Module MA2C02: Hilary Term 2013. Assignment III.

To be handed in by Wednesday 20th March, 2013. Please include both name and student number on any work handed in.

1. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 7y = e^{2x}\cos 3x.$$

The general solution of this differential equation is of the form $y = y_P + y_C$, where y_P is a particular integral, and where y_C , the complementary function, satisfies the differential equation $y''_C - 12y'_C + 7y_C = 0$. The auxiliary polynomial $s^2 - 12s + 7$ has roots $6 \pm \sqrt{29}$. Indeed the roots are given by the standard formula for the roots of a quadratic: $\frac{1}{2}(12 \pm \sqrt{144 - 4 \times 7})$, and thus expression evaluates to $6 \pm sqrt29$. Therefore

$$y_C = Ae^{(6+\sqrt{29})x} + Be^{(6-\sqrt{29})x}.$$

We look for a particular integral of the form

$$y_P = pe^{2x}\cos 3x + qe^{2x}\sin 3x.$$

Now

$$\begin{aligned} y'_P &= (2p+3q)e^{2x}\cos 3x + (2q-3p)e^{2x}\sin 3x, \\ y''_P &= (-5p+12q)e^{2x}\cos 3x + (-5q-12p)e^{2x}\sin 3x, \end{aligned}$$

But then

$$y_P'' - 12y_P' + 7y_P = (-22p - 24q)e^{2x}\cos 3x + (-22q + 24p)\sin 3x.$$

Therefore -22p - 24q = 1 and -22q + 24p = 0. It follows that $q = \frac{12}{11}p$ and $-22p - \frac{288}{11}p = 1$. Therefore $p = -\frac{11}{530}$ and $q = -\frac{12}{530}$. Thus the general solution to the differential equation is

$$y = -\frac{11}{530}e^{2x}\cos 3x - \frac{12}{530}e^{2x}\sin 3x + Ae^{(6+\sqrt{29})x} + Be^{(6-\sqrt{29})x}.$$

2. Express $\sin 4\theta$ and $\cos 5\theta$ by formulae involving $\sin \theta$ and $\cos \theta$ and their powers.

Using basic properties of the exponential and trigonometric functions, considered as functions of a complex variable:

$$\cos 4\theta + i \sin 4\theta = e^{4i\theta} = (e^{i\theta})^4$$

= $(\cos \theta + i \sin \theta)^4$
= $\cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6i^2 \cos^2 \theta \sin^2 \theta$
 $+ 4i^3 \cos \theta \sin^3 \theta + i^4 \sin^4 \theta$
= $\cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta$
 $- 4i \cos \theta \sin^3 \theta + \sin^4 \theta$
= $\cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$
 $+ 4i(\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta)$

It follows that

$$\sin 4\theta = 4(\cos^3\theta\sin\theta - \cos\theta\sin^3\theta).$$

 Also

$$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$$

Similarly

$$\cos 5\theta + i \sin 5\theta = e^{5i\theta} = (e^{i\theta})^5$$

= $(\cos \theta + i \sin \theta)^5$
= $\cos^5 \theta + 5i \cos^4 \theta \sin \theta + 10i^2 \cos^3 \theta \sin^2 \theta$
+ $10i^3 \cos^2 \theta \sin^3 \theta + 5i^4 \cos \theta \sin^4 \theta + i^5 \sin^5 \theta$
= $\cos^5 \theta + 5i \cos^4 \theta \sin \theta - 10 \cos^3 \theta \sin^2 \theta$
- $10i \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta + i \sin^5 \theta$,

and therefore

$$\cos 5\theta == \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta.$$

3. (a) What is the cosine of the angle between the vectors (1, 1, 2) and (1, -1, -2)?

Let $\mathbf{v} = (1, 1, 2)$ and $\mathbf{w} = (1, -1, -2)$. Then $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$, where θ is the angle between these vectors. Now

$$|\mathbf{v}|^2 = |\mathbf{w}|^2 = 1^2 + 1^2 + 2^2 = 1 + 1 + 4 = 6,$$

$$\mathbf{v} \cdot \mathbf{w} = 1 \times 1 + 1 \times (-1) + 2 \times (-2) = -4.$$

It follows that $6\cos\theta = \mathbf{v}.\mathbf{w} = -4$, and therefore $\cos\theta = -\frac{2}{3}$.

(b) Find the components of a non-zero vector orthogonal to the vectors (2,3,4) and (3,4,5).

One such vector is the vector product of these two vectors. Now

$$(2,3,4) \times (3,4,5) = (3 \times 5 - 4 \times 4, 4 \times 3 - 2 \times 5, 2 \times 4 - 3 \times 3)$$

= (15 - 16, 12 - 10, 8 - 9)
= (-1, 2, -1).

Thus (-1, 2, -1) has the required property. To verify, note that the scalar product of (-1, 2, -1) with the two given vectors is zero.

(c) Find the equation of the plane in \mathbb{R}^3 passing through the points (3,0,7), (5,1,6) and (6,3,8).

Now (5,1,6) - (3,0,7) = (2,1,-1) and (6,3,8) - (3,0,7) = (3,3,1) and

$$(2,1,-1) \times (3,3,1) = (1 \times 1 - (-1) \times 3, (-1) \times 3 - 2 \times 1, 2 \times 3 - 1 \times 3)$$

= (1 - (-3), -3 - 2, 6 - 3)
= (4, -5, 3).

Thus (4, -5, 3) is orthogonal (or perpendicular) to the vectors (2, 1, -1)and (3, 3, 1), and is thus perpendicular to the plane. The plane is thus specified by an equation of the form 4x - 5y + 3z = k for some constant k. Substituting in the coordinates of one of the points, we find that

$$k = 4 \times 3 - 5 \times 0 + 3 \times 7 = 12 + 21 = 33.$$

Thus the equation of the plane is

$$4x - 5y + 3z = 33.$$

This can be verified by checking that all coordinates of all three given points satisfy this equation.

and