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9 Vectors and Quaternions

9.1 Vectors

Vector quantities are objects that have attributes of magnitude and direction.
Many physical quantities, such as velocity, acceleration, force, electric field
and magnetic field are examples of vector quantities. Displacements between
points of space may also be represented using vectors.

Quantities that do not have a sense of direction associated with them
are known as scalar quantities. Such physical quantities as temperature and
energy are scalar quantities. Scalar quantities are usually represented by real
numbers.

9.2 Displacement Vectors

Points of three-dimensional space may be represented, in a Cartesian co-
ordinate system, by ordered triples (x, y, z) of real numbers. Two ordered
triples (x1, y1, z1) and (x2, y2, z2) of real numbers represent the same point of
three-dimensional space if and only if x1 = x2, y1 = y2 and z1 = z2. The
point whose Cartesian coordinates are given by the ordered triple (0, 0, 0) is
referred to as the origin of the Cartesian coordinate system.

It is usual to employ a Coordinate system such that the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1) are situated at a unit distance from the origin (0, 0, 0),
and so that the three lines that join the origin to these points are mutually
perpendicular. Moreover it is customary to require that if the thumb of
your right hand points in the direction from the origin to the point (1, 0, 0),
and if the first finger of that hand points in the direction from the origin to
the point (0, 1, 0), and if the second finger of that hand points in a direction
perpendicular to the directions of the thumb and first finger, then that second
finger points in the direction from the origin to the point (0, 0, 1). (Thus if,
at a point on the surface of the earth, away from the north and south pole,
the point (1, 0, 0) is located to the east of the origin, and the point (0, 1, 0)
is located to the north of the origin, then the point (0, 0, 1) will be located
above the origin.

Let P1, P2, P3 and P4 denote four points of three-dimensional space,
represented in a Cartesian coordinate system by ordered triples as follows:

P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3), P4 = (x4, y4, z4).

The displacement vector
−→

P1, P2 from the point P1 to the point P2 measures
the distance and the direction in which one would have to travel in order
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to get from P1 to P2. This displacement vector may be represented by an
ordered triple as follows:

−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1).

The displacement vector
−→
P3P4 is equal to the displacement vector

−→
P1P2 if and

only if

x2 − x1 = x4 − x3, y2 − y1 = y4 − y3, z2 − z1 = z4 − z3,

in which case we represent the fact that these two displacement vectors are
equal by writing

−→
P1P2 =

−→
P3P4.

Geometrically, these two displacement vectors are equal if and only if P1, P2,
P4 and P3 are the vertices of a parallelogram in three-dimensional space, in
which case

x3 − x1 = x4 − x2, y3 − y1 = y4 − y2, z3 − z1 = z4 − z2,

and thus −→
P1P3 =

−→
P2P4.

These displacement vectors may be regarded as objects in their own right,
and denoted by symbols of their own: we use a symbol such as ~u to denote

the displacement vector
−→
P1P2 from the point P1 to the point P2, and we write

~u = (ux, uy, uz) where ux = x2 − x1, uy = y2 − y1 and uz = z2 − z1.

9.3 The Parallelogram Law of Vector Addition

Let P1, P2, P3 and P4 denote four points of three-dimensional space, located

such that
−→
P1P2 =

−→
P3P4. Then (as we have seen)

−→
P1P3 =

−→
P2P4 and the

geometrical figure P1P2P4P3 is a parallelogram. Let

~u =
−→
P1P2 =

−→
P3P4, ~v =

−→
P1P3 =

−→
P2P4.

Let

P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3), P4 = (x4, y4, z4).

Then ~u = (ux, uy, uz) and ~v = (vx, vy, vz), where

ux = x2 − x1 = x4 − x3, uy = y2 − y1 = y4 − y3, uz = z2 − z1 = z4 − z3,
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vx = x3 − x1 = x4 − x2, vy = y3 − y1 = y4 − y2, vz = z3 − z1 = z4 − z2,

Let ~e =
−→
P1P4. Then ~e = (ex, ey, ez), where

ex = x4 − x1 = ux + vx, ey = y4 − y1 = uy + vy, ez = z4 − z1 = uz + vz,

We say that the vector ~e is the sum of the vectors ~u and ~v, and denote this
fact by writing

~e = ~u+ ~v.

This rule for addition of vectors is known as the parallelogram rule, due to
its association with the geometry of parallelograms. Note that vectors are
added, by adding together the corresponding components of the two vectors.
For example,

(0, 3, 2) + (4, 8,−5) = (4, 11,−3).

Note that −→
AB +

−→
BC =

−→
AC

for all points A, B and C of space. Also

~u+ ~v = ~v + ~u

and
(~u+ ~v) + ~w = ~u+ (~v + ~w)

for all vectors ~u, ~v and ~w in three-dimensional space. Thus addition of vectors
satisfies the Commutative Law and the Associative Law.

The zero vector ~0 is the vector (0, 0, 0) that represents the displacement
from any point in space to itself. The zero vector ~0 has the property that

~u+~0 = ~u

for all vectors ~u. Moroever, given any vector ~u, there exists a vector, denoted
by −~u, characterized by the property that

~u+ (−~u) = ~0.

If ~u = (ux, uy, uz), then −~u = (−ux,−uy,−uz).

