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2 Trigonometric Identities, Complex Expo-

nentials and Periodic Sequences

2.1 Basic Trigonometric Identities

An anticlockwise rotation about the origin through an angle of θ radians
sends a point (x, y) of the plane to the point (x′, y′), where{

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ

(9)

(This follows easily from the fact that such a rotation takes the point (1, 0) to
the point (cos θ, sin θ) and takes the point (0, 1) to the point (− sin θ, cos θ).)
An anticlockwise rotation about the origin through an angle of φ radians
then sends the point (x′, y′) of the plane to the point (x′′, y′′), where{

x′′ = x′ cosφ− y′ sinφ
y′′ = x′ sinφ+ y′ cosφ

(10)

Now an anticlockwise rotation about the origin through an angle of θ + φ
radians sends the point (x, y), of the plane to the point (x′′, y′′), and thus{

x′′ = x cos(θ + φ)− y sin(θ + φ)
y′′ = x sin(θ + φ) + y cos(θ + φ)

(11)

But if we substitute the expressions for x′ and y′ in terms of x, y and θ
provided by equation (9) into equation (10), we find that{

x′′ = x(cos θ cosφ− sin θ sinφ)− y(sin θ cosφ+ cos θ sinφ)
y′′ = x(sin θ cosφ+ cos θ sinφ) + y(cos θ cosφ− sin θ sinφ)

(12)

On comparing equations (11) and (12) we see that

cos(θ + φ) = cos θ cosφ− sin θ sinφ, (13)

and
sin(θ + φ) = sin θ cosφ+ cos θ sinφ. (14)

On replacing φ by −φ, and noting that cos(−φ) = cosφ and sin(−φ) =
− sinφ, we find that

cos(θ − φ) = cos θ cosφ+ sin θ sinφ, (15)

and
sin(θ − φ) = sin θ cosφ− cos θ sinφ. (16)
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If we add equations (13) and (15) we find that

cos θ cosφ = 1
2
(cos(θ + φ) + cos(θ − φ)). (17)

If we subtract equation (13) from equation (15) we find that

sin θ sinφ = 1
2
(cos(θ − φ)− cos(θ + φ)). (18)

And if we add equations (14) and (16) we find that

sin θ cosφ = 1
2
(sin(θ + φ) + sin(θ − φ)). (19)

If we substitute φ = θ in equations (13) and (14), and use the identity
cos2 θ + sin2 θ = 1, we find that

sin 2θ = 2 sin θ cos θ (20)

and
cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ. (21)

It then follows from equation (21) that

sin2 θ = 1
2
(1− cos 2θ) (22)

cos2 θ = 1
2
(1 + cos 2θ). (23)

Remark Equations (9) and (10) may be written in matrix form as follows:(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,(

x′′

y′′

)
=

(
cosφ − sinφ
sinφ cosφ

)(
x′

y′

)
.

Also equation (11) may be written(
x′′

y′′

)
=

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)(
x
y

)
.

It follows from basic properties of matrix multiplication that(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
=

(
cosφ − sinφ
sinφ cosφ

)(
cos θ − sin θ
sin θ cos θ

)
,

and therefore

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = sin θ cosφ+ cos θ sinφ.

This provides an alternative derivation of equations (13) and (14).
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2.2 Basic Trigonometric Integrals

On differentiating the sine and cosine function, we find that

d

dx
sin kx = k cos kx (24)

d

dx
cos kx = −k sin kx. (25)

for all real numbers k.
It follows that ∫

sin kx = −1

k
cos kx+ C (26)∫

cos kx =
1

k
sin kx+ C, (27)

for all non-zero real numbers k, where C is a constant of integration.

