MA232A—Euclidean and Non-Euclidean Geometry School of Mathematics, Trinity College Michaelmas Term 2017 PR

David R. Wilkins

Definition

We define an *order specifier* on a set X to be a subset Ω of X^3 with the following properties:

- **(BS1)** for all $x, y, z \in X$, if $(x, y, z) \in \Omega$ then x, y and z are distinct;
- **(BS2)** for all $x, y, z \in X$, if $(x, y, z) \in \Omega$ then $(z, y, x) \in \Omega$;
- **(BS3)** for all $x, y, z \in X$, if $(x, y, z) \in \Omega$ then $(y, z, x) \notin \Omega$;
- **(BS4)** for all $w, x, y, z \in X$, if $(w, x, y) \in \Omega$ and $(x, y, z) \in \Omega$ then $(w, y, z) \in \Omega$;
- **(BS5)** for all $w, x, y, z \in X$, if $(w, x, z) \in \Omega$ and $(w, y, z) \in \Omega$ then either $(w, x, y) \in \Omega$ and $(y, x, z) \notin \Omega$ or else $(w, y, x) \in \Omega$ and $(x, y, z) \notin \Omega$.

Example

Let Ω be the subset of \mathbb{R}^3 defined so that

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x < y < z \text{ or } x > y > z\}.$$

Then Ω is an order specifier on \mathbb{R} .

Lemma 1.1

Let Ω be an order specifier on a set X, and let x, y and z be distinct elements of X for which $(x,y,z) \in \Omega$. Then $(z,y,x) \in \Omega$ $(y,z,x) \notin \Omega$, $(x,z,y) \notin \Omega$, $(z,x,y) \notin \Omega$, $(y,x,z) \notin \Omega$.

Proof

It follows from property (BS2) that $(z,y,x) \in \Omega$, and it follows from property (BS3) that $(y,z,x) \not\in \Omega$. It then follows an application of (BS2) that $(x,z,y) \not\in \Omega$ (for if it were the case that $(x,z,y) \in \Omega$ then $(y,z,x) \in \Omega$, contradicting the result obtained above on applying property (BS3)). Next, applying property (BS3) with x,y and z replaced by z,y and x respectively, we conclude that $(y,x,z) \not\in \Omega$. It then follows from an application of (BS2) that $(z,x,y) \not\in \Omega$. The result follows.

Let Ω be an order specifier on a set X and let x, y and z be distinct elements of X. It follows from Lemma 1.1 that exactly two of the six triples (x,y,z), (z,y,x), (y,z,x), (x,z,y), (z,x,y) and (y,x,z) belong to Ω , and moreover the two triples that belong to Ω are determined by their second component. Indeed exactly one of the distinct elements x, y, z occurs as the second component of the two triples from the above list that belong to Ω .

Lemma 1.2

Let Ω be an order specifier on a set X, let v be an element of X and, let \prec_v denote the binary relation on X defined as follows: elements x and y of X satisfy $x \prec_v y$ if and only if $(v, x, y) \in \Omega$. Then

- (i) if x and y are elements of X then at most one of the relations $x \prec_v y$, x = y and $y \prec_v x$ holds for x and y;
- (ii) if x, y and z are elements of X, and if $x \prec_{v} y$ and $y \prec_{v} z$ then $x \prec_{v} z$;

Proof

If x and y are elements of X satisfying $x \prec_{v} y$ then $(v, x, y) \in \Omega$. It then follows from property (BS1) in the definition of order specifiers that v, x and y are distinct and therefore $x \neq y$. Also $(v, y, x) \notin \Omega$ (see Lemma 1.1), and therefore the relation $y \prec_{v} x$ does not hold for x and y. Next if x and y satisfy x = y then it follows that $(v, y, x) \notin \Omega$ and therefore the relation $y \prec_{v} x$ does not hold for x and y. We have thus shown that if the first of the three relations $x \prec_{\nu} y$, x = y and $y \prec_{\nu} x$ holds for x and y then neither the second nor the third hold for x and y, and also that if the second of these relations holds for x and y then the third does not hold for x and y. Therefore at most one of these three relations holds for x and y. This proves (i).

Definition

Let X be a set, and let Ω be an order specifier on X. Then, given distinct elements v and w of X, we define the ray from v through w to be the subset $R_{v,w}$ of X, where

$$R_{v,w} = \{x \in X : x = v \text{ or } x = w \text{ or } (v, x, w) \in \Omega \}.$$