9.4 The Length of Vectors

Let P1 and P2 be points in space, and let ~u denote the displacement vector
−→
P1P2 from the point P1 to the point P2. If P1 = (x1, y1, z1) and P2 =
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(x2, y2, z2) then ~u = (ux, uy, uz) where ux = x2 − x1, uy = y2 − y1 and
uz = z2 − z1.

The length (or magnitude) of the vector ~u is defined to be the distance
from the point P1 to the point P2. This distance may be calculated using
Pythagoras’s Theorem. Let Q = (x2, y2, z1) and R = (x2, y1, z1). If the
points P1 and P2 are distinct, and if z1 6= z2, then the triangle P1QP2 is a
right-angled triangle with hypotenuse P1P2, and it follows from Pythagoras’s
Theorem that

P1P
2
2 = P1Q

2 +QP 2
2 = P1Q

2 + (z2 − z1)2.

This identity also holds when P1 = P2, and when z1 = z2, and therefore holds
wherever the points P1 and P2 are located. Similarly

P1Q
2 = P1R

2 +RQ2 = (x2 − x1)2 + (y2 − y1)2

(since P1RQ is a right-angled triangle with hypotenuse P1Q whenever the
points P1, R and Q are distinct), and therefore the length |~u| of the displace-
ment vector ~u from the point P1 to the point P2 satisfies the equation

|~u|2 = P1P
2
2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = u2

x + u2
y + u2

z.

In general we define the length, or magnitude, |~v| of any vector quantity
~v by the formula

|~v| =
√
v2
x + v2

y + v2
z ,

where ~v = (vx, vy, vz). This ensures that the length of any displacement
vector is equal to the distance between the two points that determine the
displacement.

Example The vector (3, 4, 12) is of length 13, since

32 + 42 + 122 = 52 + 122 = 132.

A vector whose length is equal to one is said to be a unit vector.

9.5 Scalar Multiples of Vectors

Let ~v be a vector, represented by the ordered triple (vx, vy, vz), and let t be
a real number. We define t~v to be the vector represented by the ordered
triple (tvx, tvy, tvz). Thus t~v is the vector obtained on multiplying each of
the components of ~v by the real number t.
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Note that if t > 0 then t~v is a vector, pointing in the same direction as ~v,
whose length is obtained on multiplying the length of ~v by the positive real
number t.

Similarly if t < 0 then t~v is a vector, pointing in the opposite direction
to ~v, whose length is obtained on multiplying the length of ~v by the positive
real number |t|.

Note that

(s+ t)~u = s~u+ t~u, t(~u+ ~v) = t~u+ t~v, and s(t~u) = (st)~u,

for all vectors ~u and ~v and real numbers s and t.

9.6 Linear Combinations of Vectors

Let ~v1, ~v2, . . . , ~vk be vectors in three-dimensional space. A vector ~v is said to
be a linear combination of the vectors ~v1, ~v2, . . . , ~vk if there exist real numbers
t1, t2, . . . , tk such that

~v = t1~v1 + t2~v2 + · · ·+ tk~vk.

Let O, P1 and P2 be distinct points of three-dimensional space that are
not colinear (i.e., that do not all lie on any one line in that space). The

displacement vector
−→
OP of a point P in three-dimensional space is a linear

combination of the displacement vectors
−→
OP1 and

−→
OP2 if and only if the

point P lies in the unique plane that contains the points O, P1 and P2.

9.7 Linear Dependence and Independence

Vectors ~v1, ~v2, . . . , ~vk are said to be be linearly dependent if there exist real
numbers t1, t2, . . . , tk, not all zero, such that

t1~v1 + t2~v2 + · · ·+ tk~vk = ~0.

If the vectors ~v1, ~v2, . . . , ~vk are not linearly dependent, then they are said to
be linearly independent.

Note that if any of the vectors ~v1, ~v2, . . . ~vk is the zero vector, then those
vectors are linearly dependent. Indeed if ~vi = 0 then these vectors satisfy a
relation of the form

t1~v1 + t2~v2 + · · ·+ tk~vk = ~0.

where tj = 0 if j 6= i and ti 6= 0. We conclude that, in any list of linearly
independent vectors, the vectors are all non-zero.
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Also if any two of the vectors in the list ~v1, ~v2, . . . ~vk are colinear, then
these vectors are linearly dependent. For example, if ~v1 and ~v2 are colinear,
then they satisfy a relation of the form t1 ~v1 + t2 ~v2 = ~0, where t1 and t2 are

not both zero. If we then set ti = 0 when i > 2, then
k∑
i=1

ti~vi = ~0.

If a vector ~v is expressible as a linear combination of vectors ~v1, . . . , ~vk
then the vectors ~v1, . . . , ~vk, ~v are linearly dependent. For there exist real
numbers s1, . . . , sk such that

~v = s1 ~v1 + s2 ~v2 + · · ·+ sk ~vk,

and then
s1 ~v1 + s2 ~v2 + · · ·+ sk ~vk − ~v = 0.

Theorem 9.1 Let ~u, ~v and ~w be three vectors in three-dimensional space
which are linearly independent. Then, given any vector ~s, there exist unique
real numbers p, q and r such that

~s = p~u+ q~v + r ~w.

