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7 Trigonometric Identities, Complex Expo-
nentials and Periodic Sequences

7.1 Basic Trigonometric Identities

An anticlockwise rotation about the origin through an angle of # radians
sends a point (z,y) of the plane to the point (2/,y’), where

(9)

/

' = xcosf—ysinb
y = xsinf + ycosf

(This follows easily from the fact that such a rotation takes the point (1, 0) to
the point (cosf,sinf) and takes the point (0, 1) to the point (—sin#, cosf).)
An anticlockwise rotation about the origin through an angle of ¢ radians
then sends the point (z/,y') of the plane to the point (z”,y"”), where

/!

2" = a'cos¢—y' sing (10)
y' = a'sing+ 1y cos ¢

Now an anticlockwise rotation about the origin through an angle of 6 + ¢
radians sends the point (x,y), of the plane to the point (z”,y"), and thus

" = wcos(0+ @) — ysin(0 + @) (11)
y" = xsin(0+ ¢) +ycos(d + ¢)

But if we substitute the expressions for z/ and ¢’ in terms of x, y and @
provided by equation (9) into equation (10), we find that

2’ = x(cosf cosd — sinf sin @) — y(sinf cos ¢ + cos b sin @) (12)
y" = x(sinf cos ¢ + cos sin @) + y(cos# cos ¢ — sinf sin @)
On comparing equations (11) and (12) we see that
cos(f + ¢) = cosf cos ¢ — sin 6 sin ¢, (13)
and
sin(f + ¢) = sin @ cos ¢ + cos @ sin ¢. (14)

On replacing ¢ by —¢, and noting that cos(—¢) = cos¢ and sin(—¢) =
— sin ¢, we find that

cos(f — ¢) = cos @ cos ¢ + sinf sin ¢, (15)

and

sin(f — ¢) = sin @ cos ¢ — cos f sin ¢. (16)
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If we add equations (13) and (15) we find that

cosf cos ¢ = $(cos(f + @) + cos(6 — ¢)). (17)
If we subtract equation (13) from equation (15) we find that

sinf sin ¢ = $(cos(d — ¢) — cos(f + ). (18)
And if we add equations (14) and (16) we find that

sinf cos ¢ = 3(sin(f + @) + sin(6 — ¢)). (19)

If we substitute ¢ = 6 in equations (13) and (14), and use the identity
cos? @ +sin? 0 = 1, we find that

sin 20 = 2sin @ cos 6 (20)
and
cos 2 = cos® ) —sin® = 2cos’f — 1 =1 — 2sin* 0. (21)
It then follows from equation (21) that
sin®0 = 1(1 — cos 26) (22)
cos?§ = 1(1 + cos26). (23)

Remark Equations ( ) and (10) may be written in matrix form as follows:
cosf) —sinf x
sin ¢ cos 6
cos¢ —sing
y” ~ \ sing  cos¢
Also equation (11) may be written
2"\ [ cos(0+¢) —sin(d+ ¢)
y" )\ sin(@+¢)  cos(d+ 9)

It follows from basic properties of matrix multiplication that

cos( +¢) —sin(@+¢) \ [ cos¢ —sing cosf) —sinf
sin(0+¢) cos(@+¢) /] \ sing cos¢ sinf  cosf

and therefore

cos( + ¢) = cosb cos¢ —sinf sin ¢
sin(f + ¢) = sinf cos @ + cosf sin ¢.

This provides an alternative derivation of equations (13) and (14).
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7.2 Basic Trigonometric Integrals

On differentiating the sine and cosine

—sinkxy =

dz

—coskx =

dx

for all real numbers k.
It follows that

/sinkx =
/coskx =

for all non-zero real numbers k, where C' is a constant of integration.

function, we find that

kcoskx

—ksinkzx.

1
—Ecoskx—i-C'

1
Esin kx + C,

Theorem 7.1 Let m and n be positive integers. Then

™
/ cosnz dx
—T
s
/ sin nx dx
—Tr

™
/ cos mx cosnx dr

—T

i
/ sinmax sinnx dx

—Tr

v
/ sinmx cosnx dx
—T7

Proof First we note that

T 1 U
/ cosnx dr = [— sin nx]
o n .

