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PREFACE.

T'wo thousand years have now rolled away since Euclid’s
Elements were first used in the school of Alexandria, and to
this day they continue to be esteemed the best introduction
to mathematical science. They have been adopted as the basis
of geometrical instruction in every part of the globe to which
the light of science has penetrated; and, while in every other
department of human knowledge there have been almost as
many manuals as schools, in this, and in this only, one work
has, by common consent, been adopted as an universal standard.
Euclid has been translated into the languages of England,
France, Germany, Spain, Italy, Holland, Sweden, Denmark,
Russia, Egypt, Turkey, Arabia, Persia, and China. This un-
precedented unanimity in the adoption of one work as the basis
of instruction has not arisen from the absence of other treatises
on the same subject. Some of the most eminent mathematicians
have written, either original Treatises, or modifications and sup-
posed improvements of the Elements; but still the « Elements”
themselves have been invariably preferred. To what can a
preference so universal be attributed, if not to that singular
perspicuity of arrangement, and that rigorous exactitude of
demonstration, in which this celebrated Treatise has never been
surpassed ?  ¢To this,’ says Playfair, ¢ is added every association
which can render a work venerable. It is the production of a
- man distinguished among the first instructors of the human race.
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It was almost the first ray of light which pervaded the darkness
of the middle ages ; and men still view with gratitude and affec-
tion the torch which rekindled the sacred fire, when it was
nearly extinguished upon earwn.’

It must not, however, be concealed, that, excellent as this
Work is, many, whose opinions are entitled to respect, conceive
that it needs much improvement; and some even think that it
might be superseded with advantage by other Treatises. The
Elements, as Dr. Robert Simson left them, are certainly inade-
quate to the purposes of instruction, in the present improved
state of science. 'The demonstrations are characterised by pro-
lixity, and are not always expressed in the most happy phrase-
ology. The formalities and paraphernalia of rigour are so
ostentatiously put forward, as almost to hide the reality. Endless
and perplexing repetitions, which do not confer greater exact-
itude on the reasoning, render the demonstrations involved and
obscure, and conceal from the view of the student the consecu-
tion of evidence. Independent of this defect, it is to be considered
that the “ Elements” contain only the naked leading truths of
Geometry. Numerous inferences may be drawn, which, though
not necessary as links of the great chain, and therefore sub-
ordinate in importance, are still useful, not only as exercises for
the mind, but in many of the most striking physical applications.
These, however, are wholly omitted by Simson, and not supplied
by Playfair.

When I undertook to prepare an elementary geometrical
text-book for students in, and preparing for, the University of
London, I wished to render it useful in places of education
generally. In this undertaking, an alternative was presented,
either to produce an original Treatise on Geometry, or to
modify Simson’s Euclid, so as to supply all that was necessary,
and to remove all that was superfluous; to elucidate what was
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obscure, and to abridge what was prolix, to retain geometrical
rigour and real exactitude, but to reject the obtrusive and verbose
display of them. The consciousness of inability to originate any
work, which would bear even a remote comparison with that of
the ancient Greek Geometer, would have been reason sufficient
to decide upon the part I should take, were there no other con-
siderations to direct my choice. Other considerations, however,
there were, and some which seemed of great weight. The
question was not, whether an elementary Treatise might not be
framed superior to the “ Elements,” as given by Simson and
Playfair ; but whether an original Treatise could be produced
superior to what these Elements would become, when all the
improvements of which they were susceptible had been made,
and when all that was found deficient had been supplied. Let
us for the present admit, that a new work were written on a
plan different from that of Euclid, constructed upon different
principles, built upon different data, and exhibiting the leading
results of geometrical science of a different order. Let us wave
also the great improbability, that even an experienced instructor
should execute a work superior to that which has been stamped
with the approbation of ages, and consecrated, as it were, by the
collected suffrage of the whole civilised globe. Still it may be
questioned whether, on the whole, any real advantage would be
gained. It is certain that all would not agree in their deci-
sion on the merits of such a work. Euclid once superseded,
every teacher would esteem his own work the best, and every
school would have its own class-book. All that rigour and
exactitude, which have so long excited the admiration of men
of science, would be at an end. These very words would lose
all definite meaning. Every school would have a different
standard; matter of assumption in one, being matter of demon-
stration in others; until, at length, GEOMETRY, in the ancient
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sense of the word, would be altogether frittered away, or be
only considered as a particular application of Arithmetic and
Algebra.

Independently of the disadvantages which would attend the
introduction of a great number of different geometrical class-
books into the schools, nearly all of which must be expected
to be of a very inferior order, inconveniences of another kind
would, I conceive, be produced by allowing Euclid’s Elements
to fall into disuse. Hitherto Euclid has been an universal
standard of geometrical science. His arrangement of prin-
ciples is registered in the memory of every mathematician of
the present times, and is referred to in the works of every
mathematician of past ages. The Books of Euclid, and their
proposgitions, are as familiar to the minds of all who have been
engaged in scientific pursuits, as the letters of the alphabet.
The same species of inconvenience, differing only in degree,
would arise from disturbing this universal arrangement of geo-
metrical principles, as would be produced by changing the names
and power of the letters. It is very probable, nay, it is eertain,
that a better classification of simple sounds and articulations
could be found than the commonly received vowels and con-
sonants; yet who would advocate a change?

In expressing my sentiments respecting Euclid’s Work, as
compared with others which have been proposed to supersede
ity I may perhaps be censured for an undue degree of confi-
dence in a case where some respectable opinions are opposed
to mine. Were I not supported in the most unqualified degree
by authorities ancient and modern, the force of which seems
almost irresistible, I should feel justly obnoxious to this charge.
The objections which have been from time to time brought
against this work, and which are still sometimes repeated,
may be reduced to two classes; those against the arrange-
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ment, and those against the reasoning. My business is not
to show that Euclid is perfect either in the one respect or
the other, but to show that no other elementary writer has
approached so near to perfection in both. It is important to
observe, that validity of reasoning and vigour of demonstration
are objects which a geometer should never lose sight of, and
to which arrangement and every other consideration must be
subordinate. LEIBNITZ, an authority of great weight on such
a subject, and not the less so as being one of the fathers of
modern analysis, has declared that the geometers who have
disapproved of Euclid’s arrangement have vainly attempted to
change it without weakening the force of the demonstrations.
Their unavailing attempts he considers to be the strongest
proof of the difficulty of substituting, for the chain formed by
the ancient geometer, any other equally strong and valid.*
Wocr also acknowledges how futile it is to attempt to arrange
geometrical truths in a natural or absolutely methodical order,
without either taking for granted what has not been previously
established, or relaxing in a great degree the rigour of demon-
stration.t One of the favourite arrangements of those who
object to that of Euclid, has consisted in establishing all the -
properties of straight lines considered without reference to their
length, intersecting obliquely and at right angles, as well as the
properties of parallel lines, before the more complex magnitudes
called triangles are considered. In attempting this, it is curious
to observe the difficulties into which these authors fall, and the
expedients to which they are compelled to resort. Some find
1t necessary to prove that every point on a perpendicular to a
given right line is equally distant from two points taken on
the given right line at equal distances from the point where the
perpendicular meets it. ¢ They imagine,’ says Montucla, ¢ that
they prove this by saying that the perpendicular does not lean

® Montucla, tom. i. p. 205. 4 Elemecnt. Math. tom. v. ¢, 3. art. 8.
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more to one side than the other’ Again, to prove that equal
chords of a circle subtend equal arcs, they say that the uni-
formity of the circle produces this effect: that two circles
intersect in no more than two points, and that a perpendicular
is the shortest distance of a point from a right line, are pro-
positions which they dispose of very summarily, by appealing
to the evidence of the senses. They prefer an imperfect demon-
stration, or no demonstration at all, to any infringement of the
order which they have assumed.

¢ There is a kind of puerility ir this affectation of not men-
tioning a particular modification of magnitude, — triangles, for
example,—until we have first treated of lines and angles; for if
any degree of geometrical rigour be required, as many and as
long demonstrations are necessary as if we had at once com-
menced with triangles, which, though more complex modi-
fications of magnitude, are still so simple that the student does
not require to be led by degrees to them. Some have even
gone so far as to think that this affectation of a natural and ab-
solutely methodical order contracts the mind, by habituating it
to a process of investigation contrary to that of discovery.’®

The mathematicians who have attempted to improve the

reasoning of Euclid, have not been more successful than those.

who have tried to reform his arrangement. Of the various
objections which have been brought against Euclid’s reasoning,
two only are worthy of notice; viz. those respecting the twelfth
axiom of the first book, which is sometimes called Euclid’s
Postulate, and those which relate to his doctrine of proportion.
On the former I have enlarged so fully in Appendix II. that
little remains to be said here. I have there shown that what
is really assumed by Euclid is, that ¢two right lines which
diverge from the same point cannot be both parallel to the same
right line;’ or that ¢ more than one parallel cannot be drawn

* Montucla, p. 206
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through a given point to a given right line” The geometers
who have attempted to improve this theory, have all either
committed illogicisms, or assumed theorems less evident than
that which has just been expressed, and which seems to me as
evident as several of the other axioms. In the Appendix, I
have stated.at length some of the theories of parallels which
have been proposed to supersede that of Euclid, and have
shown their defects. Numerous have been the attempts to de-
monstrate the twelfth axiom by the aid of the first twenty-eight
propositions.  Ptolemy, Proclus, Nasireddin, Clavius, Wallis,
Saccheri, and a cloud of editors and commentators of former
and later times, have assailed the problem without success.

The second source of objection, on the score of reasoning, is
the definition of four proportional magnitudes prefixed to the
fifth book. By this definition, four magnitudes will be pro-
portional, if there be any equimultiples of the first and third,
which are respectively equal to equimultiples of the second and
fourth. This is the common popular notion of proportion.
But it is necessary to render the term more general in its
geometrical application. Four magnitudes are frequently so
related, that no equimultiples of the first and third are equal
respectively to other equimultiples of the second and fourth,
but yet have all the other properties of proportional quantities,
and therefore it is necessary that they should be brought under
the same definition. Euclid adapted his definition to embrace
these, by declaring four magnitudes to be proportional when
every pair of equimultiples of the first and third were both
greater, equal to, or less than equimultiples of the second and
fourth. I agree with Playfair, in thinking that no other de-
finition has ever been given from which the properties of pro-
portionals can be deduced by reasonings, which, at the same
time that they are perfectly rigorous, are also simple and direct.
Were we content with a definition which would only include
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commensurate magnitudes, no difficulty would remain. But such
a definition would be useless : for in almost the first instance in
which it should be applied, the reasoning would either be
inconclusive, or the result would not be sufficiently general.

In the second and fifth books, in addition to Euclid’s de-
monstrations, I have in most instances given others, which are
rendered more clear and concise by the use of a few of the
symbols of algebra, the signification of which is fully explained,
and which the student will find no difficulty in comprehending.
The nature of the reasoning, however, is essentially the same,
the language alone in which it is expressed being different.

The commentary and deductions are distinguished from the
text of the Elements by being printed in a smaller character;
and those articles in each book which are marked thus *_*, the
student is advised to omit until the second reading.

No part of Euclid’s Elements has attained the same cele-
brity, or been so universally studied, as the first six books.
The seventh, eighth, and ninth books treat of the Theory of
Numbers, and the tenth is devoted to the Theory of Incom-
mensurable Quantities. Instead of the eleventh and twelfth
books, I have added a Treatise on Solid Geometry, more suited
to the present state of mathematical knowledge. For much of
the materials of this treatise I am indebted to Legendre’s
Geometry.

Appendix L contains a short Essay on the Ancient Geo-
metrical Analysis, which may be read with advantage after the
sixth book. The second Appendix contains an account of the
Theories of Parallels.

I have directed that the cuts of this work shall be published
separately, in a small size, for the convenience of students who
are taught in classes where the use of the book itself is not
permitted.

London, May 1828.
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TO

THE FOURTH EDITION,

Sixce the publication of the first edition of this Work, various
additions and corrections have been made in it; the demonstra-
tions of the solid geometry have been improved ; the symbols of
arithmetic and algebra have been introduced, wherever they
have been found by experience to facilitate the progress of the
. student. Teachers will find the short view of the Theory of
Transversals, which has been added to the Appendix, an excel-
lent exercise for the more advanced class of students ; independ-
ently of which it is of extensive usefulness in various practical
applications of geometry.

Through the kind attention of professors and teachers who
have used this work in schools and the universities, the Editor
has been enabled to discover and correct a vast number of small
errors, which arose in the process of printing, and which could
scarcely have been detected by any other means. The present
edition is free from these errors; and, as the work has been
stereotvped, it 1s hoped that it will be found in future to be
more than usually correct. If, however, any minute errors may
have escaped attention, the Editor will feel obliged to any teacher
or student who will communicate them to the publisher.
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The following observations, supplied by Professor De Morgan,
on the manner of studying Euclid, are recommended to the
attention of the student.

“In order clearly to perceive the connection which exists
between the parts of a proposition, it is necessary to separate
those sentences which contain independent assertions. This
must be done, in fact, whatever be the method which the student
pursues, before he can be said to have a clear conception of the
proposition; but as the shortest way to accustom his mind to
the separation of a demonstration into its constituent parts, I
would recommend him to commit to writing the propositions of
the first three Books, at least, taking care to place in separate
paragraphs the different assertions of which each demonstration
consists, with some reference to the manner in which each
assertion is established.