Proof First we note that the vectors ~u, ~v and ~w are all non-zero, and no two
of these vectors are colinear. Let O denote the origin of a Cartesian coordi-
nate system, and let A, B, C and P denote the points of three-dimensional
space whose displacement vectors from the origin O are ~u, ~v, ~w and ~s re-
spectively. The points O, A, B and C are then all distinct, and there is a
unique plane which contains the three points O, A and B. This plane OAB
consists of all points whose displacement vector from the origin is expressible
in the form p~u+ q ~w for some real numbers p and q. Now the vector ~w is not
expressible as a linear combination of ~u and ~v, and therefore the point C does
not belong to the plane OAB. Therefore the line parallel to OC that passes
through the point P is not parallel to the plane OAP . This line therefore
intersects the plane in a single point Q. Now the displacement vector of the
point Q from the origin is of the form ~s− r ~w for some uniquely-determined
real number r. But it is also expressible in the form p~u+q~v for some uniquely-
determined real numbers p and q, because Q lies in the plane OAB. Thus
there exist real numbers p, q and r such that ~s− r ~w = p~u+ q~v. But then

~s = p~u+ q~v + r ~w.

Moreover the point Q and thus the real numbers p, q and r are uniquely
determined by ~s, as required.
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It follows from this theorem that no linearly independent list of vectors
in three-dimensional space can contain more than three vectors, since were
there a fourth vector in the list, then it would be expressible as a linear
combination of the other three, and the vectors would not then be linearly
independent.

9.8 The Scalar Product

Let ~u and ~v be vectors in three-dimensional space, represented in some Carte-
sian coordinate system by the ordered triples (u1, u2, u3) and (v1, v2, v3) re-
spectively. The scalar product of the vectors ~u and ~v is defined to be the real
number ~u . ~v defined by the formula

~u . ~v = u1v1 + u2v2 + u3v3.

In particular,
~u . ~u = u2

1 + u2
2 + u2

3 = |~u|2,

for any vector ~u, where |~u| denotes the length of the vector ~u.
Note that ~u . ~v = ~v . ~u for all vectors ~u and ~v. Also

(s~u+ t~v) . ~w = s~u . ~w + t~v . ~w, ~u . (s~v + t~w) = s~u . ~v + t~u . ~w

for all vectors ~u, ~v and ~w and real numbers s and t.

Proposition 9.2 Let ~u and ~v be non-zero vectors in three-dimensional space.
Then their scalar product ~u . ~v is given by the formula

~u . ~v = |~u| |~v| cos θ,

where θ denotes the angle between the vectors ~u and ~v.

Proof Suppose first that the angle θ between the vectors ~u and ~v is an acute

angle, so that 0 < θ < 1
2
π. Let us consider a triangle ABC, where

−→
AB = ~u

and
−→
BC = ~v, and thus

−→
AC = ~u + ~v. Let ADC be the right-angled triangle

constructed as depicted in the figure below, so that the line AD extends AB
and the angle at D is a right angle.
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Then the lengths of the line segments AB, BC, AC, BD and CD may be
expressed in terms of the lengths |~u|, |~v| and |~u + ~v| of the displacement
vectors ~u, ~v and ~u+~v and the angle θ between the vectors ~u and ~v by means
of the following equations:

AB = |~u|, BC = |~v|, AC = |~u+ ~v|,

BD = |~v| cos θ and DC = |~v| sin θ.

Then
AD = AB +BD = |~u|+ |~v| cos θ.

The triangle ADC is a right-angled triangle with hypotenuse AC. It follows
from Pythagoras’ Theorem that

|~u+ ~v|2 = AC2 = AD2 +DC2 = (|~u|+ |~v| cos θ)2 + |~v| sin2 θ

= |~u|2 + 2|~u| |~v| cos θ + |~v| cos2 θ + |~v| sin2 θ

= |~u|2 + |~v|2 + 2|~u| |~v| cos θ,

because cos2 θ + sin2 θ.
Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3). Then

~u+ ~v = (u1 + v1, u2 + v2, u3 + v3),

and therefore

|~u+ ~v|2 = (u1 + v1)2 + (u2 + v2)2 + (u3 + v3)2

= u2
1 + 2u1v1 + v2

1 + u2
2 + 2u2v2 + v2

2 + u2
3 + 2u3v3 + v2

3

= |~u|2 + |~v2|+ 2(u1v1 + u2v2 + u3v3)

= |~u|2 + |~v2|+ 2~u.~v.
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On comparing the expressions for |~u + ~v|2 given by the above equations, we
see that ~u.~v = |~u| |~v| cos θ when 0 < θ < 1

2
π.

The identity ~u.~v = |~u| |~v| cos θ clearly holds when θ = 0 and θ = π.
Pythagoras’ Theorem ensures that it also holds when the angle θ is a right
angle (so that θ = 1

2
π. Suppose that 1

2
π < θ < π, so that the angle θ is

obtuse. Then the angle between the vectors ~u and −~v is acute, and is equal
to π − θ. Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

~u.~v = −~u.(−~v) = −|~u| |~v| cos(π − θ) = |~u| |~v| cos θ

when 1
2
π < θ < π. We have therefore verified that the identity ~u.~v =

|~u| |~v| cos θ holds for all non-zero vectors ~u and ~v, as required.

Corollary 9.3 Two non-zero vectors ~u and ~v in three-dimensional space are
perpendicular if and only if ~u . ~v = 0.

