Course MA2C01: Michaelmas Term 2009. Assignment I.

To be handed in by Wednesday 18th November, 2009. Please include both name and student number on any work handed in.

- 1. For each positive integer n, let n! denote the product $1 \times 2 \times \cdots \times n$ of the integers between 1 and n. Prove that $(3n)! \leq (27)^n (n!)^3$ for all positive integers n.
- 2. Let A and B be sets. Prove that

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

- 3. Let Q be the relation on the set \mathbb{N} of (strictly) positive integers, where strictly positive integers x and y satisfy xQy if and only if $x^2 - y^2 = 2^k$ for some non-negative integer k. Also let R be the relation on the set \mathbb{N} , where strictly positive integers x and y satisfy xRy if and only if $x^2/y^2 = 2^k$ for some non-negative integer k. For each of the relations Q and R on the set \mathbb{N} , determine whether or not that relation is (i) reflexive, (ii) symmetric, (iii) anti-symmetric, (iv) transitive (v), an equivalence relation, (vi) a partial order. [Briefly justify your answers.]
- 4. Let $f: [0, +\infty) \to (0, 1]$ be the function from the set $[0, +\infty)$ to the set (0, 1] defined such that

$$f(x) = \frac{1}{1+x^2}$$

for all $x \in [0, +\infty)$, where

$$[0, +\infty) = \{ x \in \mathbb{R} : 0 \le x < +\infty \}, \quad (0, 1] = \{ x \in \mathbb{R} : 0 < x \le 1 \}.$$

(Thus $[0, +\infty)$ is the set consisting of all non-negative real numbers.) Determine whether or not the function f is injective, whether or not it is surjective, and whether or not it is invertible.