% To render this task more easy, I have subjoined an example,
taken from the celebrated 47th proposition of the First Book,
which he will here find treated in the manner in which it is
desirable he should write each proposition. The number placed
before each paragraph is intended for reference ; and the student
will see that to every assertion is attached the number of each
previous one, by means of which it is established.

« Before the demonstration the student should write down
briefly the enunciations of all the previous Theorems by means
of which the one in hand is established; to these he may attach
letters, by means of which he may refer to them in that part of
the demonstration in which they become necessary. 'The whole
process is as follows: —



PREFACE. Xix

Paor. XLVIL. Turosam.

a If two triangles bave two sides, and the included angle respectively equal, the

two triangles are equal.

b If a parallelogram and a triangle be upon the same base, and between the same
parallels, the parallelogram is double of the triangle.

Propositi

Hypothesis. 1.

Construction. 2.

R

Demonstration. S. 4.
1 8. 9
1 S. 4
12.| 10. 11. ¢
18. 3.
14. 13. &
15. 5.
16. 15. 6

17. | 12, 14. 16.

19. 17. 18.

In a right-angled triangle the squarc of the hypo-

tez::e is equal to the sum of the squares of the

si

A B C is a triangle, right-
angled at B;

Upon A B desctibe the
square A X ;

Upon B C describe the
squarc B I;

Upon A C describe the
squarc A F;

Draw B E parallel to C F
orAD;

Join B and F;

Join A and I;

The angle I CBis equalto ACF;

Add the angle B C A to both ;

IC Aisequalto BCF;

Both I Cand A C are respectively equal to BC
and C F;

The triangles A C I and B C F are equal;

A Z is parallel 10 C I ;

The parallelogram C Z is double of the triangle
CAI;

BEis parnllel toCF;

The parallelogmm C E is double of the triangle
CB

The ﬁgures C Z and C E are equal in area;

In like manner it dan be shown that the ﬁgum
A X and A E are equal in area;

Therefore the figure A F is equal to the sum of
CZand A X. Q. E. D.

« This method may be considerably shortened by the use of
some algebraical characters; but here the student must be
cautious, as he may be very easily led into false, or at least
unestablished, analogies, by the indiscriminate use of these sym-
bols. For example: equal figures in geometry are those which
can be made to coincide entirely; in algebraical language, two
figures would be called equal which consist of the same number
of square feet, though they could not be made to coincide.
Therefore, if the student uses the symbolical notation, he must
remember to express by different signs these different meanings
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of the word ‘equality’ The word square has also different
meanings in geometry and algebra; and, though custom has
authorised the use of the word in two different senses, it is
important that the beginner should attach one meaning only to
the sign.” ’

In the successive Editions through which this work has passed
I have been much indebted to Mr. G. K. Gillespie, private
teacher of the Classics and Mathematics, for various correctipns
which he has pointed out, and for several useful suggestions.
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"ELEMENTS OF EUCLID.

BOOK I .7 . ihi'wii

DEFINITIONS.

(€)) I. A point is that which has no parts. i
() II. A line is length without breadth. ’
(3) III. The extremities of a line are points.

4) 1IV. A right line is that which lies evenly \

between its extremities,

(5) V. A surfaceis that which has length and
breadth only.

(6) VI. The extremities of a surface are lines.

(7) VIL A plane surface is that which lies evenly between its
extremities,

(8) These definitions require some elucidation. The ohject of
Geometry * is the properties of figure, and figure is defined to be the
relation which subsists between the boundaries of space. Space or
magnitude is of three kinds, line, surface, and soltd. It may be here
observed, once for all, that the terms used in geometrical science, are
not designed to signify any real, material or physical existences. They
signify certain abstracted notions or conceptions of the mind, derived,
without doubt, originally from material objects by the senses, but
subsequently corrected, modified, and, as it were, purified by the opera-
tions of the understanding. Thus, it is certain, that nothing exactly
conformable to the geometrical notion of aright line ever existed;
. no edge, which the finest tool of an artist can construct, is so com-
pletely free from inequalities as to entitle it to be considered as a
mathematical right line. Nevertheless, the first notion of such an
edge being obtained by the senses, the process of mind by which we
reject the inequalities incident upon the nicest mechanical produc-
tion, and substitute for them, mentally, that perfect evenness which
constitutes the essence of a right line, is by no means difficult. In

* From g, terra; and pirem, mensura,
B
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like manner, if a pen be drawn over this paper an effect is produced,
which, in common language, would be called a line, right or curved, as
the case may be. This, however, cannot, in the strict geometrical
sense of the term, be a line at all, since it has breadth as well as
length; for if it had not it could not be made evident to the senses
But having first obtained this rude and incorrect notion of a line, we
can imagine that, while its length remain unaltered, it may be in-
.. finitely attenuated until it ceases altogether to have breadth, and thus
-mre obtain'the exact-conception of a mathematical line.

* “The- differerit modes of magnitude are ideas so extremely uncom-

¢« poprded that. their pames do not admit of definition properly so called

¢ atal.® | We may, however, assist the student to form correct notions
" of the'true meuning’ cf these terms, although we may not give rigorous
logical definitions of them.

A notion being obtained by the senses of the smallest magnitude
distinctly perceptible, this is called a physical point. If this point
were indivisible even in idea, it would be strictly what is called a
mathematical point. But this is not the case. No material substance,
can assume a magnitude so small that a smaller may not be imagined.
The mind, however, having obtained the notion of an extremely minute
magnitude, may proceed without limit in a mental diminution of it;
and that state at which it would arrive if this diminution were in-
finitely continued, is a mathematical point.t

The introduction of the idea of motion into geometry has been ob-
jected to as being foreign to that science. Nevertheless, it seems
very doubtful whether we may not derive from motion the most dis-
tinct ideas of the modes of magnitude. If a mathematical point be
conceived to move in space, and to mark its course by atrace or track,
that trace or track will be a mathematical line. As the moving point
has no magnitude, so it is evident that its track can have no breadth.
or thickness. The places of the point at the beginning and end of its
motion, are the extremities of the line, which are therefore points.
The third of the preceding definitions is not properly a definition, but
is a proposition, the truth of which may be inferred from the first two
definitions.

As a mathematical line may be conceived to proceed from the motion
of a mathematical point, so a physical line may be conceived to be
generated by the motion of a physical point.

In the same manner as the motion of a point determines the idea
of a line, the motion of a line may give the idea of a surface. Ifa
mathematical line be conceived to move, and to leave in the space
through which it passes a trace or track, this trace or track will be a
surface ; and since the line has no breadth, the surface can have no
thickness. The initial and final positions of the moving line are two
boundaries or extremities of the surface, and the other extremities
are the lines traced by the extreme points of the line whose motion
preduced the surface.

®* The name of a simple idea cannot be defined, because the general terms which
compose a definition signifying several different idess can by no means express an idea
which has no manner of composition.— Locxkx. )

+ The Pythagorean definition of a point, is * a monad having position.’
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The sixth definition is therefore liable to the same objection as the
third. It is not properly a definition, but a principle, the truth of
which may be derived from the fifth and preceding definitions.

It is scarcely necessary to observe, that the validity of the objec-
tion against introducing motion as a principle into the Elements of
Geometry, is not here disputed, nor is it introduced as such. The
preceding observations are designed merely as illustrations to assist
the student in forming correct notions of the true mathematical sig-
nifications of the different modes of magnitude. With the same view
we shall continue to refer to the same mechanical idea of motion, and
desire our observations always to be understood in the same sense.

The fourth definition, that of a right or straight line, is objection-
able, as being unintelligible ; and the same may be said of the defi-
nition (seventh) of a plane surface. Those who do not know
what the words ¢ straight line’ and ¢ plane surface’ mean, will never
collect their meaning from these definitions ; and to those who do
know the meaning of those terms, definitions are useless. The
meaning of the terms ‘right line’ and * plane surfuce’ are only to
be made known by an appeal to experience, and the evidence of
the senses, assisted, as was before observed, by the power of the
mind called abstraction. If a perfectly flexible string be pulled by
its extremities in opposite directions, it will assume, between the
two points-of tension, a certain position. Were we to speak without
the rigorous exactitude of geometry, we should say that it formed a
straight line. But upon consideration, it is plain that the string has
weight, and that its weight produces a flexure in it, the convexity of
which will be turned towards the surface of the earth. If we conceive
the weight of the string to be extremely small, that flexure will be
proportionably small, and if, by the process of abstraction, we conceive
the string to have no weight, the flexure will altogether disappear, and
the string will be accurately a straight line.

A straight line is also sometimes defined to be the shortest way
between two points.” This is the definition given by Archimedes, and
after him by Legendre in his Geometry ; but Euclid considers this as
a property to be proved. In this sense, a straight line may be con-
ceived to be that which is traced by one point moving towards another,
which is quiescent.

Plato defines a straight line to be that whose extremity hides all
the rest, the eye being placed in the continuation of the line.

Probably the best definition of a plane surface is, that it is such a
surface that the right line, which joins every two points which can be
assumed upon it, lies entirely in the surface. This definition, ori-
ginally given by Hero, is substituted for Euclid’s by R. Simson and
Legendre.

Plato defined a plane surface to be one whose extremities hide all
the intermediate parts, the eye being placed in its continuation.

It has been alsc defined as ¢ the smallest surface which can be
contained between given extremities.’

Every line which is not a straight line, or composed of straight
lines, is called a curve. Every surface which is not a plane, or
composed of planes, is called a curved surface. ’

B 2
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(9) VIIL A plane angle is the inclination of two lines to one
another, in a plane, which meet together, but are
not in the same direction.

This definition, which is designed to include the inclination of
curves as well as right lines, is omitted in some editions of the Ele-
ments, as being useless,

(10) IX. A plane rectilinear angle is the inclination
of two right lines to one another, which :
meet together, but are not in the same
right line.

(11)  X. When a right line standing on another I
right line makes the adjacent angles
equal, each of these angles is called g l
right angle, and each of these lines is ————
said to be perpendicular to the other.

(12) XI. An obtuse angle is an angle greater /
than a right angle. —

13) XII. An acute angle is an angle less than a
19 right angle. 5 N

(14) Angles might not improperly be considered as a fourth
species of magnitude. Angular magnitude evidently consists of
parts, and must therefore be admitted to be a species of quantity.
The student must not suppose that the magnitude of an angle is
affected by the length of the right lines which include it, and of
whose mttual divergence it is the measure. These lines, which are
called the sides or the legs of the angle, are supposed to be of indefi-
nite length. To illustrate the nature of angular magnitude, we shall
again recur to motion. Let C be supposed to be the extremity of a
right line C A, extending indefinitely in the

direction C A. Through the same point C, 3

let another indefinite right line C A, be con- 2

ceived to be drawn ; and suppose this right
line to revolve in the same plane round its
extremity C, it being supposed at the begin- ? lc * R
ning of its motion to coincide with C A. |

As it revolves from C A, to CA,, CA,

C A,, &c., its divergence from C A, or, what is the same, the angle

it makes with C A, continually increases. The line continuing to

revolve, and successively assuming the positions C A,, C A,, C A,,
C A, &c., will at length coincide with the continuation C A, of
the line C A, on the opposite side of the point C. When it assumes
this position, it is considered by Euclid to have no inclination to C A,

e ——— ———————
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and to form no angle with it. Nevertheless, when the student ad-
vances further in mathematical science, he will find, that not only the
line C A, is considered to form an angle with C A,, but even when the
revolving line continues its motion past C A;, as for instance, to C A,,
it is still considered as forming an angle with C A,; and this angle is
measured in the direction A,, A;, A,, &c. to A,.

The point where the sides of an angle meet is called the vertex
of the angle.

Superposition is the process by which one magnitude may be con-
ceived to be placed upon another, so as exactly to cover it, or so that
every part of each shall exactly coincide with every part of the other.

It is evident that any magnitudes which admit of superposition must
be equal, or rather this may be considered as the definition of equality.
Two angles are therefore equal when they admit of superposition.
This may be determined thus; ifthe angles ABC o
and A’B’' C’ are those whose equality is to be ‘< e
ascertained, let the vertex B’ be conceived to be
placed upon the vertex B, and the side B’ A’ on
the side B A, and let the remaining side B’ C’ be
placed at the same side of B A with B C. If under
these circumstances B’ C’lie upon, or coincide with B C, the angles
admit of superposition, and are equal, but otherwise not. If the side
B’ C' fall between B C and B A, the angle B’ is said to be less than
the angle B, and if the side B C fall between B’ C’ and B A, the angle
B’ is said to be greater than B.

As soon as the revolving line assumes such a position C A, that the
angle A C A; is equal to the angle A; C A;, each of those angles
is called a right angle.

An augle is sometimes expressed simply by the letter placed at its
vertex, as we have done in comparing the angles B and B'. But when
the same point, as C, is the vertex of more angles than one, it is neces-
sary to use the three letters expressing the sides as AC A, A,C A,
the letter at the vertex being always placed in the middle.

When a line is extended, prolonged, or has its length increased, it
is said to be produced, and the increase of length which it receives is
called its produced part, or its production. Thus,
if the right line AB be prolongedto B/ ijtis o ® %
said to be produced through the extremity B,
and B B' is called its production or produced part.