Proof It follows directly from Proposition 9.2 that ~u . ~v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors ~u and ~v. This is
the case if and only if the vectors ~u and ~v are perpendicular.

Example We can use the scalar product to calculate the angle θ between
the vectors (2, 2, 0) and (0, 3, 3) in three-dimensional space. Let ~u = (2, 2, 0)
and ~v = (3, 3, 0). Then |~u|2 = 22 + 22 = 8 and |~v|2 = 32 + 32 = 18. It follows
that (|~u| |~v|)2 = 8× 18 = 144, and thus |~u| |~v| = 12. Now ~u .~v = 6. It follows
that

6 = |~u| |~v| cos θ = 12 cos θ.

Therefore cos θ = 1
2
, and thus θ = 1

3
π.

We can use the scalar product to find the distance between points on a
sphere. Now the Cartesian coordinates of a point P on the unit sphere about
the origin O in three-dimensional space may be expressed in terms of angles
θ and ϕ as follows:

P = (sin θ cosϕ, sin θ sinϕ, cos θ).

The angle θ is that between the displacement vector
−→
OP and the vectical

vector (0, 0, 1). Thus the angle 1
2
π−θ represents the ‘latitude’ of the point P ,

when we regard the point (0, 0, 1) as the ‘north pole’ of the sphere. The
angle ϕ measures the ‘longitude’ of the point P .

Now let P1 and P2 be points on the unit sphere, where

P1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1),

P2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2).
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We wish to find the angle ψ between the displacement vectors
−→
OP1 and

−→
OP2

of the points P1 and P2 from the origin. Now |
−→
OP1| = 1 and |

−→
OP2| = 1. On

applying Proposition 9.2, we see that

cosψ =
−→
OP1 .

−→
OP2

= sin θ1 sin θ2 cosϕ1 cosϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2

+ cos θ1 cos θ2

= sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

9.9 The Vector Product

Definition Let ~a and~b be vectors in three-dimensional space, with Cartesian
components given by the formulae ~a = (a1, a2, a3) and ~b = (b1, b2, b3). The

vector product ~a×~b of the vectors ~a and~b is the vector defined by the formula

~a×~b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Note that ~a ×~b = −~b × ~a for all vectors ~a and ~b. Also ~a × ~a = ~0 for all
vectors ~a. It follows easily from the definition of the vector product that

(s~a+ t~b)× ~c = s~a× ~c+ t~b× ~c, ~a× (s~b+ t~c) = s~a×~b+ t~a× ~c

for all vectors ~a, ~b and ~c and real numbers s and t.

Proposition 9.4 Let ~a and~b be vectors in three-dimensional space R3. Then
their vector product ~a×~b is a vector of length |~a| |~b| | sin θ|, where θ denotes the

angle between the vectors ~a and ~b. Moreover the vector ~a×~b is perpendicular
to the vectors ~a and ~b.

Proof Let ~a = (a1, a2, a3) and ~b = (b1, b2, b3), and let l denote the length

|~a×~b| of the vector ~a×~b. Then

l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a2
2b

2
3 + a2

3b
2
2 − 2a2a3b2b3

+ a2
3b

2
1 + a2

1b
2
3 − 2a3a1b3b1

+ a2
1b

2
2 + a2

2b
2
1 − 2a1a2b1b2

= a2
1(b2

2 + b2
3) + a2

2(b2
1 + b2

3) + a2
3(b2

1 + b2
2)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2
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= (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3)

− a2
1b

2
1 − a2

2b
2
2 − a2

3b
2
3 − 2a2b2a3b3 − 2a3b3a1b1 − 2a1b1a2b2

= (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3)− (a1b1 + a2b2 + a3b3)2

= |~a|2|~b|2 − (~a .~b)2

since

|~a|2 = a2
1 + a2

2 + a2
3, |~b|2 = b2

1 + b2
2 + b2

3, ~a .~b = a1b1 + a2b2 + a3b3

But ~a .~b = |~a| |~b| cos θ (Proposition 9.2). Therefore

l2 = |~a|2|~b|2(1− cos2 θ) = |~a|2|~b|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus l = |~a| |~b| | sin θ|. Also

~a . (~a×~b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0

and

~b . (~a×~b) = b1(a2b3 − a3b2) + b2(a3b1 − a1b3) + b3(a1b2 − a2b1) = 0

and therefore the vector ~a×~b is perpendicular to both ~a and~b (Corollary 9.3),
as required.

Using elementary geometry, and the formula for the length of the vector
product ~a × ~b given by Proposition 9.4 it is not difficult to show that the
length of this vector product is equal to the area of a parallelogram in three-
dimensional space whose sides are represented, in length and direction, by
the vectors ~a and ~b.

Remark Let ~a and ~b be non-zero vectors that are not colinear (i.e., so that
they do not point in the same direction, or in opposite directions). The direc-

tion of ~a×~b may be determined, using the thumb and first two fingers of your
right hand, as follows. Orient your right hand such that the thumb points
in the direction of the vector ~a and the first finger points in the direction
of the vector ~b, and let your second finger point outwards from the palm of
your hand so that it is perpendicular to both the thumb and the first finger.
Then the second finger points in the direction of the vector product ~a×~b.

