Course MA2C01: Michaelmas Term 2010. Assignment I.

To be handed in by Wednesday 17th November, 2010. Please include both name and student number on any work handed in.

1. Use the Principle of Mathematical Induction to prove that

$$\sum_{i=1}^{n} \frac{2i^2 - 1}{i^4} \le 4 - \frac{2n+1}{n^2}$$

for all positive integers n.

The inequality holds when n = 1 since L.H.S = 1 and R.H.S = 4 - 3 = 1 when n = 1.

Suppose that the inequality holds for n = m, so that

$$\sum_{i=1}^{m} \frac{2i^2 - 1}{i^4} \le 4 - \frac{2m + 1}{m^2}.$$

Then

$$\sum_{i=1}^{m+1} \frac{2i^2 - 1}{i^4} = \sum_{i=1}^m \frac{2i^2 - 1}{i^4} + \frac{2(m+1)^2 - 1}{(m+1)^4}$$
$$\leq 4 - \frac{2m+1}{m^2} + \frac{2(m+1)^2 - 1}{(m+1)^4}.$$

Thus it suffices to prove that

$$\frac{2m+1}{m^2} - \frac{2(m+1)^2 - 1}{(m+1)^4} \ge \frac{2(m+1) + 1}{(m+1)^2}$$

for all positive integers m.

Now

$$\frac{2m+1}{m^2} = \frac{(2m+1)(m^4 + 4m^3 + 6m^2 + 4m + 1)}{m^2(m+1)^4},$$
$$= \frac{2m^5 + 9m^4 + 16m^3 + 14m^2 + 6m + 1}{m^2(m+1)^4},$$
$$\frac{2(m+1)^2 - 1}{(m+1)^4} = \frac{2m^4 + 4m^3 + m^2}{m^2(m+1)^4},$$

$$\frac{2(m+1)+1}{(m+1)^2} = \frac{m^2(m^2+2m+1)(2m+3)}{m^2(m+1)^4},$$
$$= \frac{2m^5+7m^4+8m^3+3m^2}{m^2(m+1)^4},$$

Therefore

$$\frac{2m+1}{m^2} - \frac{2(m+1)^2 - 1}{(m+1)^4} = \frac{2m^5 + 7m^4 + 12m^3 + 13m^2 + 6m + 1}{m^2(m+1)^4},$$
$$\geq \frac{2(m+1) + 1}{(m+1)^2}.$$

We conclude that

$$\sum_{i=1}^{m+1} \frac{2i^2 - 1}{i^4} \ge 4 - \frac{2(m+1) + 1}{(m+1)^2}.$$

We have thus shown that if the inequality holds for n = m then it holds for n = m + 1. It follows that the inequality must hold for all positive integers n, by the Principle of Mathematical Induction.

2. Let A, B and C be sets. Prove that

$$A \cap (B \setminus C) = (A \cap B) \setminus C.$$

Let $x \in A \cap (B \setminus C)$. Then $x \in A$ and $x \in B \setminus C$. Thus $x \in B$ and $x \notin C$. Now $x \in A$ and $x \in B$, therefore $x \in A \cap B$. Moreover $x \notin C$ and thus $x \in (A \cap B) \setminus C$.

Let $x \in (A \cap B) \setminus C$. Then $x \in A \cap B$ and $x \notin C$, and so $x \in A$ and $x \in B$. But $x \in B$ and $x \notin C$, and therefore $x \in B \setminus C$. Also $x \in A$, and therefore $x \in A \cap (B \setminus C)$.

We conclude that $A \cap (B \setminus C) = (A \cap B) \setminus C$, since every element of one of these sets is an element of the other.

3. Let \sim be the relation on the set \mathbb{R} of real numbers, where real numbers x and y satisfy $x \sim y$ if and only if $y^3 - x^3$ is an integer. Determine whether or not the relation \sim is an equivalence relation, and whether or not this relation is a partial order. [Give appropriate short proofs and/or counterexamples to justify your answers.]

Let $x, y, z \in \mathbb{R}$. Then $x^3 - x^3 = 0$ and $0 \in \mathbb{Z}$, and thus $x \sim x$ for all $x \in \mathbb{R}$. Thus the relation \sim is reflexive.

If $x \sim y$ then $y^3 - x^3 \in \mathbb{Z}$. But then $x^3 - y^3 = -(y^3 - x^3) \in \mathbb{Z}$, and therefore $y \sim x$. Thus the relation \sim is symmetric.

If $x \sim y$ and $y \sim z$ then $y^3 - x^3 \in \mathbb{Z}$ and $z^3 - y^3 \in \mathbb{Z}$ and therefore

$$z^{3} - y^{3} = (z^{3} - y^{3}) + (y^{3} - x^{3}) \in \mathbb{Z},$$

and hence $x \sim z$. Therefore the relation \sim is transitive.

Note that $1 \sim 2$ and $2 \sim 1$ by $1 \neq 2$. Thus the relation is not antisymmetric.

The relation \sim is reflexive, symmetric and transitive, and is thus an equivalence relation. It is not anti-symmetric, and therefore it is not a partial order.

4. Let $f: [0,2] \rightarrow [0,2]$ be the function defined so that

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1; \\ 3-x & \text{if } 1 \le x \le 2. \end{cases}$$

Determine whether or not this function is injective, and whether or not it is surjective, giving brief reasons for your answers.

The function x is not injective. Indeed $f(\frac{1}{2}) = f(2) = 1$ but $\frac{1}{2} \neq 2$. The function is surjective, because $y = f(\frac{1}{2}y)$ for all $y \in [0, 2]$.