Two lines which meet and cross each other are said to infersect, and
the point or points where they meet are called points of inlersection. It
is assumed as a self-evident truth, that two right lines can only inter-
sect in one point. Curves, however, may intersect each other, or right
lines, in several points.

Two right lines which intersect, or whose productions intersect, are
said to be inclined to each other, and their inchination is measured by
the angle which they include. The angle included by two right lines
is sometimes called the angle under those lines; and right lines which
include equal angles are said to be equally inclined to each other.

It may be observed, that in general when right lines or plane sur-
faces are spoken of in Geometry, they are considered as extended or
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d indefinitely. Whenever a determiunate portion of a right
ine is spoken of, it is generally called a finite right line. When a
right line is said to be given, it is generally meant that its position or
direction on a plane is given. But when a_finite right line is given,
it is understood, that not only its position, but its length is given.
These distinctions are not always rigorously observed, but it never
happens that any difficulty arises, as the meaning of the words is
always sufficiently plain from the context. .
When the direction alone of a line is given, the line is sometimes
said to be given in position, and when the length alone is given, it is
said to be given in magnitude.
By the inclination of two finite right lines which do not meet, is
meant the angle which would be contained under these lines if pro-
duced until they intersect.

(15) XIII. A t;lerm or boundary is the extremity of any
ing.

This definition might be omitted as useless,

(16) XIV. A figure is a surface, inclosed on all sides by a
line or lines. '

The entire length of the line or lines, which inclose a figure, is called
its perimeter.

A figure whose surface is a plane is called a plane figure. The
first six books of the Elements treat of plane figures only.

(17)  XV. A circle is a plane figure, bounded
by one continued line, called its
circumference or periphery ; and
having & certain point within it,
from which all right lines drawn
to its circumference are equal.

If a right line of a given length revolve in the same plane round
one of its extremities as a fixed point, the other extremity will de-
scribe the circumference of a circle, of which the centre is the fixed
extremity.

(18) XVI. This point (from which the equal lines are
drawn) is called the centre of the circle.

(19) A line drawn from the centre of a circle to its circumference
is called a radius.

(20) XVIL. A diameter of a circle is a right line drawn
through the centre, terminated both ways in
the circumference.

(21) XVIII. A semicircle is the figure contained by the dia-
meter, and the part of the circle cut off by
the diameter.
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(22) ' From the definition of a circle, it follows immediately, that
a line drawn from the centre to any point within the circle is less than
the radius ; and a line from the centre to any point without the circle
is greater than the radius. Also, every point, whose distance from
the centre is less than the radius, must be within the circle; every
point whose distance from the centre is equal to the radius must be
on the circle; and every paint, whose distance from the centre is
grealer than the radius, is without the circle.

The word ¢ semicircle,” in Def. XVIII., assumes, that a diameter
divides the circle into two equal parts. This may be easily proved
by supposing the two parts, into which the circle is thus divided,
placed one upon the other, so that they shall lie at the same side of
their common diameter: then if the arcs of the circle which bound
them do not coincide, let a radius be supposed to be drawn, intersect-
iog them. Thus, the radius of the one will be a part of the radius of
the other; and therefore, two radii of the same circle are unequal,
which is contrary to the definition of a circle. (17.)

(23) XIX. A s.qﬂ'nent of a circle isa fi%utrf contained by a
of the

nﬁ t line, and the part circumference

which it cuts off.

(24) XX. Afigure contained by right lines only, is called a
v rectilinear figure.

The lines which include the figure are called its sides.

(25) XXI. A triangle is a rectilinear figure included by
- three sides.

A triangle is the most simple of all rectilinear figures, since less than
three right lines cannot form any figure. All other rectilinear figures
may be resolved into triangles by drawing right lines from any point
within them to their several vertices. The triangle is therefore, in
effect, the element of all rectilinear figures ; and on its properties, the
properties of all other rectilinear figures depend. .Accordingly, the
greater part of the first book is devoted to the development of thée
properties of this figure.

(26) XXII. A quadrilateral figure is one c
' which is bounded by four sides. » '
The right lines, A C, BD, con- o

necting the vertices of the 4

opposite angles of a quadrilateral figure, are
called its diagonals. '
(27)  XXIIL A polygon is a rectilinear figure, bounded by
. more than four sides.
Polygons are called pentagons, hexagons, heptagons, &c., according

as they are bounded by five, six, seven, or more sides. A line joining
the vertices of any two angles which are not adjacent is called @

diagonal of the polygon.
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(28)© XXIV. A triangle, whose three sides are
equal, is said to be equilateral.

In general, all rectilinear figures whose sides are equal,
may be said to be equilateral.

Two rectilinear figures, whose sides are respectively equal each to
each, are said to be mutually equilateral. ‘Thus, if two triangles have
each sides of three, four, and five feet in length, they are mutually
equilateral, although neither of them is an equilateral triangle.

In the same way a rectilinear figure having all its angles equal, is
said to be egquiangular, and two rectilinear figures whose several
angles are equal each to each, are said to be mutually equiangular.

(29) XXYV. A triangle which has only two sides
equal is called an isosceles triangle.

The equal sides are” generally called the sides, to distinguish them
from the third side, which is called the base.

(30)  XXVI. A scalene triangle is one which has no two
: sides equal.

31 XXVII. A right-angled triangle is that which
@h ll:fsha right u.ngle.gl 7

That side of a right-angled triangle which is opposite to the right
angle is called the Aypotenuse.

(32) XXVIIL. An obtuse-angled triangle is that
which has an obtuse angle.

(33) XXIX. An acute-angled triangle is that which
has three acute angles.

It will appear hereafter, that a triangle cannot have more than one
angle right or obtuse, but may have all its angles acute.

34) XXX. An equilateral quadrilateral fi
¢ is called a lozenge. gure

(85) XXXI. An equiangular lozenge is called a | |

square. |

We have ventured to change the definition of a square as given in
the text. A lozenge, called by Euclid a rhombus, when equiangular,
must have all its angles right, as will appear hereafter. Euclid’s de-
finition, which is ‘a lozenge all whose angles are right,’ therefore,
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contains more than sufficient for a definition, inasmuch as, had the
angles been merely defined to be equal, they might be proved to be
right. To effect this change in the definition of a square, we have
transposed the order of the last two definitions, See (158).

(35)  XXXII. An oblong is a quadrilateral, whose
angles are all right, but whose sides
are not equal.

This term is not used in the Elements, and therefore the definition
might have been omitted. The same figure is defined in the second
book, and called a rectangle. It would appear that this circumstance
of defining the same figure twice must be an oversight.

(36) XXXIII. A rhomboid is a quadrilateral,
whose opposite sides are equal.

This definition and the term rkomboid are superseded by the term
parallelogram, which is a quadrilateral, whose opposite sides are
parallel. It will be proved hereafter, that if the opposite sides of a
quadrilateral be equal, it must be a parallelogram. Hence, a distinct
denomination for such a figure is useless.

37 XXXIV. All other quadrilateral figures are called

trapeziums.

As quadrilateral figure is a sufficiently concise and distinct denomi-
nation, we shall restrict the application of the term frapezium to
those quadrilaterals which have two sides parallel.

(38) XXXV, Parallel right lines are such as
are in the same plane, and ————
“which, being produced continually in both
directions, would never meet.

It should be observed, that the circumstance of two right lines,
which are produced indefinitely, never meeting, is not sufficient to
establish their parallelism. For two right lines which are not in
the same plane can never meet, and yet are not parallel. Two
things are indispensably necessary to establish the parallelism of two
right lines, 1°, that they be in the same plane, and 2°,6 that when in-
definitely produced, they never meet. As in the first six books of the
Elements all the lines which are considered are supposed to be in
the same plane, it will be only necessary to attend to the latter crite-
rion of parallelism.

POSTULATES.

(39) I Let it be granted that a right line may be drawn
from any one point to any other point.
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(40) II. Let it be granted that a finite right line may be.
produced to any length in a right line.

(41) III. Let it be granted that a circle may be described
with any centre at any distance from that centre.

(42) The object of the postulates is to declare, that the only
instruments, the use of which is permitted in Geometry, are the rule
and compass. The rule is an instrument which is used to direct the
pen or pencil in drawing a right line; but it should be observed, that
the geometrical rule is not supposed to be divided or graduated, and,
consequently, it does not enable us to draw a right line of any pro-
posed length. Neither is it permitted to place any permanent mark
or marks on any part of the rule, or e should be able by it to solve
the second proposition of the first book, which is to draw from a given
point a right line equal to another given right line. This might be
done by placing the rule on the given right line, and marking its
extremities on the rule, then placing the mark corresponding to one
extremity at the given point, and drawing the pen along the rule to
the second mark. This, however, is not intended to be granted by the
postulates.

The third postulate concedes the use of the compass, which is an
instrument composed of two straight and equal legs united at one
extremity by a joint, so constructed that the legs can be opened or
closed so as to form any proposed angle. The other extremities are
points, and when the legs have been opened to any degree of diver-
gence, the extremity of one of them being fixed at a point, and the
extremity of the other being moved around it in the same plane will
describe a circle, since the distance between the points is supposed to
remain unchanged. The fixed point is the centre; and the distance
between the points, the radius of the circle.

It is not intended to be conceded by the third postulate that a circle
can be described round a given centre with a radius of a given length ;
in other words, it is not granted that the legs of the compass can be
opened until the distance between their points shall equal a given
line. )

AXIOMS.
43) I. Magnitudes which are equal to the same are equal
to each other. .
(44) 1. If equals be added to equals the sums will be

equal.

(45) III. If equals be taken away from equals the re-
mainders will be equal.

(46) 1V. If equals be added to unequals the sums will be
unequal.
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(47) V. If equals be taken away from unequals the re-

mainders will be unequal.

(48) VL The doubles of the same or equal magnitudes are
equal.

(49) VII. The halves of the same or equal magnitudes are
equal.

(50) VIII. Magnitudes which coincide with one another, or
exactly fill the same space, are equal.

(51) IX. The whole is greater than its part.
(52) X. Two right lines cannot include a space.
(563) XI. Allright angles are equal.

54) XII. If two nght lines (AB, CD) meet a third right

(%4 line (KgC) 80 aas to make the e
two interior angles (B A C and Al B3
D CA) on the same side less
than two right angles, these two
right lines will meet if they be
Froduced'on that side on which the angles are
ess than two right angles.

[ D

{55) The geometrical axioms are certain general propositions,
the truth of which is taken to be self-evident, and incapable of
being established by demonstration. According to the spirit of this
science, the number of axioms should be as limited as possible. A pro-
- position, however self-evident, has no title to be taken as an axiom, if
its truth can be deduced from axioms already admitted. We have a
remarkable instance of the rigid adherence to this principle in the
twentieth proposition of the first book, where it is proved that ¢ two
sides of a triangle taken together are greater than the third;’ a pro-
position which is quite as self-evident as any of the received axioms,
and much more self-evident than several of them.

On the other hand, if the truth of a proposition cannot be established
by demonstration, we are compelled to take it as an axiom, even though
it be not self-evident. Such is the case with the twelfth axiom. We
shall postpone our observations on this axiom, however, for the present,
and have to request that the student will omit it until he comes to read
the commentary on the twenty-eighth proposition. See Appendix IL

Two magnitudes are said to be equal when they are capable of
exactly covering one another, or filling the same space. In the most
ordinary practical cases we use this test for.determining equality ; we
apply the two things to be compared one to the other, and imme-
diately infer their equality from their coincidence.

By the aid of this definition of equality we conceive that the second
und third axioms might easily be deduced from the first. We shall
not however pursue the discussion here.
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s, The fourth and fifth axioms are not sufficiently definite. After
the addition or subtraction of equal quantities, unequal quantities con-
tinue to be unequal. But it is also evident, that their difference, that
is, the quantity by which the greater exceeds the less, will be the same
after such addition or subtraction as before it.

The sixth and seventh axioms may very easily be inferred from
the preceding ones.

Tge tenth axiom may be presented under various forms. It is
equivalent to stating, that between any two points only one right line
can be drawn. For if two different right lines could be drawn from
one point to another, they would evidently enclose a space between
them. It is also equivalent to stating, that two right lines being inde-
finitely produced cannot intersect each other in more than one point;
for if they intersected at two points, the parts of the lines between
these points would enclose a space. »

The eleventh axiom admits of demonstration.

Let A B and E F be perpendicular to D C and HG.
Take any equal parts, E H, EG on HG measured
from the point E, and on D C take parts from A

equal to these;éProp. III. BookI.) Let the point ¥
be conceived to be placed upon the point D.
The points G and C must then be in the circum-

ference of a circle described round the centre D, [

with the distance DC or H G as radius. Hence, if the line H G be
conceived to be turned round this centre D, the point G must in some
ﬁ)sition coincide with C. In such a position every point of the line

G must coincide with CD (ax. 10.), and the middle points A and E
must evidently coincide. Let the perpendiculars EF and A B be
conceived to be placed at the same side of DC. They must then
coincide, and therefore the right angle F E G will be equal to the right
angle BAC. For if EF do not coincide with A B, let it take the
position A K. The right angle K AC is equal to KA D (11), and
therefore greater than BA D; but B AD is equal to BA C (11), and
therefore K A C is greater than BAC. But KAC is a part of BAC,
and therefore less than it, which is absurd; and therefore EF must
coincide with A B, and the right angles BAC and FE G are equal.