Indeed it is customary to describe points of three-dimensional space by
Cartesian coordinates (x, y, z) oriented so that if the positive x-axis and
positive y-axis are pointed in the directions of the thumb and first finger
respectively of your right hand, then the positive z-axis is pointed in the
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direction of the second finger of that hand, when the thumb and first two
fingers are mutually perpendicular. For example, if the positive x-axis points
towards the East, and the positive y-axis points towards the North, then the
positive z-axis is chosen so that it points upwards. Moreover if ~ı = (1, 0, 0)
and ~ = (0, 1, 0) then these vectors ~ı and ~ are unit vectors pointed in the

direction of the positive x-axis and positive y-axis respectively, and~ı×~ = ~k,
where ~k = (0, 0, 1), and the vector ~k points in the direction of the positive
z-axis. Thus the ‘right-hand’ rule for determining the direction of the vector
product ~a ×~b using the fingers of your right hand is valid when ~a = ~ı and
~b = ~.

If the directions of the vectors ~a and ~b are allowed to vary continuously,
in such a way that these vectors never point either in the same direction or in
opposite directions, then their vector product ~a×~b will always be a non-zero
vector, whose direction will vary continuously with the directions of ~a and ~b.
It follows from this that if the ‘right-hand rule’ for determining the direction
of ~a ×~b applies when ~a = ~ı and ~b = ~, then it will also apply whatever the
directions of ~a and ~b, since, if your right hand is moved around in such a
way that the thumb and first finger never point in the same direction, and if
the second finger is always perpendicular to the thumb and first finger, then
the direction of the second finger will vary continuously, and will therefore
always point in the direction of the vector product of two vectors pointed in
the direction of the thumb and first finger respectively.

Example We shall find the area of the parallelogram OACB in three-
dimensional space, where

O = (0, 0, 0), A = (1, 2, 0), B = (−4, 2,−5), C = (−3, 4,−5).

Note that
−→
OC =

−→
OA +

−→
OB. Let ~a =

−→
OA = (1, 2, 0) and ~b =

−→
OB =

(−4, 2,−5). Then ~a × ~b = (−10, 5, 10). Now (−10, 5, 10) = 5(−2, 1, 2),
and |(−2, 1, 2)| =

√
9 = 3. It follows that

areaOACB = |~a×~b| = 15.

Note also that the vector (−2, 1, 2) is perpendicular to the parallelogram
OACB.

Example We shall find the equation of the plane containing the points A, B

and C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if ~u =
−→
AB =

(1, 2, 0) and ~v =
−→
AC = (0, 1, 2) then the vectors ~u and ~v are parallel to the

plane. It follows that the vector ~u × ~v is perpendicular to this plane. Now
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~u × ~v = (4,−2, 1), and therefore the displacement vector between any two
points of the plane must be perpendicular to the vector (4,−2, 1). It follows
that the function mapping the point (x, y, z) to the quantity 4x−2y+z must
be constant throughout the plane. Thus the equation of the plane takes the
form

4x− 2y + z = k,

for some constant k. We can calculate the value of k by substituting for x,
y and z the coordinates of any chosen point of the plane. On taking this
chosen point to be the point A, we find that k = 4× 3− 2× 4 + 1 = 5. Thus
the equation of the plane is the following:

4x− 2y + z = 5.

(We can check our result by verifying that the coordinates of the points A,
B and C do indeed satisfy this equation.)

9.10 Scalar Triple Products

Given three vectors ~u, ~v and ~w in three-dimensional space, we can form
the scalar triple product ~u . (~v × ~w). This quantity can be expressed as the
determinant of a 3× 3 matrix whose rows contain the Cartesian components
of the vectors ~u, ~v and ~w. Indeed

~v × ~w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

and thus

~u . (~v × ~w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1).

The quantity on the right hand side of this equality defines the determinant
of the 3× 3 matrix  u1 u2 u3

v1 v2 v3

w1 w2 w3

 .

We have therefore obtained the following result.

Lemma 9.5 Let ~u, ~v and ~w be vectors in three-dimensional space. Then

~u . (~v × ~w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ .
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Using basic properties of determinants, or by direct calculation, one can
easily obtain the identities

~u . (~v × ~w) = ~v . (~w × ~u) = ~w . (~u× ~v)

= −~u . (~w × ~v) = −~v . (~u× ~w) = −~w . (~v × ~u)

One can show that the absolute value of the scalar triple product ~u.(~v× ~w)
is the volume of the parallelepiped in three-dimensional space whose vertices
are the points whose displacement vectors from some fixed point O are ~0,
~u, ~v, ~w, ~u + ~v, ~u + ~w, ~v + ~w and ~u + ~v + ~w. (A parallelepiped is a solid
like a brick, but whereas the faces of a brick are rectangles, the faces of the
parallelepiped are parallelograms.)

Example We shall find the volume of the parallelepiped in 3-dimensional
space with vertices at (0, 0, 0), (1, 2, 0), (−4, 2,−5), (0, 1, 1), (−3, 4,−5),
(1, 3, 1), (−4, 3,−4) and (−3, 5,−4). The volume of this parallelepiped is
the absolute value of the scalar triple product ~u . (~v × ~w), where

~u = (1, 2, 0), ~v = (−4, 2,−5), ~w = (0, 1, 1).

