Course MA2C02: Hilary Term 2011.

Assignment III.

To be handed in by Wednesday 9th March, 2011. Please include both name and student number on any work handed in.

1. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = \cos 3x$$

The general solution y to this differential equation is of the form $y_P + y_C$, where y_P is a particular integral, and where y_C is a complementary function satisfying the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = 0.$$

Now the auxiliary polynomial s^2-2s+4 associated with this differential equation has roots $1 \pm i\sqrt{3}$. It follows that

$$y_C = e^x \left(A \cos \sqrt{3}x + B \sin \sqrt{3}x \right).$$

We look for a particular integral y_P of the form $y_P = p \cos 3x + q \sin 3x$. Now

$$y_P = p \cos 3x + q \sin 3x$$

$$y'_P = 3q \cos 3x - 3p \sin 3x$$

$$y''_P = -9p \cos 3x - 9q \sin 3x$$

and therefore

$$y''_P - 2y'_P + 4y_P = (-9p - 6q + 4p)\cos 3x + (-9q + 6p + 4q)\sin 3x$$
$$= (-5p - 6q)\cos 3x + (-5q + 6p)\sin 3x.$$

Therefore -5p - 6q = 1 and -5q + 6p = 0. It follows that $q = \frac{6}{5}p$ and $5p + \frac{36}{5}p = -1$, and therefore 61p = (25 + 36)p = -5. Thus $p = -\frac{5}{61}$ and $q = -\frac{6}{61}$, and thus $y_P = -\frac{5}{61}\cos 3x - \frac{6}{61}\sin 3x$. We conclude that the general solution y to the differential equation is of the form

$$y = -\frac{5}{61}\cos 3x - \frac{6}{61}\sin 3x + e^x \left(A\cos\sqrt{3}x + B\sin\sqrt{3}x\right),$$

where A and B are arbitrary real constants.

2. Any function y of a real variable x that solves the differential equation

$$\frac{d^4y}{dx^4} - 16y = 0$$

may be represented by a power series of the form

$$y = \sum_{n=0}^{+\infty} \frac{y_n}{n!} x^n,$$

where the coefficients $y_0, y_1, y_2, y_3, \ldots$ of this power series are real numbers.

Find values of these coefficients y_n for n = 0, 1, 2, 3, 4, ... that yield a solution to the above differential equation with $y_0 = 1$ and $y_1 = 0$ and $y_2 = -4$ and $y_3 = 0$. Hence or otherwise, find the solution to this differential equation.

On differentiating, we find that

$$y' = \sum_{n=0}^{+\infty} \frac{y_{n+1}}{n!} x^n, \quad y'' = \sum_{n=0}^{+\infty} \frac{y_{n+2}}{n!} x^n, \quad y''' = \sum_{n=0}^{+\infty} \frac{y_{n+3}}{n!} x^n,$$
$$y'''' = \sum_{n=0}^{+\infty} \frac{y_{n+4}}{n!} x^n.$$

Indeed

$$y^{(k)} = \sum_{n=0}^{+\infty} \frac{y_{n+k}}{n!} x^n$$

for all positive integers k. Thus if the function y satisfies the differential equation then

$$\sum_{n=0}^{+\infty} \frac{y_{n+4} - 16y_n}{n!} x^n$$

for all real numbers x, and therefore $y_{n+4}-16y_n = 0$ for all non-negative integers n. Thus $y_{n+4} = 2^4 y_n$ for all non-negative integers n. Given that $y_1 = y_3 = 0$, it follows that $y_n = 0$ whenever n is odd. Given that $y_0 = 1$, it follows that $y_n = 2^n$ whenever n is a multiple of 4. Also, given that $y_2 = -4 = -2^2$, it follows that $y_n = -2^n$ whenever $n \equiv 2$ mod 4, i.e., when $n = 2, 6, 10, 14, \ldots$ It follows that

$$y = \sum_{m=0}^{+\infty} \frac{y_{2m}}{(2m)!} x^{2m} = \sum_{m=0}^{+\infty} \frac{(-1)^m 2^{2m}}{(2m)!} x^{2m} = \sum_{m=0}^{+\infty} \frac{(-1)^m (2x)^{2m}}{(2m)!}$$

= cos 2x.

3. Let $(z_n : n \in \mathbb{Z})$ be the doubly-infinite 3-periodic sequence with $z_0 = 1$, $z_1 = 2$, $z_2 = -2$. Find values of c_0 , c_1 , c_2 such that

$$z_n = c_0 + c_1 \omega^n + c_2 \omega^{2n}$$

for all integers n, where $i = \sqrt{-1}$ and

$$\omega = e^{2\pi i/3} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = \frac{1}{2}(-1 + \sqrt{3}i).$$

The standard formulae for the discrete Fourier transform ensure that

$$c_{0} = \frac{1}{3}(z_{0} + z_{1} + z_{2}) = \frac{1}{3}$$

$$c_{1} = \frac{1}{3}(z_{0} + \omega^{-1}z_{1} + \omega^{-2}z_{2}) = \frac{1}{3}(z_{0} + \omega^{2}z_{1} + \omega z_{2})$$

$$= \frac{1}{3}\left(z_{0} - \frac{1}{2}z_{1} - \frac{1}{2}z_{2} - \frac{\sqrt{3}}{2}z_{1}i + \frac{\sqrt{3}}{2}z_{2}i\right)$$

$$= \frac{1}{3} - \frac{2}{\sqrt{3}}i$$

$$c_{2} = \frac{1}{3}(z_{0} + \omega^{-2}z_{1} + \omega^{-4}z_{2}) = \frac{1}{3}(z_{0} + \omega z_{1} + \omega^{2}z_{2})$$

$$= \frac{1}{3}\left(z_{0} - \frac{1}{2}z_{1} - \frac{1}{2}z_{2} + \frac{\sqrt{3}}{2}z_{1}i - \frac{\sqrt{3}}{2}z_{2}i\right)$$

$$= \frac{1}{3} + \frac{2}{\sqrt{3}}i$$