T 1 i
/ sinnx dxr = {—— COS mt}
o n o

and

for all non-zero integers n, since cosnm = cos(—nrw) =

sin(—nm) = 0 for all integers n.

B T if m=n,
10 ifm#n,
B T ifm=n,
10 ifm#n,
= 0.
r . :
= — (sinnw — sin(—nrw)) =0
n
1
= —— (cosnm — cos(—nm)) =0
n
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Let m and n be positive integers. It follows from equations (17) and (18)
that

/7r cosmx cosnx dx = %/ﬂ (cos((m —n)x) + cos((m + n)x)) d.

and
/ sinmz sinnx dr = %/ (cos((m —n)x) — cos((m +n)z)) dz
But

/ﬂ cos((m +n)z)dr =0

—T

(since m + n is a positive integer, and is thus non-zero). Also

/7r cos((m —n)z)dx =0 if m # n,

—T

and -
/ cos((m —n)z)dx =2r if m=n

—Tr

(since cos((m — n)z) = 1 when m = n). It follows that

s ™ ™
/ cosmz cosnrdr = / sin mx sinn:z:dx:%/ cos((m —n)x)dx

o ifm=mn
10 ifm#n.

Using equation (19), we see also that

/_: sinma cosnx dr = %/_:(sin((m +n)a) + sin((m — n)z)) dz = 0

for all positive integers m and n. (Note that sin((m — n)x) = 0 in the case
when m=n). |

7.3 Basic Properties of Complex Numbers

We shall extend the definition of the exponential function so as to define a
value of e* for any complex number z. First we note some basic properties
of complex numbers.

A complex number is a number that may be represented in the form z+1iy,
where x and y are real numbers, and where i> = —1. The real numbers x
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and y are referred to as the real and imaginary parts of the complex number
x + iy, and the symbol i is often denoted by /—1. One adds or subtracts
complex numbers by adding or subtracting their real parts, and adding or
subtracting their imaginary parts. Thus

(z+iy)+(utiv) = (z+u)+i(y+v).  (z+iy)—(ut+iv) = (z—u)+i(y—v).
Multiplication of complex numbers is defined such that
(x 4+ 1y) X (u+iv) = (zu — yv) +i(xv + wy).

The reciprocal (x + yi)~' of a non-zero complex number x + iy is given by

the formula
x oy

2y P4

Complex numbers may be represented by points of the plane (through the
Argand diagram). A complex number z + iy represents, and is represented
by, the point of the plane whose Cartesian coordinates are (z,y). One often
therefore refers to the set of all complex numbers as the complex plane. This
complex plane is pictured as a flat plane, containing lines, circles etc., and
distances and angles are defined in accordance with the usual principles of
plane geometry and trigonometry.

The modulus of a complex number = + iy is defined to be the quantity
V22 + y?: it represents the distance of the corresponding point (x,y) of the
complex plane from the origin (0,0). The modulus of a complex number z is
denoted by |z].

Let z and w be complex numbers. Then z lies on a circle of radius |z|
centred at 0, and the point z + w lies on a circle of radius |w| centred at
z. But this circle of radius |w| centred at z is contained within the disk
bounded by a circle of radius |z| + |w| centred at the origin, and therefore
|z + w| < |z| + |w|. This basic inequality is essentially a restatement of the
basic geometric result that the length of any side of a triangle is less than or
equal to the sum of the lengths of the other two sides. Indeed the complex
numbers 0, z and z + w represent the vertices of a triangle in the complex
plane whose sides are of length |z|, |w| and |z+w]|. The inequality is therefore
often referred to as the Triangle Inequality.

Let z and w be complex numbers, and let z = x + 1y and w = u + .
Then zw = (zu — yv) + i(zv + yu) and therefore

(x+iy) ™ =

zwl* = (zu—yv)* + (zv + yu)®
= (2%u® + y*0® — 2xywv) + (2%0? + y*u? + 2oyuw)
= @)+ 0?) = [Pl

30



It follows that |zw| = |z| |w| for all complex numbers z and w. A straight-
forward proof by induction on n then shows that |z"| = |z|™ for all complex
numbers z and non-negative integers n.