Theorem 2.1 Let m and n be positive integers. Then∫ π

−π
cosnx dx = 0, (28)∫ π

−π
sinnx dx = 0, (29)∫ π

−π
cosmx cosnx dx =

{
π if m = n,
0 if m 6= n,

(30)∫ π

−π
sinmx sinnx dx =

{
π if m = n,
0 if m 6= n,

(31)∫ π

−π
sinmx cosnx dx = 0. (32)

Proof First we note that∫ π

−π
cosnx dx =

[
1

n
sinnx

]π
−π

=
1

n
(sinnπ − sin(−nπ)) = 0

and ∫ π

−π
sinnx dx =

[
− 1

n
cosnx

]π
−π

= − 1

n
(cosnπ − cos(−nπ)) = 0

for all non-zero integers n, since cosnπ = cos(−nπ) = (−1)n and sinnπ =
sin(−nπ) = 0 for all integers n.
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Let m and n be positive integers. It follows from equations (17) and (18)
that ∫ π

−π
cosmx cosnx dx = 1

2

∫ π

−π
(cos((m− n)x) + cos((m+ n)x)) dx.

and ∫ π

−π
sinmx sinnx dx = 1

2

∫ π

−π
(cos((m− n)x)− cos((m+ n)x)) dx

But ∫ π

−π
cos((m+ n)x) dx = 0

(since m+ n is a positive integer, and is thus non-zero). Also∫ π

−π
cos((m− n)x) dx = 0 if m 6= n,

and ∫ π

−π
cos((m− n)x) dx = 2π if m = n

(since cos((m− n)x) = 1 when m = n). It follows that∫ π

−π
cosmx cosnx dx =

∫ π

−π
sinmx sinnx dx = 1

2

∫ π

−π
cos((m− n)x) dx

=

{
π if m = n;
0 if m 6= n.

Using equation (19), we see also that∫ π

−π
sinmx cosnx dx = 1

2

∫ π

−π
(sin((m+ n)x) + sin((m− n)x)) dx = 0

for all positive integers m and n. (Note that sin((m − n)x) = 0 in the case
when m = n).

2.3 Basic Properties of Complex Numbers

We shall extend the definition of the exponential function so as to define a
value of ez for any complex number z. First we note some basic properties
of complex numbers.

A complex number is a number that may be represented in the form x+iy,
where x and y are real numbers, and where i2 = −1. The real numbers x

23



and y are referred to as the real and imaginary parts of the complex number
x + iy, and the symbol i is often denoted by

√
−1. One adds or subtracts

complex numbers by adding or subtracting their real parts, and adding or
subtracting their imaginary parts. Thus

(x+iy)+(u+iv) = (x+u)+i(y+v). (x+iy)−(u+iv) = (x−u)+i(y−v).

Multiplication of complex numbers is defined such that

(x+ iy)× (u+ iv) = (xu− yv) + i(xv + uy).

The reciprocal (x + yi)−1 of a non-zero complex number x + iy is given by
the formula

(x+ iy)−1 =
x

x2 + y2
− i y

x2 + y2
.

Complex numbers may be represented by points of the plane (through the
Argand diagram). A complex number x + iy represents, and is represented
by, the point of the plane whose Cartesian coordinates are (x, y). One often
therefore refers to the set of all complex numbers as the complex plane. This
complex plane is pictured as a flat plane, containing lines, circles etc., and
distances and angles are defined in accordance with the usual principles of
plane geometry and trigonometry.

The modulus of a complex number x + iy is defined to be the quantity√
x2 + y2: it represents the distance of the corresponding point (x, y) of the

complex plane from the origin (0, 0). The modulus of a complex number z is
denoted by |z|.

Let z and w be complex numbers. Then z lies on a circle of radius |z|
centred at 0, and the point z + w lies on a circle of radius |w| centred at
z. But this circle of radius |w| centred at z is contained within the disk
bounded by a circle of radius |z| + |w| centred at the origin, and therefore
|z + w| ≤ |z| + |w|. This basic inequality is essentially a restatement of the
basic geometric result that the length of any side of a triangle is less than or
equal to the sum of the lengths of the other two sides. Indeed the complex
numbers 0, z and z + w represent the vertices of a triangle in the complex
plane whose sides are of length |z|, |w| and |z+w|. The inequality is therefore
often referred to as the Triangle Inequality.

Let z and w be complex numbers, and let z = x + iy and w = u + iv.
Then zw = (xu− yv) + i(xv + yu) and therefore

|zw|2 = (xu− yv)2 + (xv + yu)2

= (x2u2 + y2v2 − 2xyuv) + (x2v2 + y2u2 + 2xyuv)

= (x2 + y2)(u2 + v2) = |z|2|w|2.
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It follows that |zw| = |z| |w| for all complex numbers z and w. A straight-
forward proof by induction on n then shows that |zn| = |z|n for all complex
numbers z and non-negative integers n.