Now

~u . (~v × ~w) = (1, 2, 0) . ( (−4, 2,−5)× (0, 1, 1) )

= (1, 2, 0) . (7, 4,−4) = 7 + 2× 4 = 15.

Thus the volume of the paralellepiped is 15 units.

9.11 The Vector Triple Product Identity

Proposition 9.6 Let ~u, ~v and ~w be vectors in three-dimensional space. Then

~u× (~v × ~w) = (~u . ~w)~v − (~u . ~v) ~w.

Proof Let ~q = ~u × (~v × ~w), and let ~u = (u1, u2, u3), ~v = (v1, v2, v3), ~w =
(w1, w2, w3), and ~q = (q1, q2, q3). Then

~v × ~w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

and hence ~u× (~v × ~w) = ~q = (q1, q2, q3), where

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (~u . ~w)v1 − (~u . ~v)w1
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Similarly
q2 = (~u . ~w)v2 − (~u . ~v)w2

and
q3 = (~u . ~w)v2 − (~u . ~v)w3

(In order to verify the formula for q2 with an minimum of calculation, take
the formulae above involving q1, and cyclicly permute the subcripts 1, 2 and
3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation of these
subscripts yields the formula for q3.) It follows that

~q = (~u . ~w)~v − (~u . ~v) ~w,

as required, since we have shown that the Cartesian components of the vec-
tors on either side of this identity are equal.

9.12 Orthonormal Triads of Unit Vectors

Let ~u and ~v be unit vectors (i.e., vectors of length one) that are perpendicular
to each other, and let ~w = ~u×~v. It follows immediately from Proposition 9.4
that |~w| = |~u| |~v| = 1, and that this unit vector ~w is perpendicular to both ~u
and ~v. Then

~u . ~u = ~v . ~v = ~w . ~w = 1

and
~u . ~v = ~v . ~w = ~w . ~u = 0.

On applying the Vector Triple Product Identity (Proposition 9.6) we find
that

~v × ~w = ~v × (~u× ~v) = (~v . ~v) ~u− (~v . ~u)~v = ~u,

and

~w × ~u = −~u× ~w = −~u× (~u× ~v) = −(~u . ~v) ~u+ (~u . ~u)~v = ~v,

Therefore

~u× ~v = −~v × ~u = ~w, ~v × ~w = −~w × ~v = ~u, ~w × ~u = −~u× ~w = ~v,

Three unit vectors, such as the vectors ~u, ~v and ~w above, that are mutually
perpendicular, are referred to as an orthonormal triad of vectors in three-
dimensional space. The vectors ~u, ~v and ~w in any orthonormal triad are
linearly independent. It follows directly from Theorem 9.1 that any vector in
three-dimensional space may be expressed, uniquely, as a linear combination
of the form

p~u+ q~v + r ~w.
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Any Cartesian coordinate system on three-dimensional space determines
an orthonormal triad ~ı, ~ and ~k, where

~ı = (1, 0, 0), ~ = (0, 1, 0), ~k = (0, 0, 1).

The scalar and vector products of these vectors satisfy the same relations
as the vectors ~u, ~v and ~w above. A vector represented in these Cartesian
components by an ordered triple (x, y, z) then satisfies the identity

(x, y, z) = x~ı+ y~+ z~k.

9.13 Quaternions

A quaternion may be defined to be an expression of the form w+xi+yj+zk,
where w, x, y and z are real numbers. There are operations of addition,
subtraction and multiplication defined on the set H of quaternions. These
are binary operations on that set.

Quaternions were introduced into mathematics in 1843 by William Rowan
Hamilton (1805–1865).

The definitions of addition and subtraction are straightforward. The sum
and difference of two quaternions w + xi + yj + zk and w′ + x′i + y′j + z′k
are given by the formulae

(w + xi+ yj + zk) + (w′ + x′i+ y′j + z′k)

= (w + w′) + (x+ x′)i+ (y + y′)j + (z + z′)k;

(w + xi+ yj + zk)− (w′ + x′i+ y′j + z′k)

= (w − w′) + (x− x′)i+ (y − y′)j + (z − z′)k.

If the quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k are denoted by q
and q′ respectively, then we may denote the sum and the difference of these
quaternions by q + q′ and q − q′.

These operations of addition and subtraction of quaternions are binary
operations on the set H of quaternions. It is easy to see that the operation
of addition is commutative and associative, and that the zero quaternion
0 + 0i+ 0j + 0k is an identity element for the operation of addition.

The operation of subtraction of quaternions is neither commutative nor
associative. This results directly from the fact that the operation of subtrac-
tion on the set of real numbers is neither commutative nor associative.

Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z, and there is a corresponding quaternion −q, with −q =
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(−w) + (−x)i + (−y)j + (−z)k. Then q + (−q) = (−q) + q = 0, where 0
here denotes the zero quaternion 0 + 0i+ 0j+ 0k. Thus, to every quaternion
q there corresponds a quaternion −q that is the inverse of q with respect to
the operation of addition.

These properties of quaternions ensure that the quaternions constitute a
group with respect to the operation of addition.

The definition of quaternion multiplication is somewhat more compli-
cated than the definitions of addition and subtraction. The product of two
quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k is given by the formula

(w + xi+ yj + zk)× (w′ + x′i+ y′j + z′k)

= (ww′ − xx′ − yy′ − zz′) + (wx′ + xw′ + yz′ − zy′)i
+(wy′ + yw′ + zx′ − xz′)j + (wz′ + zw′ + xy′ − yx′)k.

