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3 Periodic Functions and Fourier Series

Definition A function f : R → R is said to be periodic if there exists some
positive real number l such that f(x + l) = f(x) for all real numbers x.
The smallest real number l with this property is the period of the periodic
function f .

A periodic function f with period l satisfies f(x+ml) = f(x) for all real
numbers x and integers m.

The period l of a periodic function f is said to divide some positive real
number K if K/l is an integer. If the period of the function f divides a
positive real number K then f(x + mK) = f(x) for all real numbers x and
integers m.

Mathematicians have proved that if f : R → R is any sufficiently well-
behaved function from R to R with the property that f(x + 2π) = f(x) for
all real numbers x then f may be represented as an infinite series of the form

f(x) = 1
2
a0 +

∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx. (33)

In particular it follows from theorems proved by Dirichlet in 1829 that a
function f : R → R which satisfies f(x + 2π) = f(x) for all real numbers x
can be represented as a trigonometrical series of this form if the function is
bounded, with at most finitely many points of discontinuity, local maxima
and local minima in the interval [−π, π], and if

f(x) = 1
2

(
lim
h→0+

f(x+ h) + lim
h→0+

f(x− h)

)
at each value x at which the function is discontinuous (where lim

h→0+
f(x+ h)

and lim
h→0+

f(x− h) denote the limits of f(x+ h) and f(x− h) respectively as

h tends to 0 from above).
Fourier in 1807 had observed that if a sufficiently well-behaved function

could be expressed as the sum of a trigonometrical series of the above form,
then

a0 =
1

π

∫ π

−π
f(x) dx, (34)

an =
1

π

∫ π

−π
f(x) cosnx dx, (35)

bn =
1

π

∫ π

−π
f(x) sinnx dx (36)
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for each positive integer n. These expressions for the coefficients an and
bn may readily be verified on substituting the trigonometic series for the
function f (equation (33)) into the integrals on the right hand side of the
equation, provided that one is permitted to interchange the operations of
integration and summation in the resulting expressions.

Now it is not generally true that the integral of an infinite sum of functions
is necessarily equal to the sum of the integrals of those functions. However
if the function f is sufficiently well-behaved then the trigonometric series
for the function f will converge sufficiently rapidly for this interchange of
integration and summation to be valid, so that∫ π

−π

(
∞∑
m=1

am cosmx

)
dx =

∞∑
m=1

am

∫ π

−π
cosmxdx etc.

If we interchange summations and integrations in this fashion and make use
of the trigonometric integrals provided by Theorem 2.1, we find that∫ π

−π
f(x) dx = a0π +

∫ π

−π

(
∞∑
m=1

am cosmx

)
dx+

∫ π

−π

(
∞∑
m=1

bm sinmx

)
dx

= a0π +
∞∑
m=1

am

∫ π

−π
cosmxdx+

∞∑
m=1

bm

∫ π

−π
sinmxdx

= a0π,

Also∫ π

−π
f(x) cosnx dx

= 1
2
a0

∫ π

−π
cosnx dx+

∫ π

−π

(
∞∑
m=1

am cosmx cosnx

)
dx

+

∫ π

−π

(
∞∑
m=1

bm sinmx cosnx

)
dx

=
∞∑
m=1

am

∫ π

−π
cosmx cosnx dx+

∞∑
m=1

bm

∫ π

−π
sinmx cosnx dx

= anπ,∫ π

−π
f(x) sinnx dx

= 1
2
a0

∫ π

−π
sinnx dx+

∫ π

−π

(
∞∑
m=1

am cosmx sinnx

)
dx
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+

∫ π

−π

(
∞∑
m=1

bm sinmx sinnx

)
dx

=
∞∑
m=1

am

∫ π

−π
cosmx sinnx dx+

∞∑
m=1

bm

∫ π

−π
sinmx sinnx dx

= bnπ.

A trigonometric series of the form (33) with coefficients an and bn given by
the integrals (34), (35) and (36) is referred to the Fourier series for the
function f . The coefficients defined by the integrals (34), (35) and (36) are
referred to as the Fourier coefficients of the function f .

Example Consider the function f : R→ R defined by

f(x) =


1
2

if x = mπ for some integer m;
1 if 2mπ < x < (2m+ 1)π for some integer m;
0 if (2m− 1)π < x < 2mπ for some integer m.