7.4 Complex Numbers and Trigonometrical Identities
Let 6 and ¢ be real numbers, and let
z=cosf+isinf, w =cosp+isiny,
where i = v/—1. Then
zw = (cosf cosyp —sinf sinp) +i(sinf cos p + cosf sin p)

= cos(f + )+ isin(6 + ).

7.5 The Exponential of a Complex Number

Let z be a complex number, and, for each non-negative integer m, let

m Zn
pml2) =)~
n!
n=0
Then po(z), p1(2), p2(2), . . . is an infinite sequence of complex numbers. More-

over one can show that, as the integer m increases without limit, the value of
the complex number p,,(2) approaches a limiting value p.(z), so that, given
any strictly positive real number € (no matter how small), there exists some
positive integer M such that |[p,,(2) — p(z)| < € whenever m > M. (The
quantity |pm(2) — poo(2)| measures the distance in the complex plane from
Pm(2) 10 Poo(z), and thus quantifies the error that results on approximating
the quantity ps(2) by pm(2). The size of this error can be made as small as
we please, provided that we choose a value of m that is sufficiently large.)
This limiting value exp poo(2) is said to be the limit ml_lg_loo Pm(2) of pp(2) as

m tends to +00. The exponential e* of the complex number z is defined to
be the value of this limit. Thus

to _n mo_n
z 2 Y s Z
© - ZO o~ pe(2) = i p(2) = Tim (ZO n!) '
We may also write

too p 22 53 oA

e _ZH_1+Z+Q!+3!+4!+ ,



The exponential e* of the complex number z is also denoted by exp z. The
exponential function exp: C — C, mapping the set of complex numbers to
itself, which sends each complex number z to e*.

7.6 Euler’s Formula

Theorem 7.2 (Euler’s Formula)
e = cosf + i sinf
for all real numbers 6.

Proof Let us take the real and imaginary parts of the infinite series that

defines €. Now > = —1,7%> = —i and i* = 1, and therefore
¢ — i PO o) +is(0)
— n! ’
where

92 94 96 98 910 912
co) = 1—5%—1—5-{—5—1—0!4‘@—'“
93 95 97 09 (911 913
SO) = 0_§+a_ﬁ+§_ﬁ+l_3!_”'
However the infinite series that define these functions C'(f) and S(6) are the
Taylor series for the trigonometric functions cos# and sinf. Thus C(6) =
cos # and S(0) = sin @ for all real numbers 6, and therefore e = cos §+isin 0,

as required. |
Note that if we set # = 7 in Euler’s formula we obtain the identity
e +1=0.
The following identities follow directly from Euler’s formula.
Corollary 7.3

cosf = (ew + e_w) , sinf = 21 (ew — e_w)

1

N | —

for all real numbers 6.

It is customary to define the values cos z and sin z of the cosine and sine
functions at any complex number 2z by the formulae

1 1z —iz : _i iz —iz
cosz:§(e +e ), smz—%(e e )

Corollary 7.3 ensures that the cosine and sine functions defined for complex
values of the argument in this fashion agree with the standard functions for
real values of the argument defined through trigonometry.
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7.7 Multiplication of Complex Exponentials

Let z and w be complex numbers. Then

et (Zﬁ> (ZH> =22 T

j=0 7’ k=0

Thus the value of the product e*e™ is equal to the value of the infinite
double sum that is obtained on adding together the quantities z7w*/(j!k!)
for all ordered pairs (j,k) of non-negative integers. A fundamental result
in the theory of infinite series ensures that, in this case, the value of this
infinite double sum is independent of the order of summation, and that, in
particular, we can evaluate this double sum by first adding together, for each
non-negative integer n, the values of the quantities z9w" /(j!k!) for all ordered
pairs (j, k) of negative numbers with j + & = n, and then adding together
the resultant quantities for all non-negative values of the integer n. Thus

e o Pk _Ool u n! _
cc _nz% Z;) i _;;n! (;j!(n—j)!zjw ]>'

G,
jt+k=n
(Here we have used the fact that if j + k = n then & = n — j.) Now

|
the quantity n— n) It follows from the
jin —j)! J

Binomial Theorem that

is the binomial coefficient (

n

?I' ), n—] n
> e =
=0 :

If we substitute this identity in the formula for the product e*e¢", we find
that

ezew:i (Z—l—w)” :6z+w,

o n!
We have thus obtained the following result.
Theorem 7.4

el — ot

for all complex numbers z and w.