The postulates may be considered as axioms. The first postulate,
which declares the possibility of one right line joining two given points,
is as much an axiom as the tenth axiom, which declares the impossi-
bility of more than one right line joining them.

In like manner, the second postulate, which grants the power of pro-
ducing a line, may be considered as an axiom, declaring that every
finite straight line may have another placed at its extremity so as to
form with it one continued straight line. In fact, the straight line thus

laced will be its production. This postulate is assumed as an axiom
i the fourteenth proposition of the first book.
(56) Those results which are obtained in geometry by a process
of reasoning are called Pm' Geometrical propositions are of

two species, problems and o
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A problem is a proposition in which something is proposed to be
done; as aline to be drawn under some given conditions, some figure
to be constructed, &c. The solution of the problem consists in show-
ing how the thing required may be done by the aid of the rule and
compass. The demonstration consists in proving that the process
indicated in the solution really attains the required end.

A theorem is a proposition in which the truth of some principle is
asserted. The object of the demonstration is to show how the truth
of the proposed principle may be deduced from the axioms and defi-
nitions or other truths previously and independently established.

A problem is analogous to a postulate, and a theorem to an axiom.

A postulate is a problem, the solution of which is assumed.

An axiom is a theorem, the truth of which is granted without de-
monstration.

In order to effect the demonstration of a proposition, it frequently
happens that other lines must be drawn besides those which are
actually engaged in the enunciation of the proposition itselt. The
drawing of such lines is generally called the construction.

A corollary is an inference deduced immediately from a proposition.

A scholium is a note or observation on a proposition not containing
any inference, or, at least, none of sufficient importance to entitle it to
the name of a corollary.

A lemma i3 a proposition merely introduced for the purpose of
establishing some more important proposition.
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ProrosiTiON 1. ProsLEM.

(57) On a given finite right line (A B) to construct an
equilateral triangle.

Solution.

With the centre A and the radius A B let a circle BC D be
described (41), and with the centre B and

the radius B A let another circle ACE be A
described. From a Eoint of intersection C of D. .
these circles let right lines be drawn to the ‘V

¥

extremities A and B of the given right line
(39). The triangle AC B will be that which

is required.

Demaonstration.

It is evident that the triangle A C B is constructed on the given
right line A B. But it is also equilateral ; for the lines A C and
A B, being radii of the same circle B C D, are equal (17), and
also BC and B A, being radii of the same circle A C'E, are
equal. Hence the lines B C and A C, being equal to the same
line A B, are equal to each other (43). The three sides of
the triangle A B C are therefore equal, and it is an equilateral
triangle (28).

(58) In the solution of this problem it is assumed that the two circles
intersect, inasmuch as the vertex of the equilateral triangle is a point
of intersection. 'This, however, is sufficiently evident if it be considered
that a circle is a continued line which includes space, and that in the
present instance each circle passing through the centre of the other
must have a part of its circumference within that other, and a part
without it, and must therefore intersect it.

It follows from the solution, that as many different equilateral
triangles can be constructed on the same right line as there are points
in which the two circles intersect. It will ‘hereafter be proved that two
circles cannot intersect in more than two points, but for the present
this may be taken for granted.

Since there are but two points of intersection of the circles, there
can be but two equilateral triangles constructed on the same finite
right line, and these are placed on opposite sides of it, their vertices
being at the points C and F.

After having read the first book of the elements, the student will
find no difficulty in proving that the triangles CF E and C DF are
equilateral, These lines are not in the diagram, but may easily be
supplied.
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Prorosition II. ProBLEM.
(59) From a given point (A) todraw a right line equal
to a given finite right line (B C).
Solution.

Iet & right line be drawn from the given point A to either

extremity B of the given finite right line% C (39).

On the line A B let an equilateral triangle A D B be

constructed (I). With the centre B and the radius

B C let a circle be described (41). Let DB be \ o 3 P

roduced to meet the circumference of this circle in "

(40), and with the centre D and the radius D F

let another circle F LK be described. Let the line D A be pro-

duced to meet the circumference of this circle in L. The line

A L is then the required line.

Demonstration.

The lines D L and D F are equal, being radii of the same circle
FL K (17). Also the lines DA and DB are equal, being sides
of the equilateral triangle B D A, Taking the latter from the
former, the remainders A L and BF are equal (4517. ButBF
and B C are equal, being radii of the same circle FCH (17),
and since AL and B C are both equal to B F, they are equal to
each other (43). Hence AL is equal to B C, and is drawn
from the given point A, and therefore solves the problem.

*.* The different positions which the given right line and given
point may have with respect to each other, are apt to occasion such
changes in the diagram as to lead the student into error in the execu-
tion of the construction for the solution of this problem. '

Hence it is necessary that in solving this problem the student
should be guided by certain general directions, which are independent
of any particular arrangement which the several lines concerned in the
solution may assume. If the student is governed by the following
geueral directions, no change which the diagram can undergo will
mislead him.

1° The given point is to be joined with either extremity of the given
right line. (Let us call the extremity with which it is connected, the
connected extremity of the given right line; and the line so connecting
them, the joining line.) ‘ ,

2° The centre of the first circle is the connected eztremity of the
given right line; and its radius, the given right line.

8° The equilateral triangle mav be constructed on either side of the
joining line.

4° The side of the equilateral triangle which' is produced to meet
the circle, is that side which is opposite to the given point, and it
is produced through the centre of the first circle till it meets its cir-
cumference. .
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5° The centre of the second circle is that vertex of the triangle
which is opposite to the joining line, and its radius is made up of that
side of the triangle which is opposite to the given point, and its pro-
duction which is the radius of the first circle. So that the radius of
the second circle is the sum of the side of the triangle and the radius
of the first circle.

6° The side of the equilateral triangle which is produced through
the given point to meet the second circle, is that side which is opposite
to the connected extremity of the given right line, and the production
of this side is the line which solves the problem ; for the sum of this
line and the side of the triangle is the radius of the second circle, but
also the sum of the given right line (which is the radius of the first
circle) and the side of the triangle is equal to the radius of the second
circle. The side of the triangle being taken away the remainders are equal.

As the given point may be joined with either extremity, there may
be two different joining lines, and as the triangle may be constructed
on either side of each of these, there may be four different triangles ;
so the right line and point being given, there are four different con-’
structions by which the problem may be solved.

If the student inquires further, he will perceive that the solution may
be effected also by producing the side of the triangle opposite the
given point, not through the extremity of the right line but through
the vertex of the triangle. The various consequences of this variety
in the construction we leave to the student to trace.

(60) By the second proposition a right line of a given length can be
inflected from a given point P upon any given line A B. A
For from the point P draw a right line of the given

length (II), and with P as centre, and that line as radius, ¢
describe a circle. A line drawn from P to any point C,

where this eircle meets the given line A B, will solve the ¢
problem.

By this proposition the first may be generalized; for an isosceles
triangle may be constructed on a given line as base, and having its
side of a given length. The construction will remain unaltered,
except that the radius of each of the circles will be equal to the length
of the side of the proposed triangle. If this length be not greater
than half the base, the two circles will not intersect, and no triangle
can be constructed, as will appear hereafter.

Prorosition III. ProBLEM,

(61) From the greater (A B), of two given right lines
to cut off a part equal to the less (C).
Solution.

From either extremity A of the greater let a D
right line A D be drawn equal to the less C (II), ]
and with the point A as centre, and the radius A JE
AD let a circle be described (41). The part AE
of the greater cut off by this circle will be equal to o
the less C.
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Demonstration.

. For A E and A D are equal, being radii of the same circle él7);
and C and A D are equal by the construction. Hence A E and
C are equal.

By a similar construction, the less might be produced until it equal
the greater. From an extremity of the less let a line equal to the
greater be drawn, and a circle be described with this line as radius.
Let the less be produced to meet this circle.

Prorosition 1V, TaEOREM.

(62) If twotriangles (B A C and ED F) have two sides
(B A and A C) in the one respectively equal to
two sides (E D and DF) in the other, and the
angles (A and D) included by those sides also
equal; the bases or remaining sides (B C and
EF) will be equal, also the angles (Band C) at
the base of the one will be respectively equal
to those (E and F) at the base of the other
which are opposed to the equal sides (i. e. B to
E and Cto F).

Let the two triangles be conceived to be so placed that the
vertex of one of the equal angles D shall fall . :
upon that of the other .2, that one of the sides A »
D E containing the given equal angles shall /. /}
fall upon the side A B in the other tnangleto / | /
which it is equal, and that the remaining pair * ¢ ® ¥
of equal sides A C and D F shall lie at the same side of those
A B and D E which coingjde.

Since then the vertices A and D coincide, and also the equal
sides A B and D E, the points B and E must coincide. (If
they did not the sides A B and D E would not be equal.) Also,
since the side D E falls on A B, and the sides A C and D F are
at the same side of A B, and the angles A and D are equal, the
side D F must fall upon AC; (for otherwise the angles A and
D would not be equal.) ‘

Since the side D F falls on A C, and they are equal, the ex-
tremity F must fall on C. Since the extremities of the bases B C
and E F coincide, these lines themselves must coincide, for if
they did not they would include a space (52). Hence the sides
B & and E F are equal (50).

Also, since the sides E D and E F coincide respectively with
B A and B C, the angles E and B are equal (50), and for a
similar reason the angles F and C are equal.

c
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Since the three sides of the one triangle coincide respectively
with the three sides of the other, the triangles themselves coincide,
and are therefore equal (50).

In the demonstration of this proposition, the converse of the
eighth axiom (50) is assumed. The axiom states, that ¢ if two mag-
nitudes coincide they must be equal.’” In the proposition it is as-
sumed, that if they be equal they must under certain circamstances
coincide. For when the point D is placed on A, and the side D E on
A B, it is assumed that the point E must fall upon B, because A B
and D E are equal. This may, however, be proved by the combina-
tion of the eighth and ninth axioms; for if the point E did not fall
apon B, but fell either above or below it, we should have either E D
equal to a part of B A, or B A equal to a part of ED. In either case
the ninth axiom would be contradicted, as we should have the whole
equal to its part.

The same principle may be applied in proving that the side DF
will fall upon A C, which is assumed in Euclid’s proof.

In the superposition of the triangles in this proposition, three things
are to be attended to :

1° The vertices of the equal angles are to be placed one on the
other.

2° Two equal sides to be placed one on the other.

3° The other two equal sides are to be placed on the same side of
those which are laid one upon the other.

From this arrangement the coincidence of the triangles is inferred.

It should be observed, that this superposition is not assumed to be
actually effected, for that would require other postulates besides the
three already stated ; but it is sufficient for the validity of the reason-
ing, if it be conceived to be possible that the triangles might be so
placed. By the same principle of superposition, the following
theorem may be easily demonstrated, ¢ Iftwo triangles have two angles
in one respectively equal to two angles in the other, and the sides
lying between those angles also equal, the remaining sides and angles
will be equal, and also the triangles themselves will be equal.” See
prop. xxvi.

This being the first theorem in the Elements, it is necessarily de-
duced exclusively from the axioms, as the first problem must be from
the postulates. Subsequent theorems and problems will be deduced
from those previously established.

ProrositiON V. THEOREM.

(63) The angles (B, C) opposed to the equal sides
(A C and A B) of an isosceles triangle are
equal, and if the equal sides be produced
through the extremities (B and C) of the third
“side, the angles (D B C and E C B) formed by
their produced parts and the third side are
equal.
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Let the equal sides A B and A C be produced
through the extremities B, C of the third side, and
in the produced pat B D of either let any point F
be assumed, and from the other let A G be cut off

ual to AF (III). Let the points F and G so ,

en on the produced sides be connected by right
lines F C ancr B G with the alternate extremities
of the third side of the triangle.

In the triangles F A C and G A B the sides FA and A C
are respectively equal to G A and A B, and the included angle A
is common to both triangles. Hence (IV), the line F C is
equal to B G, the angle A F C to the angle A G B, and the
angle A C F to the angle A B G. If from the equal lines A F
and A G, the equal sides A B and A C be taken, the remainders
B F and C G will be equal. Hence, in the triangles B F C and
C G B, the sides B F and F C are respectively equal to C G and
G B, and the angles F and G included by those sides are also
equal. Hence (FV ), the les F BC and G C B, which are
those included by the third side B C and the productions of the
equal sides A B and A C, are equal. Also, the angles F C B and
G B C are equal. Ifthese equals be taken from the angles F C A
and G B A, before proved equal, the remainders, which are the
angl:is A B Cand A CB opposed to the equal sides, will be
equal.

(34) Cor.—Hence, in an equilateral triangle the three angles
are equal; for by thi:ai)roposition the angles opposed to every
two equal sides are equal.

Prorosition VI, TueoreM.

(65) If two angles (B and C) of a triangle (B A C) be
equal, the sides (A C and A B) opposed to them
are also equal.

For if the sides be not equal, let one of them A B be greater
than the other, and from it cutoff D B equal to AC &
(1II), and draw C D.