This function f has the property that f(x) = f(x + 2mπ) for all real num-
bers x and integers m, and can be represented by a Fourier series. The
coefficients an and bn of the Fourier series are given by the formulae

a0 =
1

π

∫ π

−π
f(x) dx,

an =
1

π

∫ π

−π
f(x) cosnx dx (n > 0),

bn =
1

π

∫ π

−π
f(x) sinnx dx (n > 0),

Now f(x) = 0 if −π < x < 0, and f(x) = 1 if 0 < x < π. Therefore a0 = 1,
and

an =
1

π

∫ π

0

cosnx dx =
1

nπ
[sinnx]π0

= 0 (n > 0),

bn =
1

π

∫ π

0

sinnx dx =
1

nπ
[− cosnx]π0

=
1

nπ
(1− cosnπ) =

1

nπ
(1− (−1)n)

=

{ 2

nπ
if n is odd and n > 0,

0 if n is even and n > 0,
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(We have here made use of the fact that sinnπ = 0 and cosnπ = (−1)n for
all integers n.) Thus

f(x) =
1

2
+
∑
n odd
n>0

2

nπ
sinnx

=
1

2
+
∞∑
k=1

2

(2k − 1)π
sin ((2k − 1)x)

3.1 Fourier Series of Even and Odd Functions

Definition A function f : R → R is said to be even if f(x) = f(−x) for all
real numbers x. A function f : R→ R is said to be odd if f(x) = −f(−x) for
all real numbers x.

Let f : R→ R be an integrable function. Then∫ 0

−π
f(x) dx =

∫ π

0

f(−x) dx, (37)∫ 0

−π
f(x) cosnx dx =

∫ π

0

f(−x) cosnx dx, (38)∫ 0

−π
f(x) sinnx dx = −

∫ π

0

f(−x) sinnx dx (39)

(The first of these identities may be verified by making the substitution
x 7→ −x and then interchanging the two limits of integration. The second
and the third follow from the first on replacing f(x) by f(x) cosnx and
f(x) sinnx and noting that cos(−nx) = cosnx and sin(−nx) = − sinnx.) It
follows that the Fourier coefficients of f are given by the following formulae:

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0

(f(x) + f(−x)) dx, (40)

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0

(f(x) + f(−x)) cosnx dx, (41)

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0

(f(x)− f(−x)) sinnx dx (42)

for all positive integers n.
Of course f(x) + f(−x) = 2f(x) and f(x) − f(−x) = 0 for all real

numbers x if the function f : R → R is even, and f(x) + f(−x) = 0 and
f(x)− f(−x) = 2f(x) if the function f : R→ R is odd. The following results
follow immediately,
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Theorem 3.1 Let f : R → R be an even periodic function whose period di-
vides 2π. Suppose that the function f may be represented by a Fourier series.
Then the Fourier series of f is of the form

f(x) = 1
2
a0 +

∞∑
n=1

an cosnx,

where

a0 =
2

π

∫ π

0

f(x) dx

and

an =
2

π

∫ π

0

f(x) cosnx dx

for all positive integers n.

Theorem 3.2 Let f : R→ R be an odd periodic function whose period divides
2π. Suppose that the function f may be represented by a Fourier series. Then
the Fourier series of f is of the form

f(x) =
∞∑
n=1

bn sinnx,

where

bn =
2

π

∫ π

0

f(x) sinnx dx

for all positive integers n.

3.2 Fourier Series for General Periodic Functions

Let f : R→ R be a periodic function whose period divides l, where l is some
positive real number. Then f(x+ l) = f(x) for all real numbers x. Let

g(x) = f

(
lx

2π

)
so that f(x) = g

(
2πx

l

)
.

Then g: R → R is a periodic function, and g(x + 2π) = g(x) for all real
numbers x. If the function f is sufficiently well-behaved (and, in particular,
if the function f is bounded, with only finitely many local maxima and
minima and points of discontinuity in any finite interval, and if f(x) at each
point of discontinuity is the average of the limits of f(x + h) and f(x − h)
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as h tends to zero from above) then the function g may be represented by a
Fourier series of the form

g(x) = 1
2
a0 +

∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx.