On combining the results of Theorem 7.4 and Euler’s Formula (Theo-
rem 7.2), we obtain the following identity for the value of the exponential of
a complex number.
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Corollary 7.5

e" W = e"(cosy + isiny)

for all complex numbers x + iy.

7.8 Complex Roots of Unity

Lemma 7.6 Let w be a complex number satisfying the equation w"™ = 1 for
some positive integer n. Then
2mmsi 27Tm 27Tm

w=e€e n = Cos + 2sin
n n

for some integer m.

Proof The modulus |w| of w is a positive real number satisfying the equation
lw|® = |w| = 1. It follows that w = € = cosf + isinf for some real
number 6. Now

(€i9)2 — eieew — 210 (6i6)3 — 62i66i9 — 631'9

e, , etc.,

and a straightforward proof by induction on r shows that
(€Y = e = cosrf + isinrd
for all positive integers r. Now w™ = 1. It follows that
1= ()" = e = cosnb + isinnd,

and thus cosnf = 1 and sinnf = 0. But these conditions are satisfied if
and only if nf = 27m for some integer m, in which case w = e*>™™/" as
required. [

We see that, for any positive integer n, there exist exactly n complex num-
bers w satisfying w™ = 1. These are of the form e>™/" form = 0,1,...,n—1.
They lie on the unit circle in the complex plane (i.e., the circle of radius 1
centred on 0 in the complex plane) and are the vertices of a regular n-sided
polygon in that plane.

34



7.9 The Discrete Fourier Transform

Definition A doubly-infinite sequence (z; : j € Z) of complex numbers
associates to every integer j a corresponding complex number z;.

Definition We say that doubly-infinite sequence (z; : j € Z) of complex
numbers is N-periodic if zj,n = z; for all integers j.

Lemma 7.7 Let N be a positive integer, and let wy = €>™/N. Then the
N-1

value of wf\]f is determined, for any integer j, as follows:
k=0

Nz_:lek | N if 5 is divisible by N;
prd N1 0 if g is not divisible by N.

Proof The complex number wy has the property that wd = 1. Also
(I—-2)1+z+22 4+ +2V ) =1-2"

for any complex number z. It follows that

=

(l—wfv) w%czl—w%N:O
0

B
Il

for all integers 7, and therefore
N-1 ‘
Z wi¥ =0 provided that w) # 1.
k=0

Now wgv = 1 if and only if the integer j is divisible by N. We can therefore
conclude that

= i [N ifjis divisible by N,

S

— N 0 if j is not divisible by N,
as required. |

Theorem 7.8 (Discrete Fourier Transform) Let (z; : j € Z) be a doubly-
infinite sequence of complex numbers which is N -periodic . Then

= %ijkm
zj = Z Cr €Xp N ,

k=0
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for all integers n, where 1 = /—1 and

N-1 .
1 —2i7km
Cr = N E Zj exp < N ) .

J=0

o
Proof Let wy = exp (%@) It follows from the definition of the numbers
¢, that
N-1 | NoIN-1 | N N-1
ik —pk_jk i—p)k
>k LS e =y 2 (a2
k=0 k=0 p=0 p=0 k=0

for all integers 7. Now it follows from Lemma 7.7 that

N-1 A
k=0

unless 7 — p is divisible by N, in which case

N-1
Z w](\j,_p)k = N.
k=0

Moreover, given any integer j, there is a unique integer r between 0 and
N —1 for which j — r is divisible by N. (This integer r is the unique integer
between 0 and N — 1 for which j = r (modn). Thus, in the case when the
integer j is positive, the integer r is the remainder obtained on dividing j by
N in integer arithmetic.) It follows that