Then in the triangles DB C and A CB, the sides
DB and B C are equal to the sides AC and CB re- ,
spectively, and the angles D B C and A C B are also
equal; therefore (IV) the triangles themselves DB C and AC B
are equal, a part equal to the whole, which is absurd ; therefore
neither of the sides A B or A C is greater than the other; they
are therefore equal to one another. '

(66) Cor.—Hence every equiangular triangle is also equi-
lateral, for the sides opposed to every two equal angles are equal.
c2
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In the construction for this proposition it is necessary that the part
of the greater side which is cut off equal to the less, should be mea-
sured upon the greater side B A from vertex (B) of the equal angle,
for otherwise the fourth proposition could not be applied to prove the
equality of the part with the whole.

It may be observed generally, that when a part of one line is cut off
equal to another, it should be distinctly specified from which extre-
mity the part is to be cut.

. 'This proposition is what is called by logicians the converse of the
fifth. It cannot however be inferred from it by the logical operation
called conversion ; because, by the established principles of the Aristote-
lian logic, an universal affirmative admits no simple converse. 'This ob-
servation applies generally to those propositions in the Elements which
are converses of preceding ones.

The demonstration of the sixth is the first instance of indirect proof
which occurs in the Elements. The force of this species of demon-
stration consists in showing that a principle is true, because some mani-
fest absurdity would follow from supposing it to be false.

This kind of proof is considered inferior to direct demonstration,
because it only proves that a thing must be so, but fails in showing
why it must be so; whereas direct proof not only shows that the
thing ¢s 80, but why it is so. Consequently, indirect demonstrution is
never used, except where no direct proof can be had. It is used gene-
rally in proving principles which are nearly self-evident, and in the
Elements is oftenest used in establishing the converse propositions.
Examples will be seen in the 14th, 19th, 25th, and 40th propositions of
this book

Prorosition VII. THEOREM.

(67) On the same right line (A B), and on the same side
of it, there cannot be constructed two triangles,
(A CB, AD B) whose conterminous sides (A C
and A D, B C and B D) are equal.

If it be possible, let the two triangles be constructed, and,

First,—Let the vertex of each o% the triangles be without the
other triangle, and draw C D.

Because the sides AD and AC of the triangle CAD are
equal (hyp.)¥, the angles AC D and AD C are equal (V); but

* The hypothesis means the supposition; that is, the part of the enunciation of the
proposition in which something is supposed to be granted true, and from which the pro~
posed conclusion is to be inferred. Thus in the seventh proposition the hypothesis is;
that the triangles stand on the same side of their base, and that their eonterminous sides
are equal, and the conclusion is a manifest absurdity, which proves that the hypothesis
must be false. .

In the fourth proposition the l:rpothuis is, that two sides and the included angle of
one triangle are respectively equal to two sides and the included angle of the other;
and the conclusion deduced from this hypothesis i, that the remaining side and angles
in the one triangle are respectively equal to the remaining side and angles in the other
(rlangle.



BOOK THE FIRST. 21

ACD is greater than BCD (51), therefore AD C is freanar
than B CD; but the angle BD C is greater than A D C (5I), and
_ therefore B D C is greater than B C D ; but in the triangle C B D,

the sides B C and % D are equal (hyp.), therefore the
angles BDC and BCD are equallg); but the angle
B % C has been proved to be greater than B CD, which
is absurd : therefore the triangles constructed upon the s >
same right line cannot have their conterminous sideg equal, when
the vertex of each of the triangles is without the other.

Secondly,—Let the vertex D of one triangle be within the
other; produce the sides A C and A D, and join CD.

Because the sides A C and A D of the triangle C A D are
equal (hyp.), the angles ECD and F D C are eqnal (V); but
the angle BD C is r than FD C (51), therefore greater than
ECD; but E CD is greater than BC D (51), and therefore
B D C isgreater than B C D ; but in the triangle CB D, -
the sides B C and B D are equal (hyp.), therefore the </ o
angles BD C and B C D are equal (“;[; ; but the angle
B f) C has been proved to be greater than B C D, which
is absurd: therefore triangles constructed upon the s+ @
same right line cannot have their conterminous sides equal, if the
vertex of one of them is within the other.

Thirdly,—Let the vertex D of one triangle be on the side
A B of the other, and it is evident that the sides AB
and B D are not equal.

Therefore in no case can two triangles, whose con-  ?
terminous sides are equal, be constructed at the same
side of the given line.

This proposition seems to have been introduced into the Elements
merely for the purpose of establishing that which follows it. The de-
monstration is that form of argument which logicians call a dilemma,
and a species of argument which seldom occurs in the Elements. It
two triangles whose conterminous sides are equal could stand on the
same side of the same base, the vertex of the one must necessarily
either fall within the other or without it, or on one of the sides of it;
accordingly, it is successively proved in the demonstration, that to
suppose it in any of these positions would lead to a contradiction in
terms. It is not supposed that the vertex of the one could fall on
the vertex of the other; for that would be supposing the two tri-
apgles to be one and the same, whereas they are, by hypothesis,

nt.

In the Greek text there is but one (the first) of the cases of this pro-

ition given. It is however conjectured, that the second case must

ve been formerly in the text, because it is the only instance in which
Euclid uses that part of the fifth proposition which proves the equality
of the angles below the base. It is argued, that there must have been
some reason for introducing into the fifth a principle which follows at

c
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once from the thirteenth; and that none can be assigned except the
necessity of the principle in the second case of the seventh. The third
case required to be mentioned only to preserve the complete logical
form of the argument.

Prorosrrion VIII. THEOREM.

(68) If two triangles (ABC and .EF D) have two
sides of the one respectively equal to two
sides of the other (ABto EF and CB to
DF), and also have the base (A C) equal to
the base (ED), then the angles (B and F)
contained by the equal sides are equal.

For if the equal bases A C, E D be conceived to be placed one
upon the other, so that the triangles shall lie . 2
at the same side of them, and that the equal
sides AB and EF, CB and D F be conter- A
minous, the vertex B must fall on the vertex [—— oy
F; for to suppose them not coincident
would contradict the seventh proposition. The sides BA and

B C being therefore coincident with F E and F D, the angles B
and F are equal.

(69) It is evident that in this case all the angles and sides of
the triangles are respectively equal each to each, and that the trian-
gles themselves are equal. This appears immediately by the eighth
axiom.

In order to remove from the threshold of the Elements a proposition
80 useless, and, to the younger students, so embarrassing as the seventh,
it would be desirable that the eighth should be established indcpen=
dently of it. There are several ways in which this might be effected.
The following proof seems to be liable to no objection, and establishes
the eighth by the fifth.

Let the two equal bases be so applied one 3 4
upon the other that the equal sides shall be con- A
terminous, and that the triangles shall lie at & c & >
opposite sides of them, and let a right line be
conceived to be drawn joining the vertices.

1° Let this line intersect the base.

Let the vertex F fall at G, the side E F in the position A G, and
D Fin the position C G. Hence B A and A G being equal, the angles
G B A and B G A are equal (V). Also C B and C G being equal, the
angles C G B and CB G are equal (V). Adding these equals to the
former, the angles ABC and A G C are equal ; that is, the angles
EFD and A B C are equal.

2° Let the line G B fall outside the coincident bases,
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The angles GBA and BG A, and also BGC
and GBC are proved equal as before; and
taking the latter from the former, the remain-
ders, which are the angles AGC and ABC,
are equal, but A G C is the angle F. .

8° Let the line B G pass through either
extremity of the base.

In this case it follows immediately (V) that
theangles A B C and A G C are equal ; for the
lines BC and C G must coincide with B G,
since each has two points upon it (52).

Henee in every case the angles B and F a
are equal.

This proposition is also sometimes demon-
strated as follows. @

Conceive the triangle E F D to be applied to A B C, as in Euclid’s
proof. Then, because E F is equal to A B, the »
point F must be in the circumference of a cir-
cle described with A as centre, and A B as
radius. And for the same reason, F must be
on a circumference with the centre C, and the
radius C B. The vertex must therefore be at the point where these cir-
cles meet. But the vertex B must be also at that point; wherefore, &c.

AL,

B
>

, Prorosition IX. ProsLEM.
(70) To bisect a given rectilinear angle (B A C).

Solution.

Take any point D in the side A B, and from A C A
cut off A Eyéqual to A D (IIT), draw D E, and upon N

it describe an equilateral triangle D FE (I) at the /| \,
sidle remote from A. The right line joining the

points A and F bisects the given angle lg AC /

Demonstration.

Because the sides AD and A E are equal (const.), and the
side A F is common to the triangles F A D and FAE, and the
base F D is also e‘gixaltoFE(const.); the angles D A F and
E A F are equal (VIII), and therefore the right line A F bisects
the given angle.

By this propesition an angle may be divided into 4, 8, 16, &c. equal
parts, or, in general, into any number of equal parts which is ex-
pressed by a power of two.

It is necessary that the equilateral triangle be constructed on a dif-
ferent side of the joining line D E from that on which the given angle
is placed, lest the vertex F of the equilateral triangle should happen to
coincide with the vertex A of the given angle; in which case there
would be no joining line }' A, and therefore no solution.

c
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In these cases, however, in which the vertex of the equilateral tri-
angle does not coincide with that of the given angle, the problem can
be solved by constructing the equilateral triangle on the same side of
the joining line D E with the given angle. Separate demonstrations
are necessary for the two positions which the vertices may assume.

1. Let the vertex of the equilateral triangle fall within that of the

given angle. A
The demonstration already given will apply to this with-

out any modification. '
2. Let the vertex of the given angle fall within the equi- ? »

lateral triangle. b o
The line F A produced will in this case bisect the angle; for the
three sides of the triangle D F A are respectively v

equal to those of the triangle EF A. Hence the
angles D F A and E F A are equal (VIII). Also,
in the triangles D FG and E F G the sides D F o
and E F are equal, the side G Fis common, and *
the angles D F G and E F G are equal; hence (IV) the bases D G
and E G are equal, and also the angles D GA and E G A. Again, in
the triangles D G A and E G A the sides D G and E G are equal, AG
is common, and the angles at G are equal; hence (IV) the angles
D A G and E A G are equal, and therefore the angle B A C is bisected
hy AG.

It is evident, that an isosceles triangle constructed on the joining
line D E would equally answer the purpose of the solution.

ProrosiTion X. ProBLEM.
(71) To bisect a given finite right line (A B).

Solution.

Upon the given line AB describe an equilateral ¢
triangle ACB ()Ie, bisect the angle A CB by the
right line C D (1X); this line bisects the given line
in the point D.
Demonstration.

Because the sides AC and CB are equal (const.), and C D
common to the triangles ACD and B CD, and the angles ACD
and BCD also equal (const.) ; therefore (IV) the bases A D
and D B are equal, and the right line AB is bisected in the
point D. .

In this and the following proposition an isosceles triangle would
answer the purposes of the solution equally with an equilateral, Im
fact, in the demonstrations the triangle is contemplated merely as
isosceles : for nothing is inferred from the equality of the base with
the sides.
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‘ Prorosition X1.  ProsreM.
(72) From a given point (C) in a given right line
(A B) to draw a perpendicular to the given line.
Solution. o

In the given line take any pomnt D and make C E equal to
C D (11I); upon D E describe an equilateral triangle D F E (I);
draw F C, and it is perpendicular to the given line.

Demonstration.

Because the sidles DF and D C are equal to the sides EF
and E C §)const.), and CF is common to the
triangles D F C and E F C, therefore (VIII) .
the angles opposite to the equal sides D F
and E F are equal, and therefore F C is per- > o &
pendicular to the given right line A B at the point C.

Cor.—By help of this problem it may be demonstrated, that
two straight lines cannot have a common segment.

If it be possible, let the two straight lines A B C, A B D have
the segnent A B common to both of them. From the point B
draw BE at right angles to AB; and because ABC is a
straight line, the angle C BE is equal to the -
angle EBA; in the same manner, because
A%Disastraigbt line, the angle D BE is l _»
equal to the angle E B A ; wherefore the angle = °
DBE is equal to the angle CB E, the less to the greater,
which is impossible ; therefore two straight lines cannot have a
common segment.

If the given point be at the extremity of the given right line, it
must be produced, in order to draw the perpendicular by this con-
struction.

In a succeeding article, the student will find a method of drawing a
perpendicular through the extremity of a line without producing it.

The corollary to this propocition is useless, and is omitted in some
editions.

It is equivalent to proving that a right line cannot be produced
through its extremity in more than one direction, or that it has but one
production.

ProrosiTion XII.  ProBLEM.

(78) To draw a perpendicular to a given indefinite
right line (A B) from a point (C) given with-

out it.
' Solution.

Take any point X on the other side of the given line, and from
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the centre C with the radius CX describe a circle cutting
the given line in E and t.lI: Bisect EF inthD c

(X). and draw from the given point to the.

point of bisection the right Fae cD; s tine NI\
1s the required perpendicular. :

" B

Demonstration.

For draw CE and CF, and in the triangles EDC and FDC
the sides E C and FC, and ED and F D, are equal, (e'onst'i:?' and
CD common ; therefore (VIII) the angles EDC and FDC
opposite to the equal sides E C and F C are equal, and therefore

C is perpendicular to the line AB (11).

In this proposition it is necessary that the right line A B be inde-
finite in length, for otherwise it might happen that the circle described
with the centre C and the radius CX miglhit not intersect it in two
points, which is essential to the solution of the problem.