We shall often denote the product q × q′ of quaternions q and q′ by qq′.
Given any real number w, let us denote the quaternion w+0i+0j+0k by

w itself. Let us also denote the quaternions 0 + 1i+ 0j+ 0k, 0 + 0i+ 1j+ 0k
and 0 + 0i + 0j + 1k by i, j and k respectively. It follows directly from the
above formula defining multiplication of quaternions that

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

where i2 = i× i, ij = i× j etc. It follows directly from these identities that

ijk = −1,

where ijk = i× (j × k) = (i× j)× k.
Let q be a quaternion, given by the expression w + xi + yj + zk, where

w, x, y and z are real numbers. One can easily verify that the quaternion q
can be formed from the seven quaternions w, x, y, z, i, j and k according to
the formula

q = w + (x× i) + (y × j) + (z × k).

The operation of multiplication on the set H of quaternions is not com-
mutative. Indeed i× j = k, but j × i = −k.

One can however verify by a straightforward but somewhat tedious cal-
culation that this operation of multiplication of quaternions is associative.
Moreover the quaternion 1 + 0i + 0j + 0k is an identity element for this
operation of multiplication.

A quaternion w + xi + yj + zk is said to be real if x = y = z = 0. Such
a quaternion may be identified with the real number w. In this way the set
of real numbers may be regarded as a subset of the set of quaternions.
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Although quaternion multiplication is not commutative, one can readily
show that a × q = q × a for all real numbers a and for all quaternions q.
Indeed if q = w + xi + yj + zk, where w, x, y and z are real numbers, then
the rules of quaternion multiplication ensure that

a× q = q × a = (aw) + (ax)i+ (ay)j + (az)k.

Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z. We define the conjugate q of q to be the quaternion q =
w − xi − yj − zk. The definition of quaternion multiplication may then be
used to show that

q × q = q × q = w2 + x2 + y2 + z2.

We define the modulus |q| of the quaternion q by the formula

|q| =
√
w2 + x2 + y2 + z2.

Then qq = qq = |q|2 for all quaternions q. Moreover |q| = 0 if and only if
q = 0.

If q and r are quaternions, and if q and r denote the conjugates of q and
r respectively, then the conjugate q × r of the product q × r is given by the
formula q × r = r × q.

If q is a non-zero quaternion, and if the quaternion q−1 is defined by the
formula q−1 = |q|−2q, then qq−1 = q−1q = 1. We conclude therefore that,
given any non-zero quaternion q, there exists a quaternion q−1 that is the
inverse of q with respect to the property of multiplication.

These properties of quaternions ensure that the non-zero quaternions con-
stitute a group with respect to the operation of multiplication.

9.14 Quaternions and Vectors

Let q be a quaternion. We can write

q = q0 + q1i+ q2j + q3k,

where q0, q1, q2 and q3 are real numbers. We can then write

q = q0 + ~q

where
~q = q1i+ q2j + q3k.
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Following Hamilton, we can refer to q0 as the scalar part of the quaternion q,
and we can refer to ~q as the vector part of the quaternion q. Moreover ~q may
be identified with the vector (q1, q2, q3) in three-dimensional space whose
components (with respect to some fixed orthonormal basis) are q1, q2 and
q3. Thus a quaternion may be regarded as, in some sense, a formal sum of a
scalar and a vector.

In particular, we can regard vectors as a special type of quaternion: a
quaternion q0 + q1i + q2j + q3k represents a vector ~q in three-dimensional
space if and only if q0 = 0. Thus vectors are identified with those quaternions
whose scalar part is zero.

Now let ~q and ~r be vectors, with Cartesian components (q1, q2, q3) and
(r1, r2, r3) respectively. If we consider ~q and ~r to be quaternions (with zero
scalar part), and multiply them together in accordance with the rules of
quaternion multiplication, we find that

~q ~r = −(~q . ~r) + (~q ∧ ~r),

where ~q .~r denotes the scalar product of the vectors ~q and ~r, and ~q∧~r denotes
the vector product of these vectors. Thus the scalar part of the quaternion
~q ~r is −~q . ~r, and the vector part is ~q ∧ ~r.

Note that ~q ~r is itself a vector if and only if the vectors ~q and ~r are
orthogonal.

More generally, let q and r be quaternions with scalar parts q0 and r0 and
with vector parts ~q and ~r, so that

q = q0 + ~q, r = r0 + ~r.

Then
qr = q0r0 − ~q . ~r + q0~r + r0~q + ~q ∧ ~r,

and thus the scalar part of the quaternion qr is

q0r0 − ~q . ~r,

and the vector part of the quaternion qr is

q0~r + r0~q + ~q ∧ ~r.

Now let ~u, ~v and ~w be an orthonormal triad of vectors in three dimensional
space, with

|~u| = |~v| = |~w| = 1,

~u ∧ ~v = −~v ∧ ~u = ~w,

~v ∧ ~w = −~w ∧ ~v = ~u,

~w ∧ ~u = −~u ∧ ~w = ~v,
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If we multiply these with one another in accordance with the rules for quater-
nion multiplication, we find that

~u2 = ~v2 = ~w2 = −1,

~u~v = −~v ~u = ~w,

~v ~w = −~w~v = ~u,

~w ~u = −~u ~w = ~v,

(Note that the rules for multiplying ~u, ~v and ~w with one another correspond
to Hamilton’s rules for multiplying the basic quaternions i, j and k with
one another, whenever ~u, ~v and ~w constitute a positively oriented basis of
three-dimensional space.)