The coefficients of this Fourier series are then given by the formulae

a0 =
1

π

∫ π

−π
g(u) du,

an =
1

π

∫ π

−π
g(u) cosnu du,

bn =
1

π

∫ π

−π
g(u) sinnu du

for each positive integer n. If we make the substitution u =
2πx

l
in these

integrals, we find that

f(x) = 1
2
a0 +

∞∑
n=1

an cos

(
2nπx

l

)
+
∞∑
n=1

bn sin

(
2nπx

l

)
, (43)

where

a0 =
2

l

∫ 1
2
l

− 1
2
l

g

(
2πx

l

)
dx

=
2

l

∫ 1
2
l

− 1
2
l

f(x) dx,

an =
2

l

∫ 1
2
l

− 1
2
l

g

(
2πx

l

)
cos

(
2nπx

l

)
dx

=
2

l

∫ 1
2
l

− 1
2
l

f(x) cos

(
2nπx

l

)
dx,

bn =
2

l

∫ 1
2
l

− 1
2
l

g

(
2πx

l

)
sin

(
2nπx

l

)
dx

=
2

l

∫ 1
2
l

− 1
2
l

f(x) sin

(
2nπx

l

)
dx

for all positive integers n. Note that these integrals are taken over a single
period of the function, from −1

2
l to +1

2
l. It follows from the periodicity of
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the integrand that these integrals may be replaced by integrals from c to c+ l
for any real number c, and thus

a0 =
2

l

∫ c+l

c

f(x) dx, (44)

an =
2

l

∫ c+l

c

f(x) cos

(
2nπx

l

)
dx, (45)

bn =
2

l

∫ c+l

c

f(x) sin

(
2nπx

l

)
dx (46)

for all positive integers n. (Indeed, if h: R → R is any integrable function
with the property that h(x+ l) = h(x) for all real numbers x, and if p and q
are real numbers with p ≤ q ≤ p+ l then∫ p+l

p

h(x) dx =

∫ q

p

h(x) dx+

∫ p+l

q

h(x) dx

=

∫ q+l

p+l

h(x) dx+

∫ p+l

q

h(x) dx =

∫ q+l

q

h(x) dx.

Repeated applications of this identity show that∫ p+l

p

h(x) dx =

∫ q+l

q

h(x) dx

for all real numbers p and q.)

Example Let k be a positive real number. Consider the function f : R→ R
defined by

f(x) =

{
ek(x−m) if m < x < m+ 1 for some integer m;
1
2
(ek + 1) if x is an integer.

This function is periodic, with period 1, and may be expanded as a Fourier
series

f(x) = 1
2
a0 +

∞∑
n=1

an cos 2nπx+
∞∑
n=1

bn sin 2nπx,

where

a0 = 2

∫ 1

0

f(x) dx,

an = 2

∫ 1

0

f(x) cos 2nπx dx (n > 0),

bn = 2

∫ 1

0

f(x) sin 2nπx dx (n > 0).
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Note that f(x) = ekx if 0 < x < 1. We see therefore that

a0 = 2

∫ 1

0

ekx dx =
2

k

[
ekx
]1
0

=
2

k
(ek − 1).

Now if k and ω a positive real numbers then∫
ekx cosωx dx =

k

k2 + ω2
ekx cosωx+

ω

k2 + ω2
ekx sinωx+ C,∫

ekx sinωx dx =
k

k2 + ω2
ekx sinωx− ω

k2 + ω2
ekx cosωx+ C,

where C is a constant of integration. (These identities may be verified by
differentiating the expressions on the right hand side.) We find therefore that

an = 2

∫ 1

0

ekx cos 2nπx dx

=

[
2k

k2 + 4n2π2
ekx cos 2nπx+

4nπ

k2 + 4n2π2
ekx sin 2nπx

]1

0

=
2k

k2 + 4n2π2
(ek − 1)

bn = 2

∫ 1

0

ekx sin 2nπx dx,

=

[
2k

k2 + 4n2π2
ekx sin 2nπx− 4nπ

k2 + 4n2π2
ekx cos 2nπx

]1

0

= − 4nπ

k2 + 4n2π2
(ek − 1),

for each positive integer n, since cos 2nπ = 1 and sin 2nπ = 0 when n is an
integer. Thus

ekx =
1

k
(ek − 1) +

∞∑
n=1

2k

k2 + 4n2π2
(ek − 1) cos 2nπx

−
∞∑
n=1

4nπ

k2 + 4n2π2
(ek − 1) sin 2nπx

for all real numbers x satisfying 0 < x < 1.