N-1
chwﬁ =z, where 0 <r < N and r = j (mod N).
k=0

Moreover z, = z; whenever r = j (mod ), because the sequence (z; : j € Z)

is N-periodic. Thus
N-1

Jjk _
CrwWy = %

k=0
for all integers j, as required. [

Theorem 7.8 shows that any N-periodic doubly-infinite sequence (z; :
j € Z) of complex numbers determines another N-periodic doubly-infinite
sequence (¢ : k € Z), where

N-1 .
1 —2i5km
Ck:NE zjexp< N )

J=0
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for all integers k. The values of one of these periodic infinite sequences
determine and are determined by the values of the other by means of the
formulae stated in Theorem 7.8. The transformation that passes from the
N-periodic sequence (z; : j € Z) to the N-periodic sequence (¢j, : k € Z) is
referred to as the discrete Fourier transform. (The acronym DFT is often
used in the literature to denote this discrete Fourier Transform.)

Remark The theory of the discrete Fourier transform is closely related to
the theory of Fourier series (which is concerned with the representation of
periodic functions by means of infinite series whose terms are trigonometric
functions), and to the theory of the classical Fourier Transform (which is a
transformation that can be applied to suitably well-behaved functions of a
real-variable and is useful in the theories of ordinary and partial differential
equations.

Example Let (z; : j € Z) be an 3-periodic sequence with zy = 2, 21 = 4,
29 = 5. Let w = ws = *™/3. It follows from Theorem 7.8 that

Zj = Cp + clw] + CQ(.UZJ

for all integers j, where

1
3 (20 + 210" + 20w~ %) .

for k =0,1,2. Now w™! = w? and w™? = w, because w?® = 1. Therefore

Cr = % (20 + zw* + ZQWk) ;

Cr —

and thus

11
(2 + 4w? + Hw),
(2 + 4w + 5w?).

W= Wl Wl

C1

Now

w = cos%’r—i-isin%”:
we = cos%’r—i-isin%”:

It follows that

¢ =L(=5+V3i), c=21(-5-V31).
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Example Let (z; : j € Z) be an 4-periodic sequence with zy = 2, 21 = 4,
zo = b, z3 = 1. Now if wy is defined as in the statement of Theorem 7.8 then
wy = e2™/4 = 4. Tt follows from Theorem 7.8 that

Zj = (g + Clij + CQ(—l)j + C3<—Z.)j

for all integers j, where

2% 3},
e = ~ (204 210" + 2007 + 25i7)

N N

(244 x (=) +5x (=1)F +i¥).

Thus

L[S
NS
N

=3, € =-— i, €= c3=—3 434
We now discuss how the real and imaginary parts of the discrete Fourier
transform of a periodic doubly-infinite sequence of real numbers can be rep-

resented using trigonometric functions.

Theorem 7.9 Let (z; : j € Z) be a doubly-infinite sequence of real numbers
which is N-pertodic . Then

N—

>_A

] 25k
(pk CcoS +qk sin J W) ,
N

k=0

for all integers n, where

N— N—
1 2k; 2k
pe g oo e LY T
7=0

7=0

Proof It follows from Theorem 7.8 that

N-1

R gk
x] - CkwNa
k=0
for all integers n, where wy = €2™/" and

N-1
— 1 —kj
Cr = N TiWn ~
7=0
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Now

; 25 . 2T
= COS —— +isin ——
N N TN
wy = COSQJ—W —zsian—7r
N N

for all integers 5. Now ¢ = pr — qxt for k=0,1,..., N — 1, where

N-1 . N-1 ,
1 27k 1 . 2jkm
P = N jgzo Z; COS N qr = N jEZO T4 S N

(Note that py and g are real numbers for all k. It follows that

N—-1 N—-1 2]€7T 2]{57‘(‘
z; = Re (chwﬁﬁ :Z<pkcos JN + g sin jN ),

k=0 k=0

N-1 N-1
where Re (Z ckw%C > denotes the real part of Z ckw%C -1

k=0 k=0

7.10 Multidimensional Discrete Fourier Transforms

We now describe the discrete Fourier transform of a periodic n-dimensional
array of complex numbers.

