
Course MA2C01: Michaelmas Term 2010.

Assignment II.

Worked solutions.

1. (a) Let ∗ denote the binary operation on the set R3 of ordered triples
of real numbers defined such that

(a1, a2, a3) ∗ (b1, b2, b3)

=
(
a1b3 + a2b2 + a3b1, a1b1 + a2b3 + a3b2, a1b2 + a2b1 + a3b3

)
.

Prove that R3, ∗) is a monoid. Is this monoid a group? [Justify your
answers.]

Let (a1, a2, a3) (b1, b2, b3) and (c1, c2, c3) be elements of R3. Then

((a1, a2, a3) ∗ (b1, b2, b3)) ∗ (c1, c2, c3)

=
(
a1b3 + a2b2 + a3b1, a1b1 + a2b3 + a3b2, a1b2 + a2b1 + a3b3

)
∗ (c1, c2, c3)

=
(

(a1b3 + a2b2 + a3b1)c3 + (a1b1 + a2b3 + a3b2)c2

+ (a1b2 + a2b1 + a3b3)c1,

(a1b3 + a2b2 + a3b1)c1 + (a1b1 + a2b3 + a3b2)c3

+ (a1b2 + a2b1 + a3b3)c2,

(a1b3 + a2b2 + a3b1)c2 + (a1b1 + a2b3 + a3b2)c1

+ (a1b2 + a2b1 + a3b3)c3

)
,

=
(
a1b3c3 + a2b2c3 + a3b1c3 + a1b1c2 + a2b3c2 + a3b2c2

+ a1b2c1 + a2b1c1 + a3b3c1,

a1b3c1 + a2b2c1 + a3b1c1 + a1b1c3 + a2b3c3 + a3b2c3

+ a1b2c2 + a2b1c2 + a3b3c2,

a1b3c2 + a2b2c2 + a3b1c2 + a1b1c1 + a2b3c1 + a3b2c1

+ a1b2c3 + a2b1c3 + a3b3c3

)
,

and

(a1, a2, a3) ∗ ((b1, b2, b3) ∗ (c1, c2, c3))

= (a1, a2, a3) ∗
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=
(
b1c3 + b2c2 + b3c1, b1c1 + b2c3 + b3c2, b1c2 + b2c1 + b3c3

)
=

(
a1(b1c2 + b2c1 + b3c3) + a2(b1c1 + b2c3 + b3c2)

+ a3(b1c3 + b2c2 + b3c1),

a1(b1c3 + b2c2 + b3c1) + a2(b1c2 + b2c1 + b3c3)

+ a3(b1c1 + b2c3 + b3c2),

a1(b1c1 + b2c3 + b3c2) + a2(b1c3 + b2c2 + b3c1)

+ a3(b1c2 + b2c1 + b3c3)
)

=
(
a1b1c2 + a1b2c1 + a1b3c3 + a2b1c1 + a2b2c3 + a2b3c2

+ a3b1c3 + a3b2c2 + a3b3c1,

a1b1c3 + a1b2c2 + a1b3c1 + a2b1c2 + a2b2c1 + a2b3c3

+ a3b1c1 + a3b2c3 + a3b3c2,

a1b1c1 + a1b2c3 + a1b3c2 + a2b1c3 + a2b2c2 + a2b3c1

+ a3b1c2 + a3b2c1 + a3b3c3

)
= ((a1, a2, a3) ∗ (b1, b2, b3)) ∗ (c1, c2, c3)

It follows that the binary operation ∗ on R3 is associative. Now

(a1, a2, a3) ∗ (0, 0, 1) = (a1, a2, a3)

and
(0, 0, 1) ∗ (a1, a2, a3) = (a1, a2, a3)

for all (a1, a2, a3) ∈ R3. Therefore (0, 0, 1) is an identity element for
the binary operation ∗ on R3. We have thus shown that (R3, ∗) is a
monoid.

Note that
(1, 1, 1) ∗ (b1, b2, b3) = (c, c, c)

for all (b1, b2, b3) ∈ R3, where c = b1 + b2 + b3. It follows that there
cannot exist any element (b1, b2, b3) of R3 for which (1, 1, 1)∗(b1, b2, b3) =
(0, 0, 1). It follows that the element (1, 1, 1) of R3 is not an invertible
element of this monoid. Therefore the monoid is not a group.