9.15 Quaternions and Rotations

Let us consider the effect of a rotation through an angle θ about an axis in
three-dimensional space passing through the origin. Let l, m and n be the
cosines of the angles between the axis of the rotation and the three coordinate
axes. In Cartesian coordinates, the axis of rotation is then in the direction
of the vector (l,m, n), where l2 +m2 +n2 = 1. The angle θ and the direction
cosines l, m, n of the axis of the rotation together determine a quaternion q,
with

q = cos
θ

2
+ sin

θ

2
(li+mj + nk).

Let q be the conjugate of q, given by the formula

q = cos
θ

2
− sin

θ

2
(li+mj + nk).

Let (x, y, z) and (x′, y′, z′) be the Cartesian coordinates of two points in three-
dimensional space, and let r and r′ be the quaternions r and r′ be defined
by

r = xi+ jy + zk and r′ = x′i+ y′j + z′k.

We shall show that if r′ = qrq then a rotation about the axis (l,m, n) through
an angle θ will send the point (x, y, z) to the point (x′, y′, z′). (The effect
of a rotation through an angle θ in the opposite sense can be calculated by
replacing θ by −θ in the definition of the quaternion q.)

In this way the algebra of quaternions may be used in areas of appli-
cation such as computer-aided design and the programming of computer
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games, in order to calculate the results of rotations applied to points in
three-dimensional space.

Let ~u, ~v, ~w be an orthonormal basis of three-dimensional space with
~w = ~u ∧ ~v (as above), and with ~u directed along the axis of the rotation.
Let θ be a real number, specifying the angle of rotation, and let q be the
quaternion

q = cos
θ

2
+

(
sin

θ

2

)
~u

= cos
θ

2
+ l sin

θ

2
i+m sin

θ

2
j + n sin

θ

2
k,

where
~u = (l,m, n), l2 +m2 + n2 = 1.

Then

q−1 = q = cos
θ

2
−
(

sin
θ

2

)
~u,

since

q q =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
− sin

θ

2
~u

)
= cos2 θ

2
+

(
sin2 θ

2

)
~u . ~u

−
(

sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
+ sin2 θ

2
= 1.

Also we find that

q2 =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
+ sin

θ

2
~u

)
= cos2 θ

2
−
(

sin2 θ

2

)
~u . ~u

+ 2 sin
θ

2
cos

θ

2
~u+

(
sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
− sin2 θ

2
+ 2 sin

θ

2
cos

θ

2
~u

= cos θ + sin θ ~u.
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Let us now calculate the quaternion products q~u q, q~v q and q ~w q. We
first note that

~u q = q ~u, ~v q = q~v, ~w q = q ~w.

Therefore

q~u q = qq ~u = ~u,

q~v q = q2~v = (cos θ + sin θ ~u)~v

= cos θ~v + sin θ ~w,

q ~w q = q2 ~w = (cos θ + sin θ ~u)~w

= cos θ ~w − sin θ~v

Thus if we define T :R3 → R
3 to be the transformation that sends a vector ~r

to q~r q, then T fixes the vector ~u, rotates the vector ~v about the direction
of ~u through an angle θ towards ~w, and rotates ~w about the direction of ~u
through an angle θ towards −~v. This transformation T is therefore a rotation
about the direction of ~u through an angle θ.

Problems

1. Find the cosine of the angle between the vectors (1, 2, 2) and (0, 3, 4).

2. Calculate the components a, b and c of some non-zero vector (a, b, c)
that is orthogonal to (1, 2, 1) and (2, 5, 0).

3. Calculate the components a, b, c of a non-zero vector that is perpendic-
ular to the plane in R3 that passes through the points (1, 0, 0), (2, 3, 1)
and (0, 2, 3).

4. The points
(0, 0, 0), (1, 1, 0), (2, 3, 1), (−1, 0, 2),

(3, 4, 1), (0, 1, 2), (1, 3, 3) and (2, 4, 3)

are the vertices of a parallelepiped in 3-dimensional space, since

(3, 4, 1) = (1, 1, 0) + (2, 3, 1),

(0, 1, 2) = (1, 1, 0) + (−1, 0, 2),

(1, 3, 3) = (2, 3, 1) + (−1, 0, 2),

(2, 4, 3) = (1, 1, 0) + (2, 3, 1) + (−1, 0, 2).

Find the volume of this parallelepiped.
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5. Calculate the products q × r and r × q of the quaternions q and r in
each of the following cases:

(i) q = 1− i and r = 2i− j − k;

(ii) q = 2j + k and r = j + 2k;

(iii) q = 1− i− j and r = 2i+ j − k.

(This requires you to express q×r and r×q in the form w+xi+yj+zk
for appropriate real numbers w, x, y and z).

6. Let q and r be the quaternions defined by q = 1
2

+ 1
2
i+ 1

2
j+ 1

2
k and r =

i−j. Calculate qrq (where q denotes the conjugate of the quaternion q).
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