Course MA2C02: Hilary Term 2010. Assignment III.

To be handed in by Wednesday 10th March, 2010. Please include both name and student number on any work handed in.

1. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = x^2 e^{2x}.$$

2. Let $f: \mathbb{R} \to \mathbb{R}$ be the function with period 6 whose values on the interval [0, 6] are defined as follows:

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 3; \\ 12 - 2x & \text{if } 3 \le x \le 6. \end{cases}$$

Express the function f as a Fourier series of the form

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{3}.$$

3. Let $(z_n : n \in \mathbb{Z})$ be the doubly-infinite 4-periodic sequence with $z_0 = 1$, $z_1 = 2$, $z_2 = 3i$ and $z_3 = -1 - i$. Find values of c_0 , c_1 , c_2 and c_3 such that

$$z_n = c_0 + c_1 i^n + c_2 (-1)^n + c^3 (-i)^n$$

for all integers n.