3.3 Sine Series

Let f : [0, l] → R be a function defined on the interval [0, l], where [0, l] =
{x ∈ R : 0 ≤ x ≤ l}. Suppose that f(0) = f(l) = 0. Let f̃ : R → R be the
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function defined such that

f̃(x) = f(x− 2nl) if 2nl ≤ x ≤ (2n+ 1)l for some integer n

and

f̃(x) = −f((2n+ 2)l − x) if (2n+ 1)l ≤ x ≤ (2n+ 2)l for some integer n.

The function f̃ : R→ R is an odd function with the property that f̃(x+2l) =
f̃(x) for all real numbers x. Indeed it is easily seen that f̃ : R → R is the
unique odd function with this property which agrees with the function f on
the interval [0, l].

If the function f is sufficiently well-behaved (and, in particular, if the
function f is bounded, with at most finitely many local maxima and minima
and points of discontinuity, and has the property that f(x) at each point of
discontinuity is the average of the limits of f(x+ h) and f(x− h) as h tends
to zero from above) then the function f̃ may be represented as a Fourier
series. This Fourier series is of the form

f̃(x) =
∞∑
n=1

bn sin
(nπx

l

)
,

where

bn =
1

l

∫ l

−l
f̃(x) sin

(nπx
l

)
dx

=
2

l

∫ l

0

f̃(x) sin
(nπx

l

)
dx

for all positive integers n. (This follows from equations (43) and (46) on
replacing l by 2l, and then using the fact that f̃(−x) = −f̃(x) for all real
numbers x.)

Therefore every sufficiently well-behaved function f : [0, l]→ R which sat-
isfies f(0) = f(l) = 0 may be represented in the form

f(x) =
∞∑
n=1

bn sin
(nπx

l

)
, (47)

where

bn =
2

l

∫ l

0

f(x) sin
(nπx

l

)
dx (48)

for each positive integer n.
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Example Let l be a positive real numbers, and let f : [0, l] → R be the
function defined by f(x) = x(l− x) (where 0 ≤ x ≤ l). This function can be
expanded in a sine series of the form

f(x) =
∞∑
n=1

bn sin
(nπx

l

)
,

where

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx.

Using the method of integration by parts, and the result that sinnπ = 0 and
cosnπ = (−1)n for all integers n, we find then

bn =
2

l

∫ l

0

x(l − x) sin
nπx

l
dx = − 2

nπ

∫ l

0

x(l − x)
d

dx

(
cos

nπx

l

)
dx

= − 2

nπ

[
x(l − x) cos

nπx

l

]l
0

+
2

nπ

∫ l

0

(l − 2x) cos
nπx

l
dx

=
2

nπ

∫ l

0

(l − 2x) cos
nπx

l
dx

=
2l

n2π2

∫ l

0

(l − 2x)
d

dx

(
sin

nπx

l

)
dx

=
2l

n2π2

[
(l − 2x) sin

nπx

l

]l
0
− 2l

n2π2

∫ l

0

(
−2 sin

nπx

l

)
dx

=
4l

n2π2

∫ l

0

sin
nπx

l
dx = − 4l2

n3π3

[
cos

nπx

l

]l
0

=
4l2

n3π3
(1− cosnπ) =

4l2

n3π3
(1− (−1)n)

=

{
8l2

n3π3
if n is odd;

0 if n is even.

Thus

f(x) =
∑
n odd
n>0

8l2

n3π3
sin

nπx

l
.

or (setting n = 2k − 1 for each positive integer k),

x(l − x) =
∞∑
k=1

8l2

(2k − 1)3π3
sin

(2k − 1)πx

l
(0 ≤ x ≤ l).
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3.4 Cosine Series

Let f : [0, l] → R be a function defined on the interval [0, l], where [0, l] =
{x ∈ R : 0 ≤ x ≤ l}. Let g̃: R→ R be the function defined by

g̃(x) = f(x− 2nl) if 2nl ≤ x ≤ (2n+ 1)l for some integer n

and

g̃(x) = f((2n+ 2)l − x) if (2n+ 1)l ≤ x ≤ (2n+ 2)l for some integer n.

The function g̃: R→ R is an even function with the property that g̃(x+2l) =
g̃(x) for all real numbers x. Indeed it is easily seen that g̃: R → R is the
unique even function with this property which agrees with the function f on
the interval [0, l].

If the function f is sufficiently well-behaved then the function g̃ may be
represented as a Fourier series. This Fourier series is of the form

g̃(x) = 1
2
a0 +

∞∑
n=1

an cos
(nπx

l

)
,

where

an =
1

l

∫ l

−l
g̃(x) cos

(nπx
l

)
dx

=
2

l

∫ l

0

g̃(x) cos
(nπx

l

)
dx

for all non-negative integers n. (This follows from equations (43), (44) and
(45) on replacing l by 2l, and then using the fact that g̃(−x) = g̃(x) for all
real numbers x.)