It is assumed in the solution of this problem, that the circle will
intersect the right line in two points. The centre of the circle being
on one side of the given right line, and a part of the circumference (X)
on the other, it is not difficult to perceive that a part of the circum-
ference must be also on the same side of the given line with the centre,
and since the circle is a continued line it must ctoss the right line
twice. The properties of the circle form the subject of the third book,
and those which are assumed here will be established in that part of
the Elements. = ‘

The following questions will afford the student useful exercise in
the application of the geometrical principles which have been esta-
blished in the last twelve propositions.

(74) In an isosceles triangle the right line which bisects the vertical
angle also bisects the base, and ts perpendicular to the base.

For in the two triangles into which it divides the isosceles, there
are two sides (those of the isosceles) equal, and a side (the bisector)
common, and the angles included by these sides equal, being the parts
of the bisected angle ; hence (IV) the remaining sides and angles are
respectively equal ; that is, the parts into which the base is divided
by the bisector are equal, and the angles which the bisector makes
with the base are equal. Therefore it bisects the base, and is perpen-
dicular to it.

Itis clear that the isosceles triangle itself is bisected by the bisector
of its vertical angle, since the two triangles are equal.

‘(75) - It follows also, that in an isosceles triangle the line which s
drawn from the vertex to the middle point of the base bisects the vertical
angle, and is perpendicular to the base. ,

For in this case the triangle is divided into two triangles, which
have their three sides respectively equal each to each, and the property
is established by (VIII). :
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6) Ifin atrimgkueperpmdzcularfmn the verter on the base
@ /i isect the base, the triangle is isosceles.

For in this case in the two triangles into which the whole is divided
by the perpendicular, there are two sides (the parts of the base) equal,
one side (the perpendicular) common, and the included angles equal,
being right. Hence (IV) the sides of the triangle are equal.

(77) Tofind a point which is equidistant from the three vertical
points of a triangle (A B C).

Bisect the sides A B and B C at D and E (X), and
through the points D and E draw perpendiculars, and
produce them until they meet at F. The point F is /‘
at equal distances from A, B and C. /

For draw FA, FB, FC. BFA is isosceles by ML
(76), and for the same reason B F C is isosceles.

Hence it is evident that F A, F C, and F B are equal.

(78) Cor.—Hence F is the centre, and F A the radius of a circle
circumscribed about the triangle.

(79) In a quadrilateral formed by two isosceles triangles
A CB and A D B constructed on different sides of the same
base, the diagonals intersect at right angles, and that
which is the common base of the isosceles triangles is
bisected by the other.

For in the triangles CAD and CB D the three sndes are equal
each to each, and therefore (VIII) the angles ACE and BCE are
equal. The truth of the proposition therefore follows from (74).

(80) Hence it follows that the diagonals of a lozenge bisect each other
at right angles.

(81) It follows from (76) that tf the diagonals of a quadrilateral
bisect each other at right angles it is a lozenge.

Prorosition XI1II. THEOREM.

(82) When a right line (A B) standing upon another
(D C) makes angles with it, they are either two
right angles, or together equal to two right
angles. .

If the right line A B is perpendicular to D C, the angles ABC

and ABD are right (11). If
not, draw BE perpendicular to
D C (XI), and it is evident that
the angles CBA and ABD ° ¢

together are equal to the angles CBE and E BD, and there
fore to two right angles.

The words * makes angles with it,” are introduced to exclude the
case in which the line A B is at the extremity of D C.
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(83) From this proposition it appears, that if several right lines stand
on the same right line at the same point, and make angles with it, all
the angles taken together are equal to two right angles.

Also if two right lines intersecting one another make angles, these
angles taken together are equal to four right angles.

The lines which bisect the adjacent angles A B C and A B D are at
right angles; for the angle under these lines is evidently half the sum
of the angles A BC and ABD,

If several right lines diverge from the same point, the angles into

* which they divide the surrounding space are together equal to four
right angles.
(84) When two angles as ABC and A B D are together equal to
two right angles, they are said to be supplemental, and one is called
the supplement of the other.
(85) Iftwo angles as C B A and E B A are together equal to a right
angle, they are said to be complemental, and one is said to be the com-
plement of the other.

ProrositTion XIV. THEOREM.

(86) Iftwo right lines (C B and B D) meeting another
right line (A B) at the same point (B), and at
opposite sides, make angles with it which are
together equal to two right angles, those right
lines (C Band B D) form one continued right
line.

For if possible, let B E and not B D be the continuation of the
right line C B, then the angles C B A and A B E are equal to two
right angles (XIII), but CB A and A B D are also eqnal to two
right angles, by hypothesis, therefore CB A and A
A BD taken together are equal to CBA and
ABE; take away from these equal quantities f—7%
C R A which is common to both, and A B E shall
be equal to A B D, a part to the whole, which is absurd; there-
fore B E is not the continuation of C B, and in the same manner
it can be proved, that no other line except B D is the continua-
tion of it, therefore B D forms with B C one continued right line.

In the enunciation of this proposition, the student should be
cautious not to overlook the condition that the two right lines C B
and B E forming angles, which are together equal to two right angles,
with BA, lie at opposite sides of B A. They might
form angles together equal to two right angles with B A,
and yet not lie in the same continued line, if as in this
figure they lay at the same side of it. It is assumed in
this proposition that the line C B has a production. This
is however granted by Postulate 2.

A

— — e —————
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ProrosiTion XV. THEOREM.

(87) If two right lines (A B and C D) intersect one
another, the vertical angles are equal (C E A
toBED,and C EBto A E D).

Because the right line C E stands upon the right line A B, the
angle AE C together with the angle CE B is
equal to two right angles (XIII); and because @
the right line B E stands upon the right line C D, >'<.
the angle CE B together with the angle BED * D
is equal to two nght angles (XIII); therefore
A E C and CE B together are equal to CE B and B E D ; take
away the common angle C E B, and the remaining angle AE C
is equal to B E D.

This proof may shortly be expressed by saying, that opposite angles
are equal, because they have a common supplement (84).

It is evident that angles which havea common supplement or com-

plement (85) are equal, and that if they be equal, their supplements
and complements must also be equal. )
(88) The converse of this proposition may easily be proved, scil, If
four lines meet at a point, and the angles vertically opposite be equal,
each alternate pair of lines will be in the same right line. Forif CE A
be equal to BE D, and also CE B to A ED, it follows, that CE A
and CE B together are equal to BED and AE D together. But all
the four are together equal to four right angles (83), and therefore
CEA and CEB are together equal to two right angles, therefore
(XIV) AE and E B are in one continued line. In like manner it may
be proved, that C E and D E are in one line.

ProrosiTion XVI.  TuEOREM.
(89) Ifone side (BC) of a triangle (B AC) be pro-
duced, the external angle (A C D) is greater

than either of the internal opposite angles
(AorB.)

For bisect the side A C in E (X), draw B E
and produce it until EF be equal to B E (III), AT
and join F C.

The triangles CE F and A E B have the sides /£ D
CE and E F equal to the sidles AE and EB o
(const.), and the angle CE F equal to AE B (XV), therefore
the angles E CF and A are equal (IV), and therefore A C D
is greater than A. In like manner it can be shown, that if A C
be produced, the external angle B C G is greater than the angle
B, and therefore that the angle A C D, which is equal to B C G
(XV), is greater than the angle B. . :
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(90) Cor. 1.—Hence it follows, that each angle of a triangle is less
than the supplement of either of the other angles (84). For the ex-
ternal angle is the supplement of the adjacent internal angle (XIII).
(91) Cor. 2.—If one angle of a triangle be right or obtuse, the
others must be acute. For the supplement of a right or obtuse angle
is right or acute (82), and each of the other angles must be less than
this supplement, and must therefore be acute. :

(92) Cor. 3.—More than one perpendicular canuot be drawn from
the same point to the same right line. For if two lines be supposed
to be drawn, one of which is perpendicular, they will form a triangle
having one right angle. Theother angles must therefore be acute (91),
and therefore the other line is not perpendicular.

(93) Cor. 4.—If from any point a right line be drawn to a given right
line, making with it an acute and obtuse angle, and from the same
point a perpendicular be drawn, the perpendicular must fall at the side
of the acute angle. For otherwise a triangle would be formed having
a right and an obtuse angle, which cannot be (91).

(94) Cor. 5.—The equal angles of an isosceles triangle must be
both acute.

ProrosiTioNn XVII. THEOREM.

(95) Any two angles of a triangle (B A C) are together
: less than two right angles.

Produce any side B C, then the angle ACD is greater than
either of the angles A or B (XVI), therefore ACB
together with either A or B is less than the same
angle A C B together with A CD ; that is, less than
two right angles (XIII). In the same manner, if
C B be produced from the point B, it can be demonstrated that
the angle AB C together with the angle A is less than two right
aniles ; therefore any two angles of the triangle are less than two
right angles.

This proposition and the sixteenth are included in the thirty-second,
which proves that the three angles are together equal to two right
angles,

D

Prorosition XVIII. THEOREM.

(96) In any triangle (B AC) if one side (AC) be
greater than another (A B), the angle opposite
to the greater side is greater than- the angle
opposite to the less.

From the greater side A C cut off the part AD A
equal to the less (III), and conterminous with it, . o
and join B D. °

The triangle B A D being isosceles (V), the angles *

ABD and ADB are equal; but ADB is greater than the
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internal angle ACB (XVI) : therefore A B D is greater than ACB,
and therefore A BC is greater than ACB: but A BC is oppo-
site the greater side A C, and A C B is opposite the less A B.

. 'This proposition might also be proved by producing the lesser side
A B, and taking A E equal to the greater side. In this case the angle
AEC is equal to ACE (V), and therefore greater than ACB. But
ABC is greater than AEC (XVI), and therefore A B C is greater
than A C B.

Prorosimion XIX. THEOREM.

(97) If in any triangle (B A C) one angle (B) be greater
than another (C), the side (A C) which is oppo-
site the greater angle is greater than the side
(A B), which is oppositeto the less. :

For the side A C is either equal, or less, or greater than A B.
It is not equal to A B, because the angle B would A
then be equal to C (V), which is contrary to the
hypothesis. e
" It is not less than A B, because the angle B would then be less
than C (XVIII), which is also contrary to the hypothesis.

Since therefore the side A C is neither equal to nor less than
A B, it is greater than it.

This proposition holds the same relation to the sixth, as the preced-
ing does to the fifth. The four might be thus combined: one angle
of a triangle is greater or less than another, or equal to it, according as
the side opposed to the one is greater or less than, or equal to the side
opposed to the other, and vice versa.

The student generally feels it difficult to remember which of the two,
the eighteenth or nineteenth, is proved by construction, and which
indirectly. By referring them to the fifth and sixth the difficulty will
be removed.
: : ProrosiTioNn XX.

(88) Any two sides (AB and A C) of a triangle
(BA C) taken together, are greater than the
third side (B C). '

Let the side B A be produced, and let A D be cut off 4
equal to A C (III), and let D C be drawn. '

Since AD and A C are equal, the angles D and
ACD are equal (V). Hence the angle BCD is

r than the e D, and therefore the side B D

in the triangle B C iiaﬁren.terthan BC (XIX).” But BDis
equal to BAand AC en er, since AD was assumed
:ﬂual ];OCA C. Therefore BA and A C taken together are greater

an B C. . C
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This proposition is sometimes proved by bisecting the angle A,
Let A E bisect it. The angle BE A is greater than E A C, and the
angle CE A is greater than E AB (XVI); and since the parts of the
angle A are equal, it follows, that each of the angles E is greater than
each of the parts of A ; and thence, by (XIX), it follows, that B A is
greater than BE, and A C greater than CE, and therefore that the
sum of the former is greater than the sum of the latter.

The proposition might likewise be proved by drawing a perpendi-
cular from the angle A on the side BC; but these methods seem
inferior in clearness and brevity to that of Euclid.

Some geometers, among whom may be reckoned ARCHIMEDES, ridi-

‘cule this proposition as being self evident, and contend that it should
be therefore one of the axioms. That a truth is considered self evident
is, however, not a sufficient reason why it should be adopted as a geo-
metrical axiom (55).
(99) It follows immediately from this proposition, that the difference
of any two sides of a triangle is less than the remaining side. For the
sides A C and B C together are greater than A B; let the side A C be
taken from both, and we shall have the side B C greater than the
remainder upon taking A C from A B; that is, then the difference
between A B and A C.

In this proof we assume something more than is expressed in the
fifth axiom. For we take for granted, that if one quantity (a) be
greater than another (b), and that equals be taken from both, the re-
mainder of the former (@) will be greater than the remainder of the
latter (b). This is a principle which is frequently used, though not
directly expressed in the axiom (55).

Prorosition XXI. TueoreM.

(100) The sum of two right lines (D B and DC) drawn
to a point (D), within a triangle (B A C) from
the extremities of any side (B C), is less than
the sum of the two other sides of the triangle
(A Band A C), but the lines contain a greater
angle. '

Produce BD to E. The sum of the sides BA and AE of
the triangle B A E is greater than the third side BE A
gXX); add E C to each, and the sum of the sides

A and A C is greater than the sum of BE and EC, A
but the sum of the sides DE and E C of the triangle ~——3
D E C is greater than the third sidle D C (XX); add
B D to each, and the sum of B E and E C is greater than the
sum of BD and D C, but the sum of B A and A C is greater
than that of B E and E C; therefore the sum of B A and A C
is greater than that of BD and D C.
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Because the external angle B D C is greater than the internal
D E C (XV]), and for the same reason D E C is greater than A,
the angle B D C is greater than the angle A. A

*,® By the thirty-second proposition it will follow, that the angle
BD C exceeds the angle A by the sum of the angles AB D and A CD.
For the angle B D C is equal to the summ of DEC and DCE; and,
again, the angle D E C is equal to the sum of the angles A and A B E.
Therefore the angle B D C is equal to the sum of A, and the angles
ABD and ACD.