2.4 Complex Numbers and Trigonometrical Identities

Let θ and ϕ be real numbers, and let

z = cos θ + i sin θ, w = cosϕ+ i sinϕ,

where i =
√
−1. Then

zw = (cos θ cosϕ− sin θ sinϕ) + i(sin θ cosϕ+ cos θ sinϕ)

= cos(θ + ϕ) + i sin(θ + ϕ).

2.5 The Exponential of a Complex Number

Let z be a complex number, and, for each non-negative integer m, let

pm(z) =
m∑
n=0

zn

n!
.

Then p0(z), p1(z), p2(z), . . . is an infinite sequence of complex numbers. More-
over one can show that, as the integer m increases without limit, the value of
the complex number pm(z) approaches a limiting value p∞(m), so that, given
any strictly positive real number ε (no matter how small), there exists some
positive integer M such that |pm(z) − p∞(z)| < ε whenever m ≥ M . (The
quantity |pm(z) − p∞(z)| measures the distance in the complex plane from
pm(z) to p∞(z), and thus quantifies the error that results on approximating
the quantity p∞(z) by pm(z). The size of this error can be made as small as
we please, provided that we choose a value of m that is sufficiently large.)
This limiting value exp p∞(z) is said to be the limit lim

m→+∞
pm(z) of pm(z) as

m tends to +∞. The exponential ez of the complex number z is defined to
be the value of this limit. Thus

ez =
+∞∑
n=0

zn

n!
= p∞(z) = lim

m→+∞
pm(z) = lim

m→+∞

(
m∑
n=0

zn

n!

)
.

We may also write

ez =
+∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+ · · · ,
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The exponential ez of the complex number z is also denoted by exp z. The
exponential function exp: C → C, mapping the set of complex numbers to
itself, which sends each complex number z to its exponents ez.

2.6 Euler’s Formula

Theorem 2.2 (Euler’s Formula)

eiθ = cos θ + i sin θ

for all real numbers θ.

Proof Let us take the real and imaginary parts of the infinite series that
defines eiθ. Now i2 = −1, i3 = −i and i4 = 1, and therefore

eiθ =
∞∑
n=0

inθn

n!
= C(θ) + iS(θ),

where

C(θ) = 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
− θ10

10!
+
θ12

12!
− · · ·

S(θ) = θ − θ3

3!
+
θ5

5!
− θ7

7!
+
θ9

9!
− θ11

11!
+
θ13

13!
− · · · .

However the infinite series that define these functions C(θ) and S(θ) are the
Taylor series for the trigonometric functions cos θ and sin θ. Thus C(θ) =
cos θ and S(θ) = sin θ for all real numbers θ, and therefore eiθ = cos θ+i sin θ,
as required.

Note that if we set θ = π in Euler’s formula we obtain the identity

eiπ + 1 = 0.

The following identities follow directly from Euler’s formula.

Corollary 2.3

cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
for all real numbers θ.

It is customary to define the values cos z and sin z of the cosine and sine
functions at any complex number z by the formulae

cos z =
1

2

(
eiz + e−iz

)
, sin z =

1

2i

(
eiz − e−iz

)
.

Corollary 2.3 ensures that the cosine and sine functions defined for complex
values of the argument in this fashion agree with the standard functions for
real values of the argument defined through trigonometry.
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2.7 Multiplication of Complex Exponentials

Let z and w be complex numbers. Then

ez ew =

(
∞∑
j=0

zj

j!

)(
∞∑
k=0

wk

k!

)
=
∞∑
j=0

∞∑
k=0

zjwk

j!k!
.

Thus the value of the product ez ew is equal to the value of the infinite
double sum that is obtained on adding together the quantities zjwk/(j!k!)
for all ordered pairs (j, k) of non-negative integers. A fundamental result
in the theory of infinite series ensures that, in this case, the value of this
infinite double sum is independent of the order of summation, and that, in
particular, we can evaluate this double sum by first adding together, for each
non-negative integer n, the values of the quantities zjwk/(j!k!) for all ordered
pairs (j, k) of negative numbers with j + k = n, and then adding together
the resultant quantities for all non-negative values of the integer n. Thus

ezew =
∞∑
n=0

 ∑
(j,k)
j+k=n

zjwk

j!k!

 =
∞∑
n=0

1

n!