Theorem 7.10 Let n be a positive integer, let Ny, No, ..., N, be positive
integers, and let

(2j1,j2rjn = Jg € Z for ¢ =1,2,...,n)

be an n-dimensional array of complex numbers, indexed by n-tuples of inte-
gers, which satisfies the periodicity condition

Zj1+k1 N1, jotkaNa,.., in+tknNn = “j1,52,,0n

for all integers ji, ja, ..., jn and ki, ko, ... k, (so that the value of zj, j, . .
remains unchanged when some integer multiple of N, is added to the qth
indez j,). Then

N1—1 Na—1 Np,—1
_ 2 jq
Z31,32,--dn Chy kg, kn €XD | 270

k1=0 k2=0 kn=0

for all integers n, where 1 = /—1 and

Ni—1 Nao—1 Np—1 n L
o § O Jata

Ck17k27"'7k Nl N2 e . Z]l7]27 7]TL eXp 7.(-/[/ N *
=1 1

J1=0 j2=0 Jn=0
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Proof Let

N1—1 Na—1 Np—1

Wi oo = D D" D Chia,hn ©XP (27?22‘%%) '
g=1 1

k1=0 ky=0 fep =0
We must prove that wj, j, . = Zj, jo....;, for all integers ji, jo, ..., jn. Now

N1—1 N2—1 Np—1

" pok

p1=0 p2=0 pn=0

and therefore

Ni—1Nx—1 Np,—1N1—1 Na—1 Np—1

Wiy g2y = Nl N2 Z Z Z Z Z Z Zp1,p2,.,Pn

™ k1=0 k2=0 kn=0 p1=0 p2=0 pn=0
X exp —27rz'zpq—kq exp 2m’ijq—kq .
Ny Ny
q=1 q=1
Now
~ Pqakq < Jakq
exp —271'22 —) exp (27?22 —)
< q=1 N q=1 Ny
~ Pqkq ~ Jakq
- -9 fa%q 4 9 Ja™q
exp( mz N, + mz Nq>
q=1 q=1
~ (Jq — Pg)kq
= 2 Ve Fa)rg
exp ( mz N

q=1 g

(.71 pl)k (j2—p2)k2 (jn_pn)k?n
le wNQ Ce wNn ,

(27rz'> (27r)+, ) (27?)
Wy, =€xp | — | = cos | — isin [ —
N, N, N,

for g =1,2,...,n. It follows that

where

Ni—1 Ny—1 Np—1

Wiy g2,esjn = E : § : T § : Zp1,p2,eePn SN1,51,p1 SN2 j2,p2 *** SNp,jn.pn

p1=0 p2=0 pn=0

where 1 Nt 1 . prili
o _
W= 29N = Z b ( N )
k=0
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for all integers N, j and p satisfying N > 0,0 < j < N and 0 < p < N.
Now it follows from Lemma 7.7 that sy ;, = 0 unless j — p is divisible by V.
Butif 0 <j < Nand 0 <p< N, and if j — p is divisible by N then j = p.
Thusif N >0,0<j <N, 0<j<p,and if sy, is non-zero, then p = j
and sy j, = 1. Therefore

N1—1 Na—1

Wiy 2 esin = § § § Zp1,p2,--Pn SN1,j1,p1 SN2 j2.p2 " SNn,jn,pn
p1=0 p2=0 pn=>0
zjlvj?a"':jnle?jlvjl8N27j27j2 e SNTijn:j’ﬂ

Zjlvj?a---vjn’

as required. Jj

Remark Let the positive integer n, the positive integers Ny, Ny, ..., N, and
the n-dimensional arrays (zj, j,....) and (g, k... k,) be as described in the
statement of Theorem 7.10. The number of n-tuples of integers (j1, jo, - - -, jn)
with the property that 0 < j, < N, for ¢ = 1,2,...,n is the product
NiNjy--- Ny of the positive integers Ny, Na, ..., N,. It follows that, for each
n-tuple (ki, ko, ..., k,) of integers, the quantity cg, k. .k, is the average of
the complex numbers

n

21 jorenin €XD (—2#@ Z ‘%)
g=1 ~ 1

s (j1,Jo,---,Jn) ranges over the set of all n-tuples of integers ji, j2, ..., jn
that satisfy 0 < j, < IV, for ¢ = 1,2,...,n. Moreover