Prorosition XXII. PronLEM.

(101) Given three right lines (A, B, and C) the sum of
any two of which is greater than the third, to
construct a triangle whose sides shall be re-
spectively equal to the given lines.

Solution.
From any point D draw the right line D E equal to one of the
given lines A (II), and from the same point .
draw D G equal to another of the given lines
B, and from the point E draw E F equal to
C. From the centre D with the radius D G

the radius E F describe another circle, and
from a point K of intersection of these circles
draw K D and K E.

Demonstration.

It is evident, that the sides D E, D K, and K E of the triangle
D K E are equal to the given right lines A, B, and C.

*.* In this solution Euclid assumes that the two circles will have
at least one point of intersection. To prove this, it is only necessary to
show that a part of one of the circles will be within, and another part
without the other (58).

Since D E and EK or E L are together greater than D K, it follows,
that DL is greater than the radius of the circle K G, and therefore
the point L is outside the circle. Also, since D K and EK are together
greater than D E, if the equals E K and E H be taken from both, D H
is less than D K, that is, D H is less than the radius of the circle, and
therefore the point H is within it. Since the point H is within the
circle and L without it, the one circle must intersect the other.

It is evident, that if the sum of the lines B and C were equal to
the line A, the points H and K would coincide; for then the sum
of DK and K E would equal D E. Also, if the sum of A and C were
equal to B, the points K and L would coincide; for then D K would
be equal to EK and DE, or to L D. It will hereafter appear, that

D
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in the former case the circles would touch externally, and in the latter

internally.

If the line A were greater than the sum of B and C, it is easy to
perceive that the circles would not meet, one being wholly outside the
other; and if B were greater than the sum of A and C, they would
not meet, one being wholly within the other. ’

If the three right lines A B C be equal, this proposition. becomes
equivalent to the first, and the solution will be found to agree exactly
with that of the first.

Pnoposl:rxon XXIII. ProBLEM. '

(102) At a given point (B) in a given right line (B E)
to make an angle equal to a given angle (C).

Solutién.

In the sides of the given angle take any points D and F; join
DF, and construct a triangle EB A A .
which shall be equilateral with the tri- _ -7\ "\
angle D CF, and whose sides AB and ° »oé D
E B meeting at the given xpoint B shall be equal to FC and D C
of the given angle C (XXII). The angle E B A is equal to the
given angle DCF.

Demonstration.

For as the triangles DCF and EB A have all their sides
respectively equal, the angles FCD and A B E opposite the
equal sides D‘l’ and E A are equal (VIII).

It is evident that the eleventh proposition is a particular case of this
Prorosimion XXIV. THEOREM.

(103) If two triangles (E F D, B A C) have two sides
of the one respectively equal to two sides of
the other (FE to ABand FD to AC), and
if one of the angles (B A C) contained by
the equal sides be greater than the other
(EF D), the side (B C) which is opposite to
the greater angle is greater than the side:(E D)
which is opposite to the less angle.

From the point A draw the right line A G, making with the
side A B, which is not the greater, an angle B A G equal to the

angle EF D (XXIII). Make A G equal to FD (III), and
draw B G and G C.
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In the triangles BA G and EF D the sides B A and A G are
equal respectively to E F and FD, and the in- 4 ¥,
cluded angles are equal (const.), and therefore
BG is equal to ED. Also, since A G is equal
to F D by const., and A C is equal to it by hyp,, "
A G is equal to A C, therefore the triangle G AC
is isosceles, and therefore the angles ACG and AGC are
equal (V) ; but the angle B G C is greater than A G C, there-
fore greater than A C G, and therefore greater than B C G;
then in the triangle B G C the angle B G C is greater than B C G,
therefore the side B C is ﬁeater than B G (XIX), but BG is
equal to E D, and therefore B C is greater than E D.

In this demonstration it is assumed by Euelid, that the points A and
G will be on different sides of B C, or, in other words, that A H is less
than A G or AC. This may be proved thus:—The side AC not
being less than A B, the angle A B C cannot be less than the angle
ACB (XVIII). But the angle AB C must be less than the angle
A H C (XVI); therefore the angle A CB is less than A HC, and
therefore A H less than A C or A G (XIX). :

In tle construction for this proposition Euclid has omitted the words
¢ with the side which is not the greater.” Without these it would not
follow that the point G would fall below the base B C, and it would
be necessary to give demonstrations for the cases in which the point G
falls on, or above the base B C. On the other hand, if these words be
inserted, it is necessary in order to give validity to the demonstration,
to prove as above, that the point G falls below the base.

If the words * with the side not the greater’ be not inserted, the two
omitted cases may be proved as follows :

If the point G fall on the base B C, it is evident that BG is less
than B C (51).

If G fall above the base B C let it be at G’. The sum of the lines
B G’ and A G/ is less than the sum of A C and CB (XXI). The
equals A C and A G’ being taken away, there will remain B G’ less
than B C.

ProrosiTion XXV. THEOREM.

(104) If two triangles (BA Cand EF D) have two
sides of the one respectively equal to two of
the other (B A to EF and A Cto F D), and if
the third side of the one (B C) be greater than
the third side (ED) of the other, the angle
(A) opposite to the greater side is greater than
the angle F, which is opposite to the less.

»

The angle A is either equal to the angle F, 4
or less than it, or greater '&an it. .
It is not equal; for if it were, the side BC [
would be equal to the side ED (IV), whichis » ¢ =
contrary to the hypothesis. o
D
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It is not less; for if it were, the side B C would be less than
be side E D (XXIV), which is contrary to the hypothesis.

Since therefore the angle A is neither equal to, nor less than
F, it must be greater.

This proposition might be proved directly thus :
On the greater side B C take B G equal A ¥

to the lesser side ED, and on B G construct
a triangle B H G equilateral with E F D. .
Join A H, and produce H G to L. » & X

The angle H will then be equal to the
angle F.

1° Let B G be greater than B K. H

Since B A and B H are equal, the angles BA Hand B H A are
equal (V). Also since HG is equal to A C, it is greater than A I,
and therefore H I is greater than A I, and tlierefore the angle HA I
is greater than the angle A HI (XVIII). Hence, if the equal angles
B HA and B A H be added to these, the angle B A C will be found
greater than the angle B H G, which is equal to F.

2° If B G be not greater than B K, it is evident that A
the angle H is less than the angle A. \

The twenty-fourth and twenty-fifth propositions are » ¢
analogous to the fourth and eighth, in the same manner
as the eighteenth and nineteenth are to the fifth and '
sixth. The four might be announced together thus:

If two triangles have two sides of the one respectively equal to two
sides of the other, the remaining side of the one will be greater or less
than, or equal to the remaining side of the other, according as the
angle opposed to it in the one is greater or less than, or equal to the
angle opposed to it in the other, or vice versa.

In fact, these principles amount to this, that if twe lines of given
lengths be placed so that one pair of extremities coincide, and go that
in their initial position the lesser line is placed upon the greater, the
distance between the other extremities will then be the difference of
the lines. If they be opened so as to form a gradually increasing
angle, the line joining their extremities will gradually increase, until
the angle they include becomes equal to two right angles, when they
will be in one continued line, and the line joining their extremities is
their sum. Thus the major and mirfor limits of this line is the sum
and difference of the given lines. This evidently includes the twentieth
proposition.

Prorosition XXVI. TaEOREM.

(105) If two triangles (B A C, D E F) have two angles
~ of the one respectively equal to two angles of
the other (B to Dand Cto F), and a side of
the one equal to a side of the other similarly
placed with respect to the equal angles, the
remaining sides and angles are respectively

equal to one another.
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First, let the equal sides be B C and D F, which lie between
the equal angles; then the side B A is equal to the side D E.

For if it be possible, let one of them A R
B A be greater than the other; make BG ¢,
equal to DE, and join C G. /

In the triangles GBC, EDF the ® ¢ ©® ¥
sidles GB, B C are resgectively equal to thesides ED, DF
§const.), and the angle B is equal to the angle D glyp.), there-
ore the angles BC G and DF E are equal EIV) ; but the angle
B C A is also equal to D F E (hyp.), therefore the angle BC G
is equal to BCA §51), which is absurd : neither of the sides
B A and DE therefore is greater than the other, and therefore
they are equal, and also B C and D F are equal (IV), and the
angles B and D ; therefore the side A C is equal to the side E F,
as also the angle A to the angle E (IV).

Next, let the equal sides be B A and D E, which are oeposite
to the equal angles C and F, and the sides B C and D F shall
also be equal.

For if it be possible, let one of them B C be greater than the
other; make B G equal to D F, and join A G.

In the triangles ABG, EDF, the sides AB, BG
are respectively equal to the sides ED, DF (const.),
and the angle B is equal to the angle D (hyp.}; there- » @ ¢
fore the angles AG B and EF D are equal (IV) ; but the angle
C is also equal to EF D, therefore A G B and C are equal, which
is absurd (&VI). Neither of the sides B C and D F is therefore

eater than the other, and they are consequently equal. But
gA and D E are also equal, as also the angles B and D ; there-
fore the side A C is equal to the side EF, and also the angle A
to the angle E (IV).

It is evident that the triangles themselves are equal in every
respect.

*,* (106) Cor. 1.—From this proposition and the principles pre-
viously established, it easily follows, that a line being drawn from the
vertex of a triangle to the base, if any two of the following equalities be
given (except the first two), the others may be inferred.

1° The equality of the sides of the triangle.

2° The equality of the angles at the base.

8° The equality of the angles under the line drawn, and the base.

4° The equality of the angles under the line drawn, and the sides.

5° The equality of the segments of the base.

Some of the cases of this investigation have already been proved.
(74), (75), (76). The others present no difficulty, except in the case
where the fourth and fifth equalities are given to infer the others, This
case may be proved as follows.
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If the line A D, which bisects the vertical angle (A) of a triangle
also bisect the base B C, the triangle wll be isosceles ; A
for produce A D so that D E shall be equal to A D, and
join EC. In the triangles DCE and AD B the
angles vertically opposed at D are equal, and also the
sides which contain them; therefore (IV) the angles
BADand DEC are equal, and also the sides AB
and EC. But the angle BAD is equal to DAC
(hyp.) ; and therefore D A C is equal to the angle E,
therefore (VI) the sides A C and E C are equal. But '
A B and E C have been already proved equal, and therefore AB and
A C are equal.

*.* (107) The twenty-sixth proposition furnishes the third criterion
which has been established in the Elements for the equality of two trian-
gles. It may be observed, that in a triangle there are six quantities which
may enter into consideration, and in which two triangles may agree or
differ; viz. the three sides and the three angles. We can in most
cases infer the equality of two trianglesin every respect, if they agree in
any three of those six quantities whick are independent of each other.
To this, however, there are certain exceptions, as will appear by the
following general investigation of the question.

When two triangles agree in three of the six quantities already men-
tioned, these three must be some of the six following combinations :

1° Two sides and the angle between them.

2° Two angles and the side between them.

8° Two sides, and the angle npposed to one of them.

4° Two angles, and the side opposed to one of them.

5° The three sides.

6° The three angles.

The first case has been established in the fourth, and the second and
fourth in the twenty-sixth proposition. The fifth case has been esta-
blished by the eighth, and in the sixth case the triangles are not neces-
sarily equal. In this case, however, the three data are not indepen-
dent, for it will appear by the thirty-second proposition, that any one
angle of a triangle can be inferred from the other two.

The third is therefore the only case which remains to be investi-
" gated.

*.* (108) 8° To determine under what circumstance two triangles
having two sides equal, each to each, and the angles opposed to one pair of
equal sides equal, shall be equal in all respects. Let the sidesAB and BC
be equal to DE and EF, and the angle A be equal to the angle D.
If the angles B and E be equal, it is evident that the triangles are in
every respect equal by (IV), and that C and F are equal. But if B

wid

and E be not equal, let one B be B %
greater than the other E; and from B g
let a line B G be drawn, making the /
angle A B G equal to theangle E. In 4 ¢ T F

the triangles ABG and DEF, the angles A and AB G are equal
respectively to D and E, and the side A B is equdl to D E, therefore
(XXVI) the triangles are in every respect equal ; and the side B G is
equal to E F, and the angle B G A equal to the angle F. But since
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E F is equal to BC, B G is equal to B C, .and therefore (V) BGC
is equal to B C G, and therefore C and B G A or F are supplemental.
(109) Hence, if two triangles have two sides in the one respectively
equal to two sides in the other, and the angles opposed to one pair
of equal sides equal, the angles opposed to the other equal sides will be
either equal or supplemental.

*.* (110) Hence it follows, that if two triangles have two sides
respectively equal each to each, and the angles opposed to one pair of
equal sides equal, the remaining angles will be equal, and therefore the
triangles will be in every respect equal, if there be any circumstance
from which it may be inferred that the angles opposed to the other
pair of equal sides are of the same species.

(Angles are said to be of the same species when they are both acute,
both obtuse, or both right).