(
n∑
j=0

n!

j!(n− j)!
zjwn−j

)
.

(Here we have used the fact that if j + k = n then k = n − j.) Now

the quantity
n!

j!(n− j)!
is the binomial coefficient

(
n

j

)
. It follows from the

Binomial Theorem that
n∑
j=0

n!

j!(n− j)!
zjwn−j = (z + w)n.

If we substitute this identity in the formula for the product ezew, we find
that

ezew =
∞∑
n=0

(z + w)n

n!
= ez+w.

We have thus obtained the following result.

Theorem 2.4

ezew = ez+w

for all complex numbers z and w.

On combining the results of Theorem 2.4 and Euler’s Formula (Theo-
rem 2.2), we obtain the following identity for the value of the exponential of
a complex number.
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Corollary 2.5

ex+iy = ex(cos y + i sin y)

for all complex numbers x+ iy.

2.8 Complex Roots of Unity

Lemma 2.6 Let ω be a complex number satisfying the equation ωn = 1 for
some positive integer n. Then

ω = e
2πmi
n = cos

2πm

n
+ i sin

2πm

n

for some integer m.

Proof The modulus |ω| of ω is a positive real number satisfying the equation
|ω|n = |ωn| = 1. It follows that ω = eiθ = cos θ + i sin θ for some real
number θ. Now

(eiθ)2 = eiθeiθ = e2iθ, (eiθ)3 = e2iθeiθ = e3iθ, etc.,

and a straightforward proof by induction on r shows that

(eiθ)r = eriθ = cos rθ + i sin rθ

for all positive integers r. Now ωn = 1. It follows that

1 = (eiθ)n = eniθ = cosnθ + i sinnθ,

and thus cosnθ = 1 and sinnθ = 0. But these conditions are satisfied if
and only if nθ = 2πm for some integer m, in which case ω = e2πmi/n, as
required.

We see that, for any positive integer n, there exist exactly n complex num-
bers ω satisfying ωn = 1. These are of the form e2πmi/n for m = 0, 1, . . . , n−1.
They lie on the unit circle in the complex plane (i.e., the circle of radius 1
centred on 0 in the complex plane) and are the vertices of a regular n-sided
polygon in that plane.
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2.9 Representation of Periodic Sequences

Definition A doubly-infinite sequence (zn : n ∈ Z) of complex numbers
associates to every integer n a corresponding complex number zn.

Definition We say that doubly-infinite sequence (zn : n ∈ Z) of complex
numbers is m-periodic if zn+m = zn for all integers n.

Lemma 2.7 Let m be a positive integer, and let ωm = e2πi/m. Then the

value of
m−1∑
k=0

ωknm is determined, for any integer n, as follows:

m−1∑
k=0

ωknm =

{
m if n is divisible by m;
0 if n is not divisible by m.

Proof The complex number ωm has the property that ωmm = 1. Also

(1− z)(1 + z + z2 + · · ·+ zm−1) = 1− zm

for any complex number z. It follows that

(1− ωnm)
m−1∑
k=0

ωknm = 1− ωmnm = 0

for all integers n, and therefore

m−1∑
k=0

ωknm = 0 provided that ωnm 6= 1.

Now ωnm = 1 if and only if the integer n is divisible by m. We can therefore
conclude that

m−1∑
k=0

ωknm =

{
m if n is divisible by m,
0 if n is not divisible by m,

as required.

Theorem 2.8 Let (zn : n ∈ Z) be a doubly-infinite sequence of complex
numbers which is m-periodic . Then

zn =
m−1∑
k=0

ckω
kn
m ,

for all integers n, where ωm = e2πi/m and

ck =
1

m

m−1∑
j=0

zjω
−kj
m .
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Proof It follows from the definition of the numbers ck that

m−1∑
k=0

ckω
kn
m =

1

m

m−1∑
k=0

m−1∑
j=0

zjω
−kj
m ωknm =

1

m

m−1∑
j=0

(
zj

m−1∑
k=0

ω(n−j)k
m

)
,

for all integers n. Now it follows from Lemma 2.7 that

m−1∑
k=0

ω(n−j)k
m = 0

unless n− j is divisible by m, in which case

m−1∑
k=0

ω(n−j)k
m = m.