2 :jq Jiki, g2k Jnkn
Zjlvj?v":jn eXp( 27TZ ]17]27 7-7"le wNQ ’ CUN”

w e p<2m> cos<2ﬁ)+isin(27r)
Nq: X _— = _ _—
N, N, N,

forq=1,2,...,n

where

Example Let N be a positive integer, and let
(Zjlan 11,02 € Z)

be a two-dimensional array of complex numbers indexed by ordered pairs
(71, j2) of integers. Suppose that

Zj1+N,j2 = %j1,j2 and Zj1,ge+N = Zj1,52
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for all integers j; and jo. Then all values of the two-dimensional array are
determined by those values z;, j, for which 0 < j; < N and 0 < j, < N. It
follows from Theorem 7.10 that

N—-1 N-1 .. .
2mi(jrk1 + Joko)
= 3 ey (LB ERRD)

k1=0 k2=0

for all integers n, where

N—-1N-1 . .
1 —2mi(j1k1 + jok
s =z 3 3 sy (L)

Jj1=072=0

7.11 The Discrete Cosine Transform

Let N be a positive integer, and let xg,z1,...,xxy_1 be real numbers. Let
(Z,, : n € Z) be the (2N)-periodic sequence defined such that

__[w  #0<j<N,
J T_1-j if —NS] < 0,

and
Tjrony = T; forall j € Z.
It then follows from Theorem 7.8 that

2N—-1

- ijkm
.',U]: chexp(jN ),

k=0

for all integers n, where ¢ = v/—1 and

1A= —ijkm
= 5 Tjexp N
7=0
N-1 iy 2N-1 .
1 B —ijkm 1 . —ijkm
= 2— :pjexp< N )+W2xjexp< N )
7=0 j=N
1 = <—ij7r)
= — Tjex
2 e N
L1 g | —i(2N — 1 — j)kn
oN TaN-1—5 €XP N
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for all integers k. But

and
—i(2N — 1 —j)km\ . i(—1—j)km
exp ( N ) = exp ( 2ikm i
— e (Z(j + 1)k7r>
a N

for j =0,1,..., N — 1, because exp(—2ikm + z) = exp(z) for all integers k
and complex numbers z. It follows that

N-1
1 —ijkm Dkm
G = 5y 2. xj exp < ) oN E Tjexp ( N )
= SULAW i(j + Vkn
= 3y 2. xj | exp N exp N

Moreover it follows from Theorem 7.4 and Corollary 7.3 that

ik 4 Dk
exp( Zj]\f?T) +exp (Z(]W;V) 7T)

e (T i@ DRRY ik i(2) 4 Dkn
- PloN 2N P\on 2N

- (;/f_;) (exp (_%) + exp (W))

_ ikm (27 + 1)km
= 20xp | o Joos | T

ij . (m) ((2]’ ;\})kw)

for all integers k. It follows that

) 12! ik ijkm
Tr; = 5 Uk €Xp W exXp N y
0

Thus




where

for all integers k.

j::<i(2j + 1)2(;N - W) = exp (i(2j +hm - W)
= (exp(mi))® V) exp (_%)
= (=) Vexp (—%)
= —exp (—W) ’
and N ((Qj N 1>2(?VN _ k;)7T>
= cos <<2j +1)m — W)
= cos((2j + 1)7) cos (%)
+ sin((2j 4+ 1)7) sin (%)

for all integers j and k, because cos((2j + 1)m) = —1 and sin((2j + 1)7) =0
for all integers j. It follows that usy_r = —uy for all integers k. Moreover
uy = 0. It follows that

T, = = Uj, €Xp

N—-1 . .
1 Z 2 1)k

2 2 2N
k=1
N-1 .y
1 i(2j+ 1)(2N — k)7
+ 5 2 U N—f €XP < oON
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N-1 N-1
w1 i(25 + 1)k 1 (2§ + Dk
= 5 +2k: ukexp< N 2;ukexp N

N-1
g (25 + 1)kn
= T e (*5y

fory=0,1,...,N — 1.
We have therefore arrived at the result stated in the following theorem.