Therefore every sufficiently well-behaved function f : [0, l] → R may be
represented in the form

f(x) = 1
2
a0 +

∞∑
n=1

an cos
(nπx

l

)
(49)

where

an =
2

l

∫ l

0

f(x) cos
(nπx

l

)
dx (50)

for each positive integer n.
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Example Consider the function f : [0, 1]→ R defined by

f(x) = x if 0 ≤ x ≤ 1.

This function may be represented as a cosine series of the form

f(x) = 1
2
a0 +

∞∑
n=1

an cosnπx

where

a0 = 2

∫ 1

0

f(x) dx = 2

∫ 1

0

x dx = 1,

and where

an = 2

∫ 1

0

f(x) cosnπx dx

for all positive integers n. Using the method of integation by parts, and
making use of the fact that sinnπ = 0 and cosnπ = (−1)n for all integers n,
we find that

an = 2

∫ 1

0

x cosnπx dx =
2

nπ

∫ 1

0

x
d

dx
(sinnπx) dx

=
2

nπ
[x sinnπx]10 −

2

nπ

∫ 1

0

sinnπx dx = − 2

nπ

∫ 1

0

sinnπx dx

=
2

n2π2
[cosnπx]10 = − 2

n2π2
(1− (−1)n)

=

{
− 4

n2π2
if n is odd;

0 if n is even.

Thus

x =
1

2
−
∑
n odd
n>0

4

n2π2
cosnπx when 0 ≤ x ≤ 1.

Remark The function g̃ defined by

g̃(x) =
1

2
−
∑
n odd
n>0

4

n2π2
cosnπx

for all real numbers x is an even periodic function, with period equal to 2,
which coincides with the function f : [0, 1] → R on the interval [0, 1], where
f(x) = x for all real numbers x satisfying 0 ≤ x ≤ 1. It follows that

g̃(x) = |x− 2m| whenever m is an integer and 2m− 1 ≤ x ≤ 2m+ 1.
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Remark Setting x = 1 in the identity

x =
1

2
−
∑
n odd
n>0

4

n2π2
cosnπx when 0 ≤ x ≤ 1,

we find that

1 =
1

2
−
∑
n odd
n>0

4

n2π2
cosnπ =

1

2
+
∑
n odd
n>0

4

n2π2

and thus ∑
n odd
n>0

1

n2
=
π2

8
.

But ∑
n odd
n>0

1

n2
=
∞∑
n=1

1

n2
−
∞∑
n=1

1

(2n)2
=

(
1− 1

4

) ∞∑
n=1

1

n2
=

3

4

∞∑
n=1

1

n2
.

Therefore
∞∑
n=1

1

n2
=
π2

6
.

Problems

1. Let f : R → R be the periodic function with period 2π given for real
numbers x satisfying −π ≤ x ≤ π by the formula

f(x) =

 1− 2|x|
π

if −1
2
π ≤ x ≤ 1

2
π;

0 if −π ≤ x ≤ −1
2
π or 1

2
π ≤ x ≤ π.

(Here |x|, the absolute value of x, is defined by |x| = x if x ≥ 0, and
|x| = −x if x < 0.) The function f can be expanded as a Fourier series
of the form

f(x) = 1
2
a0 +

∞∑
n=1

an cosnx.

(The terms involving sinnx are zero since the given function is even.)
Find the coefficients an of this series, and hence write down the Fourier
series for the function f .
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2. Calculate the Fourier series of the function f : R→ R which is periodic,
with period 2π, and which is defined on the interval −π ≤ x ≤ π by
the following formulae:

f(x) =


2 +

2x

π
if −π ≤ x ≤ −1

2
π;

1 if −1
2
π ≤ x ≤ 1

2
π;

2− 2x

π
if 1

2
π ≤ x ≤ π.

3. Let f : R→ R be defined such that

f(x) = 4(x−m) if m ≤ x ≤ m+ 1
2

for some integer m;

f(x) = 4(m+ 1− x) if m+ 1
2
≤ x ≤ m+ 1 for some integer m.

Express the function f as a Fourier series of the form

f(x) =
1

2
a0 +

∞∑
n=1

an cos 2πnx.
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