Moreover, given any integer n, there is a unique integer r between 0 and
m− 1 for which n− r is divisible by m. It follows that

m−1∑
k=0

ckω
kn
m = zr where 0 ≤ r < m and r ≡ n (mod m).

Moreover zr = zn, because the sequence (zn : n ∈ Z) is m-periodic. Thus

m−1∑
k=0

ckω
kn
m = zn

for all integers n, as required.

Example Let (zn : n ∈ Z) be an 3-periodic sequence with z0 = 2, z1 = 4,
z2 = 5. Let ω = ω3 = e2πi/3. It follows from Theorem 2.8 that

zn = c0 + c1ω
n + c2ω

2n

for all integers n, where ωm = e2πi/m and

ck =
1

3

(
z0 + z1ω

−k + z2ω
−2k
)
.

for k = 0, 1, 2. Now ω−1 = ω2 and ω−2 = ω, because ω3 = 1. Therefore

ck =
1

3

(
z0 + z1ω

2k + z2ω
k
)
,
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and thus

c0 = 1
3
(2 + 4 + 5) = 11

3
,

c1 = 1
3
(2 + 4ω2 + 5ω),

c2 = 1
3
(2 + 4ω + 5ω2).

Now

ω = cos 2π
3

+ i sin 2π
3

= 1
2
(−1 +

√
3 i),

ω2 = cos 4π
3

+ i sin 4π
3

= 1
2
(−1−

√
3 i).

It follows that

c1 = 1
6
(−5 +

√
3 i), c2 = 1

6
(−5−

√
3 i).

Example Let (zn : n ∈ Z) be an 4-periodic sequence with z0 = 2, z1 = 4,
z2 = 5, z3 = 1. Now if ω4 is defined as in the statement of Theorem 2.8 then
ω4 = e2πi/4 = i. It follows from Theorem 2.8 that

zn = c0 + c1i
n + c2(−1)n + c3(−i)n

for all integers n, where ωm = e2πi/m and

ck =
1

4

(
z0 + z1i

−k + z2i
−2k + z3i

−3k
)

=
1

4

(
2 + 4× (−i)k + 5× (−1)k + ik

)
.

Thus
c0 = 3, c1 = −3

4
− 3

4
i, c2 = 1

2
, c3 = −3

4
+ 3

4
i.

2.10 Periodic Sequences of Real Numbers

Theorem 2.9 Let (xn : n ∈ Z) be a doubly-infinite sequence of real numbers
which is m-periodic . Then

xn =
m−1∑
k=0

(
pk cos

2πkn

m
+ qk sin

2πkn

m

)
,

for all integers n, where ωm = e2πi/m and

pk =
1

m

m−1∑
j=0

xj cos
2πkj

m
, qk =

1

m

m−1∑
j=0

xj sin
2πkj

m
.
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Proof It follows from Theorem 2.8 that

xn =
m−1∑
k=0

ckω
kn
m ,

for all integers n, where ωm = e2πi/m and

ck =
1

m

m−1∑
j=0

xjω
−kj
m .

Now

ωnm = cos
2nπ

m
+ i sin

2nπ

m

ω−nm = cos
2nπ

m
− i sin

2nπ

m

for all integers n. Now ck = pk − qki for k = 0, 1, . . . ,m− 1, where

pk =
1

m

m−1∑
j=0

xj cos
2πkj

m
, qk =

1

m

m−1∑
j=0

xj sin
2πkj

m
.

(Note that pk and qk are real numbers for all k. It follows that

xn = Re

(
m−1∑
k=0

ckω
kn
m

)
=

m−1∑
k=0

(
pk cos

2πkn

m
+ qk sin

2πkn

m

)
,

where Re

(
m−1∑
k=0

ckω
kn
m

)
denotes the real part of

m−1∑
k=0

ckω
kn
m .

Problems

1. Let (zn : n ∈ Z) be the doubly-infinite 3-periodic sequence with z0 = 1,
z1 = 2 and z2 = 6. Find values of a0, a1 and a2 such that

zn = a0 + a1ω
n + a2ω

2n

for all integers n, where ω = e2πik/3. (Note that ω = 1
2
(−1 +

√
3 i),

ω2 = e−2πik/3 = 1
2
(−1−

√
3 i) and thus ω3 = 1 and ω + ω2 = −1.)
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