(b) Let f :R3 → C be the function defined such that

f(a1, a2, a3) = a3 −
1

2
(a1 + a2) +

√
3

2
(a1 − a2)i
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for all a1, a2, a3 ∈ R, where i2 = −1. Prove that f is a homomorphism
between the monoids (R3, ∗) and (C,×), where × denotes the standard
multiplication operation on the set C of complex numbers.

f((a1, a2, a3) ∗ (b1, b2, b3))

= f
(
a1b3 + a2b2 + a3b1, a1b1 + a2b3 + a3b2, a1b2 + a2b1 + a3b3

)
= a1b2 + a2b1 + a3b3

− 1

2
(a1b3 + a2b2 + a3b1 + a1b1 + a2b3 + a3b2)

+

√
3

2
(a1b3 + a2b2 + a3b1 − a1b1 − a2b3 − a3b2)i

and

f(a1, a2, a3) ∗ f(b1, b2, b3)

=

(
a3 −

1

2
(a1 + a2) +

√
3

2
(a1 − a2)i

)

×

(
b3 −

1

2
(b1 + b2) +

√
3

2
(b1 − b2)i

)
= a3b3 −

1

2
(a3b1 + a3b2 + a1b3 + a2b3)

+
1

4
(a1 + a2)(b1 + b2)− 3

4
(a1 − a2)(b1 − b2)

+

√
3

2

(
a3(b1 − b2) + (a1 − a2)b3

)
i

−
√

3

4

(
(a1 + a2)(b1 − b2) + (a1 − a2)(b1 + b2)

)
i

= a3b3 −
1

2
(a3b1 + a3b2 + a1b3 + a2b3)

+
1

4
(a1b1 + a1b2 + a2b1 + a2b2)

− 3

4
(a1b1 − a1b2 − a2b1 + a2b2)

+

√
3

2
(a3b1 − a3b2 + a1b3 − a2b3)i

−
√

3

2
(a1b1 − a2b2)i
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= a3b3 + a1b2 + a2b1 −
1

2
(a3b1 + a3b2 + a1b3 + a2b3 + a1b1 + a2b2)

+

√
3

2
(a3b1 + a1b3 + a2b2 − a3b2 − a2b3 − a1b1)i

= f((a1, a2, a3) ∗ (b1, b2, b3))

Thus f :R3 → C is a homomorphism.

2. (a) Describe the language over the alphabet {0, 1} generated by the
context-free grammar whose non-terminals are 〈S〉 and 〈A〉, whose start
symbol is 〈S〉 and whose productions are

〈S〉 → 〈S 〉〈A〉, 〈S〉 → 1, 〈A〉 → 01.

Is the context-free grammar a regular grammar?

The language generated by this grammar consists of those strings

1, 101, 10101, 1010101, . . .

of binary digits in which the digits 0 and 1 alternate, and which start
and end with the digit 1.

A typical derivation of one of these strings from the grammar is the
following:

〈S〉 ⇒ 〈S 〉〈A〉 ⇒ 〈S 〉〈A〉〈A〉 ⇒ 〈S 〉〈A〉〈A〉〈A〉
⇒ 〈S 〉〈A〉〈A〉01⇒ 〈S 〉〈A〉0101⇒ 〈S 〉010101⇒ 1010101

This grammar is not a regular grammar. The production 〈S〉 → 〈S 〉〈A〉
does not match any of the forms allowed for a production in a regular
grammar.

(b) Let L be the language over the alphabet {0, 1} consisting of those
finite strings of binary digits in which neither 010 nor 101 occurs as a
substring. Give the description of a finite state acceptor for the lan-
guage L, specifying the starting state, the finishing state or states, and
the transition table for this finite state acceptor.

The finite state acceptor specification is as follows:

• internal states: S, A, B, C, D, E

• start state: S

• finishing states: S, A, B, C, D

• transition table:
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0 1
S A B
A A C
B D B
C E B
D A E
E E E

(The empty string is considered as one of the finite strings in the lan-
guage L. If only non-empty strings are allowed, omit the state S from
the list of finishing states.)

The machine is placed in one of the states A and D at any stage where
the last digit input is 0 and no error has occurred. The machine is
placed in one of the states B and C at any stage where the last digit
input is 1 and no error has occurred. The machine is placed in state
C at any stage where the last two digits input are 01 and no error has
occurred. If the next input digit is 0 then the machine is placed in the
error state E, and cannot subsequently leave this error state to arrive
at any finishing state. The machine is placed in state D at any stage
where the last two digits input are 10 and no error has occurred. If the
next input digit is 1 then the machine is placed in the error state E,
and cannot subsequently leave this error state to arrive at any finishing
state.

(c) Construct a regular context-free grammar that generates the lan-
gle L described in (b).

Specification of regular context-free grammar is as follows:

• terminals: 0, 1

• nonterminals: 〈S〉, 〈A〉, 〈B〉, 〈C〉, 〈D〉,
• start symbol: 〈S〉,
• productions:

〈S〉 → 0〈A〉
〈S〉 → 1〈B〉
〈A〉 → 0〈A〉
〈A〉 → 1〈C〉
〈B〉 → 0〈D〉
〈B〉 → 1〈B〉
〈C〉 → 1〈B〉
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〈D〉 → 0〈A〉
〈S〉 → ε

〈A〉 → ε

〈B〉 → ε

〈C〉 → ε

〈D〉 → ε

(where ε denotes the empty string).

