for some non-negative integer m, followed
by m ones). You should specify the nonterminals of the grammar, the
start symbol and the productions of the grammar.

2. Consider the context free-grammar over the alphabet {x, y, (,)} with
nonterminals 〈S〉 and 〈A〉, start symbol 〈S〉 and productions

〈S〉 → 〈A〉〈A〉, 〈A〉 → (〈S〉), 〈A〉 → x, 〈A〉 → y.

Show that the string (x(yx))y belongs to the language over the alphabet
{x, y, (,)} generated by this grammar. Does the string (x(xy belong to
this language? [Briefly justify your answer.]

3. Describe the formal language over the alphabet {0, 1} generated by
the context-free grammar whose only non-terminal is 〈S〉, whose start
symbol is 〈S〉 and whose productions are the following:

〈S〉 → 0

〈S〉 → 0〈S〉
〈S〉 → 〈S〉1

Is this context-free grammar a regular grammar?

4. Describe the language over the alphabet {0, 1} generated by the context-
free grammar whose non-terminals are 〈S〉 and 〈A〉, whose start symbol
is 〈S〉 and whose prodcutions are

〈S〉 → 〈S 〉〈A〉, 〈S〉 → 1, 〈A〉 → 01.

Is the context-free grammar a regular grammar?

74

5. Describe the formal language over the alphabet {0, 1} generated by
the context-free grammar whose only non-terminal is 〈S〉, whose start
symbol is 〈S〉 and whose productions are the following:

〈S〉 → 0

〈S〉 → 00〈S〉
〈S〉 → 〈S〉11

Is this context-free grammar a regular grammar?

6. Describe the formal language over the alphabet {0, 1} generated by
the context-free grammar whose only non-terminal is 〈S〉, whose start
symbol is 〈S〉 and whose productions are the following:

〈S〉 → 0

〈S〉 → 1〈S〉1

(i.e., describe the structure of the binary strings generated by the gram-
mar). Is this context-free grammar a regular grammar?

7. Construct a regular grammar that generates the language L over the
alphabet {0, 1}, where

L = {1, 1000, 1000000, 1000000000, . . .},

so that a string of binary digits belongs to L if and only if it consists
of the digit 1 followed by a string of 3n zeroes, for some non-negative
integer n. You should specify your formal grammar in Backus-Naur
form.

8. (a) Devise a regular grammar to generate the language over the alpha-
bet {a, (,), 0, 1} consisting of all strings such as a(001) and a(1001010)

in which the initial substring a(is followed by a non-empty string of
binary digits, which is followed by the character).

(b) Devise a finite state acceptor that accepts (i.e., determines) the
language described in (a). You should specify the states of the machine,
the start state, the finishing state(s), and the transition table that
defines the machine.

75

9. (a) Devise a finite state acceptor that accepts (i.e., determines) the
language over the alphabet {x, y, z} consisting of all strings

xyz, xyzxyz, xyzxyzxyz, xyzxyzxyzxyz, . . .

that are the concatenation of n copies of the string xyz for some positive
integer n. You should specify the states of the machine, the start state,
the finishing state(s), and the transition table that defines the machine.

(b) Devise a regular grammar to generate the language described in
(a).

10. (a) Give the definition of a finite state acceptor that accepts (or deter-
mines) the language over the alphabet {a, b, c} consisting of all finite
strings, such as ab, aabbb, aaaaab, abc, aabbbc, that consist of one or
more occurrences of the character a, followed by one or more occur-
rences of the character b, optionally followed by a single occurrence of
the character c. You should specify the states of the machine, the start
state, the finishing state or states, and the transition table that defines
the machine.

(b) Devise a regular grammar to generate the language described in
(a).

11. (a) Let L be the language over the alphabet {0, 1} consisting of those
finite strings of binary digits in which neither 010 nor 101 occurs as
a substring. Give the description of a finite state acceptor for the
language L, specifying the starting state, the finishing state or states,
and the transition table for this finite state acceptor.

(b) Construct a regular context-free grammar that generates the lan-
gle L described in (a).

12. (a) Give the specification of a finite state acceptor for the language
over the alphabet {a, b, c} consisting of all finite strings, such as aabbc,
aabbbc and aaabbbc, that consist of two or more occurrences of the
character a, followed by two or more occurrences of the character b,
followed by a single occurrence of the character c. You should in par-
ticular specify the starting state, the finishing state or states, and the
transition table for this finite state acceptor.

(b) Give the specification of a regular grammar to generate the lan-
guage over the alphabet {a, b, c} that was defined in (a).

76

13. (a) Give the specification of a finite state acceptor that accepts the
language over the alphabet {0, 1} consisting of all words where the
number of occurrences of the digit 0 within the word is a multiple of 3.
(In particular you should specify the set of states, the starting state, the
finishing states, and the transition table that determines the transition
function of the finite state acceptor.)

(b) Devise a regular grammar to generate the language specified in (a).
(In particular, you should specify the nonterminals, the start state and
the productions of the grammar.)

77