Theorem 7.11 (Discrete Cosine Transform) Let N be a positive integer,
and let xg,x1,...,xNn_1 be real numbers. Then

(2 Dk
+Zumos( ]+N) W)

forj=0,1,...,N — 1, where

NZ (2; +N1>;m>

5=0
fork=0,1,...,N — 1.

The transformation that sends the real numbers xg, z1,...,xny_1 to the
real numbers wug, uy, ..., un_1 is referred to as the discrete cosine transform.

7.12 The Two-Dimensional Discrete Cosine Transform

The two-dimensional discrete cosine transform is employed in image process-
ing in order to represent and compress two-dimensional visual images. In
particular, it is employed when compressing and storing images in JPEG
format.
Let
('rj17]'2 10 <J1,J2 < N)

be an N x N array of real numbers z;, j, indexed by pairs (ji, j2) of integers,
where 0 < j; < N and 0 < j, < N. An application of Theorem 7.11 (with
Jo kept fixed) shows that

N-1

U)O7 (2]1 + )klﬂ'

Lj1,jo = —== + Z Wiy, j, COS (T
ki1=1

45



for j=0,1,..., N — 1, where

N-1 .
2 (2]1 + 1)]{317'('
Wy ,j2 = N Z Ljy,jo COS ( IN

Jj1=0
forklzo,l,...,N—landj2:0,1,...,N—1. But

( 2]2 + )kg’ﬂ')
ko COS

Wy ,j2 =

2N

ko=1

for 0 < 71,72 < N, where

(2jo + 1)kom
Uy ko = Z Wk, 5, COS ( J2 2N) 2 >

J20

for 0 < 1{7171{32 < N.

On substituting these equations expressing the quantities wy, ;, in terms
of the quantities wuy, &, into the equations expressing the quantities z;, ;, in
terms of the quantities wy, j,, we obtain the result stated in the following
theorem.

Theorem 7.12 (Two-Dimensional Discrete Cosine Transform) Let N be a
positive integer, and let

('rjl,jZ 0< jl;jZ < N)

be a two-dimensional array of real numbers indexed by pairs (j1,j2) of inte-
gers, where 0 < j1,j2 < N. Then

1 Nl
U 292 + 1)kom
Tjrjo = 2042 Z U, k, COS <g)

4 2N
k2 1
N-1
(271 + D)y
"‘52%10005( 5N
k=1
N—1N-1 ‘ .
2 1k 2 1k
+;};“khk2 cos (( 1 ;FN) 17T> o (( J2 ;LN) 27T) |
1= 2=

for j1,52=0,1,..., N — 1, where

N—-1N-1 .
4 (271 + V)kym (272 + 1)kom
Uk ,ke = N2 Z Z Lj1,j2 COS (T CoS — aoN

J1=0j2=0

fOTk’l,k’QZO,l,...,N—l.
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The transformation that passes from the quantities x;, j, to the quantities
U, &, 18 Teferred to as the two-dimensional discrete cosine transform. The N?
quantities z;, j, are determined by the N? quantities ug, 4,, and vica versa.

Problems

1. Let (2; : j € Z) be the doubly-infinite 3-periodic sequence with zp = 1,
z1 = 2 and zo = 6. Find values of ag, a; and ay such that

. 0i
2j = ap + 1w’ + agw™

for all integers j, where w = €*™*/3. (Note that w = (-1 + v/34),
w? = e k3 = 1(—1— /34) and thus w® = 1 and w + w? = —1.)

2. Let (z;j : j € Z) be the doubly-infinite 4-periodic sequence with z, = 1,
z1 =2, 29 = 3t and z3 = —1 — 2. Find values of ¢y, ¢1, ¢o and c¢3 such
that

zj = co + 1 + ea(—1) + c3(—i)!

for all integers j.
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