3. Answer the following questions concerning the graph G with vertices V
and edges E, where

V = {a, b, c, d e}
E = {a b, a c, b c, c d, c e, d e}.

[Briefly justify all your answers.]
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(a) Is the graph complete?

No. There is no edge be, for example. It is not true that each pair of
distinct vertices are adjacent (i.e., joined by a single edge).

(b) Is the graph regular?

No. The vertices do not all have the same degree. Vertices a, b, d and
e have degree 2, whereas vertex c has degree 4.

(c) Is the graph connected?

Yes. All vertices are adjacent to the vertex c, and therefore any two
vertices may be joined by a path of length at most two.
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(d) Does the graph have an Eulerian circuit?

The graph is non-trivial and connected, and all the vertices are of
even degree. Therefore an Eulerian circuit should exist. One such is
a b c d e c a. (This circuit traverses every edge exactly once, and is thus
an Eulerian circuit.)

(e) Does the graph have a Hamiltonian circuit?

No. Any circuit starting and ending at the vertex a (say) and passing
through vertices b, d (and e) must pass through the vertex c at least
twice, since all walks from a or b to d or e pass through the vertex c.
Indeed if a circuit starts at the vertex a, it must pass through c to get
to vertices d and e, and it must then return again through c in order
to get back to a. Therefore there is no circuit that passes through
all vertices of the graph and in addition passes through the vertex c
exactly once. In particular, the graph contains no Hamiltonian circuit.

(f) Give an example of a spanning tree for the graph, specifying the
vertices and edges of the spanning tree.

Vertices: a, b, c, d, e.

Edges a c, b c, c d and c e.

(There are many other spanning trees.)

(g) Given an example of an isomorphism ϕ:V → V from the given
graph to itself which satisfies ϕ(a) = d. [You should specify the isomor-
phism as a function from the set {a, b, c, d, e, f} to itself.]

One such isomorphism maps vertices as follows: ϕ(a) = d, ϕ(b) = d,
ϕ(c) = c, ϕ(d) = a, ϕ(e) = b.

(Any isomophism will map a vertex to some other vertex that has
the same degree. Therefore any isomorphism from this graph to itself
must map the vertex c to itself, since c is the only vertex of degree 4.
The isomorphism must map the edge a b to some other edge that does
not involve the vertex c. Thus if ϕ(a) = d then ϕ(b) = e. There
are then two possibilities for constructing the required isomorphism.
Either ϕ(d) = a, in which case ϕ(e) = b. Or else ϕ(d) = b, in which
case ϕ(e) = a.)
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4. (a) Let graphs G1 and G2 be trees, where there are no vertices or edges
that are common to both G1 and G2. Let v1 be a vertex of G1, let v2

be a vertex of G2, and let G be the graph consisting of the vertices and
edges of G1, the vertices and edges of G2 and the edge v1 v2. Explain
why the graph G is a tree.

A tree is a connected graph with no circuits.

The graph G is connected. Indeed any two vertices of G1 are joined by
a walk, since G1 is connected. Also any two vertices of G2 are joined
by a walk, since G2 is connected. A vertex a of G1 can be joined to a
vertex b of G2 by a walk obtained by concatenating a walk from a to
v1, the edge v1 v2 and a walk from v2 to b. Thus any two vertices of G
can be joined by a walk in G, and thus G is connected.

The graph G contains no circuit whose vertices are all contained in G1,
because the subgraph G1 has no circuits. The graph G contains no
circuit whose vertices are all contained in G2, because the subgraph G2

has no circuits. Thus any circuit in G would have to involve vertices
from both G1 and G2. This circuit would have to traverse the edge v1 v2

in order to get from G1 to G2. But in order to return to the subgraph
G1 it would have to traverse this edge again in order to pass from G2 to
G1. But this is impossible since, by definition, no circuit can traverse
an edge of the graph more than once.

(b) Let the graphs G, G1 and G2 be as in (a), let w1 be a vertex of G1

distinct from v1, let w2 be a vertex of G2 distinct from v2, and let G′

be the graph formed from the graph G by adding an extra edge w1 w2.
Is the graph G′ a tree? [Justify your answer.]

The graph G′ is not a tree. The trees G1 and G2 are connected. There-
fore one can construct a simple circuit by concatenating the following
paths:

• the edge v1 v2, traversed from v1 to v2;

• a path in G2 from v2 to w2;

• the edge w2 w1, traversed from w2 to w1;

• a path in G1 from w1 to v1;
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