For in this case if they be not right they cannot be supplemental,

and must therefore be equal (109), in which case the triangles will be
in every respect equal, by (XXVI).
. If they be both right, the triangles will be equal by (108) ; because
in that case G and C being right angles, B G must coincide with B C,
and the triangle B G A with B CA ; but the triangle B G A is equal to
E F D, therefore, &c.

*,* (111) There are several circutnstances which may determine
the angles opposed to the other pair of equal sides to be of the same
species, and therefore which will determine the equality of the triangles ;
amongst which are the following : '

If one of the two angles opposed to the other pair of equal sides be
right; for a right angle isits own supplement.

If the angles which are given equal be obtuse or right ; for then the .
other angles must be all acute (91), and therefore of the same species.

If the angles which are included by the equal sides be both right or
obtuse ; for then the remaining angles must be both acute.

If the equal sides opposed to angles which are not given equal be
less than the other sides, these angles must be both acute (X VIII).

In all these cases it may be inferred, that the triangles are in every
respect equal.

It will appear by prop. 88, that if two triangles have two sides
respectively equal, and the included angles supplemental, their areas
are equal. .

(The area of a figure is the quantity of surface within its perimeter).
(112) If several right lines be drawn from a point to a given right line.

1° The shortest is that which is perpendicular to it.

2° Those equally inclined to the perpendicular are equal, and vice
rersa.
8° Those which meet the right line at equal distances from the per-
pendicular are equal, and vice versa.

4° Those which make greater angles with the perpendicular are
greater, and vice versa.

5° Those which meet the line at greater distances from the perpen-
dicular are greater, and vice versa.

6° More than two equal right lines cannot be drawn from the sam
point to the same right line. :
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The student will find no difficulty in establishing these principles.
(118) If any number of isosceles triangles be constructed upon the
same base, their vertices will be all placed upon the right line, which
is perpendicular to the base, and passes through its middle point. This
is a very obvious and simple example of a species of theorem which
frequently occurs in geometrical investigations. This perpendicular
is said to be the locus of the vertex of isosceles triangles standing on
the same base.

Prorosition XXVII. TueoreM.

(114) If aline (EF) intersect two right lines (A B and
CD), and make the alternate angles equal to
each other (A EF to EF D), these right lines
are parallel.

For, if it be possible, let those lines not be parallel but meet in
G ; the external angle A E F of the triangle
EGF is greater than the internal E FG
(XVI); but it is also equal to it Sby h p;},
which is absurd ; therefore A B and C ]; o —
not meet at the side BD; and in the same -
manner it can be demonstrated, that they do not meet at the side
A C; since, then, the right lines do not meet on either side they

are parallel,

Prorosition XXVIII. THEOREM.

(115) Ifaline (EF) intersect two right lines (A B and
CD), and make the external angle equal to the
internal and opposite angle on the same side of
theline (EGAtoGHC, and EG B to G HD);
or make the internal angles at the same side
(AGHand CHG or BGH and D HG) equal
together to two right angles, the two right lines
are parallel to one another.

First, let the angles E G A and G H C be equal; and since the
an;ﬂe EGA is tﬁual to BGH (XV), the angles R E
G a

C and B GH are equal; but they are the al-
ternate anfles, therefore ?he right lines AB and CD
are parallel (XXVII).

In the same manner the proposition can be demon-
strated, if the angles E G B and G H D were given equal.

Next, let the angles A G H and C H G taken together be equal
to two right angles; since the angles GHD and G H C taken
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together are also equal to two right angles (XIII), the angles
A GH and CH G taken together are equal to the angles GH D
and CHG taken together; take away the common angle CH G
and the remaining angle AGH is equal to GHD; but they
are the alternate angles, and therefore the right lines A B and
C D are parallel (XXVII). In the same manner the proposition
can be demonstrated, if the angles B G H and D H G were given
equal to two right angles. . -

By this proposition it appears, that if the line G B makes the angle
B G H equal to the supplement of G H D (84), the line G B will be
parallel to HD. In the twelfth axiom (54) it is assumed, that if a line
make an angle with G H less than the supplement of G H D, that line
will not be parallel to HD, and will therefore meet it, if produced.
The principle, therefore, which is really assumed is, that two right
lines which intersect each other cannot be both parallel to the same
right line, a principle. which seems to be nearly self-evident.

If it be granted that the two right lines which make with the third,
G H, angles less than two right angles be not parallel, it is plain that
they must meet on that side of G H on which the angles are less than
two right angles ; for the line passing through G, which makes a less
angle than %G H, with G H on the side B D, will make a greater
angle than A GH with G H on the side A C; and therefore that
part of the line which lies on the side A C will lie above A G, and
therefore can never meet H C.

Various attempts have been made to supersede the necessity of as-
suming the twelfth axiom ; but all that we have ever seen are attended
with still greater objections. Neither does it seem to us, that the prin-
ciple which is really assumed as explained above can reasonably be
objected against. See Appendix, 1.

ProrosiTioNn XXIX. THEOREM.

(116) If a right line (E F) intersect two parallel right
lines (AB and CD), it makes the alternate
angles equal (AGHto GHD, and CHG to
H GB); and the external angle equal to the
internal and opposite upon the same side
(EGA toGHC,and EGBtoGHD); and
also the two internal angles at the same side
(AGHand CHG,BGH and DHG) toge-
ther equal to two right angles.

1° The alternate angles AG H and G HD are equal ; for if it
be possible, let one of them A GH be ﬂfater than . ”

the other, and adding the angle BG H to both, AG H

and B G H together are greater than BG H and _
GHD; but AG H and BG H together are equal ° ;
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to two right angles (XIII), therefore BGH and GHD are
less than two right angles, and therefore the lines AB and C D,
if produced, would meet at the side BD (Axiom 12); but th:z
are parallel (hyp.), and therefore cannot meet, which is absu
Therefore neither of the angles AG H and G H D is greater than
the other; they are therefore equal.

In the same manner it can be demonstrated, that the angles
BGH and G HC are equal. :

2° The external angle %‘3 G Bisequal to theinternal GHD ; for
the angle EG B is equal to the angle AGH (XV); and AGH
is equal to the alternate angle G H D (first part) ; therefore EG B
is equal to GHD. In the same manner it can be demonstrated,
that E G A and G H C are equal.

3° The internal angles at the same side BGH and GHD
together are equal to two right angles; for since the alternate
angles GHD and AGH are equal (first part), if the angle
B G H be added to both, BG H and G H D together are equal to
BGH and AGH, and therefore are equal to two right angles
(XIII). In the same manner it can be demonstrated, that the
angles A G H and G H C together are equal to two right angles.

817) Cor 1.—If two right lines which intersect each other (A B,
D) be parallel respectively to two others X »
(EF, G H), the angles included by those lines
will be equal.

Let the line I K be drawn joining the points
of intersection. The angles CIKand IKH &
are equal, being alternate; and the angles AIK and I K F are equal,
for the same reason. Taking the former from the latter, the angles
AIC and HKF remain equal. It is evident that their supplements
CIB and G K F are also equal.

(118) Cor. 2.—If a line be perpendicular to one of two parallel lines,
it will be also perpendicular to the other; for the alternate angles
must be equal.

(119) Cor. 3.—The parts of all perpendiculars to two parallel lines
intercepted between them are equal.

For let AB be drawn. The angles BAC and AB D are equal,
being alternate; and the angles BAD and AB C are
equal, for the same reason ; the side A B being common
to the two triangles, the sides A C and BD must be
equal (XXVI). < &
(120) Cor. 4.—If two angles be equal (AB C and D EF), and the
sides AB and D E be parallel, and the other sides BC «
and E F lie at the same side of them, they will also be
parallel ; for draw B E. Since AB and D E are parallel, *
the angles GB A and GE D are equal. But, by hypo-
thesis, the angles AB C and D E F are equal ; adding
these to the former, the angles GBCand GE Fare B
equal. Hence the lines B C and E F .are parallel.

L .
B

b 3
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A D

D
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C
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ProrosiTioNn XXX. THEOREM.

(121) If two right lines (A B, CD) be parallel to the
same right line (EF), they are parallel to each
other.

Let the right line GK intersect them; the angle AGH is
equal 1o the angle G H F (XXIX); and also the
angle HK D is equal to G HF (XXIX); there-
fore A G H is equal to GK D ; and therefore the
right lines AB and C D are parallel.

(122) Cor.—Hence two parallels to the same line
cannot pass through the same point. This is, in faet, equivalent to the
twelfth axiom (115).

ProrosiTion XXXI, ProsLEM.
(123) Through a given point (C) to draw a right line
parallel to a given right line (A B).

Solution.
In the line A B take any point F, join CF, and at the point
C and with the right line CF make the angle _o 4
FCE equal to AFC (XXIII), but at the /
opposite side of the line CF; the line DE is
parallel to A B. 4 .
Demonstration.

For the right line F C intersecting the lines DE and AB
makes the alternate angles E CF and A F C equal, and therefore
the lines are parallel (XXVII).

Prorosition XXXII. THEOREM.

(124) If any side (A B) of a triangle (A B C) be pro-
duced, the external angle (F BC) is equal to
the sum of the two internal and opposite an-
gles (A and C); and the three internal angles
of every triangle taken together are equal to
two right angles.

Through B draw B E parallel to A C(XXXI.) The angle FBE

is equal to the internal angle A {XXIX), and the b

angle EBC is eqlual to the alternate C (XXIX); »

therefore the whole external angle F B C is equal

to the two internal angles A and C.
The angle ABC with FBC is equal to two « °
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right angles (XIII); but FB C is equal to the two angles A and
C (first part) ; therefore the angle A B C together with the angles
A and C is equal to two right angles. See Appendix, II.

(125) Cor. 1.—If one angle of a triangle be right, the sum of the
other two is equal to a right angle.

(126) Cor. 2.—If one angle of a triangle be equal to the sum of the
other two angles, that angle is a right angle.

(127) Cor. 3.—An obtuse angle of a triangle is greater and an acute
angle less than the sum of the other two angles.

(128) Cor. 4.—If one angle of a triangle be greater than the sum of
the other two it must be obtuse; and if it be less than the sum of the
other two it must be acute.

(129) Cor. 5.—If two triangles have two angles in the one respec-
tively equal to two angles in the other, the remaining angles must be
also equal.

(180) Cor. 6.—Isosceles triangles having equal vertical angles must
also have equal base angles.

(181) Cor. 7.—Each base angle of an isosceles triangle is equal to
half the external vertical angle.

(132) Cor. 8.—The line which bisects the external vertical angle of
an isosceles triangle is parallel to the base, and vice versa.

(133) Cor. 9.—In a right-angled isosceles triangle each base angle is
equal to half a right angle.

(134) Cor. 10.—All the internal angles of any rectilinear figure

ABCDE, together with four right angles, are equal c

to twice as many right angles as the figure has sides. " o

Take any point F within the figure, and draw the » 4

right lines FA, FB, FC, FD, and FE. There are

formed as many triangles as the figure has sides,and 4 R

therefore all their angles taken together are equal to twice as

many right angles as the figure has sides (XXX11); but the an-
les at the point F are equal to four right angles (83) ; and there-

%ore the angles of the figure, together with four right angles, are

equal to twice as many right angles as the figure has sides.

This is the first corollary in the Elements, and the following is the
second.

(135) Cor.11.—The externa’ angles of any rectilinear figure
are together equal to four right angles: for each

external angle, with the internal adjacent to it, is -
equal to two right angles (XIII); therefore all the

external angles with all the internal are equal to

twice as many right angles as the figure has sides;

but the internal angles, together with four right angles, are equal
to twice as many right angTes as the figure has sides (134). Take
from both, the interval angles and the external remain equal to
four right angles.



BOOK TIIE FIRST. 45

€ _* This corollary is only true of what are called conver  figures ; that
is, of figures in which every internal angle is less than two right angles.
Some figures, however, have angles which are called reentrant angles,
and which are greater than two right angles, Thus in A

this figure the angle A B C exceeds two right angles, c
by the angle K B A, formed by the side B A with the

production of the side B C. This angle K B A is that B
which in ordinary cases is the external angle, but which

in the present instance constitutes a part of the internal angle, and in this
case there is no external angle. The angle which is considered as the
reentrant angle, and one of the internal angles of the figure is marked
with the dotted curve in the figure. See (14).

*.* (136) A figure which has no reentrant angle is called a conver
figure. : ‘

It should be observed, that the first corollary applies to all recti-

linear figures, whether convex or not, but the second only to convex
figures.
*.* (137) If a figure be not convex each reentrant angle exceeds two
right angles by a certain excess, and has no adjacent external angle,
while each ordinary angle, together with its adjacent external angle, is
equal to two right angles. Hence it follows, that the sum of all the
angles internal and external, including the reentrant angles, is equal
to twice as many right angles as the figure has sides, together with
the excess of every reentrant angle above two right angles. But (134)
the sum of the internal angles alone is equal to twice as many right
angles as the figure has sides, deducting four ; hence the sum of the
external angles must be equal to those four right angles, together with
the excess of every reentrant ‘angle above two right angles.

The sum of the external angles of every convex figure must be the
same; and, however numerous the sides and angles be, this sum can
never exceed four right angles.

If every pair of alternate sides of a convex figure be produced to
meet, the sum of the angles so formed will be equal to 2z — 8 right
angles. This may be proved by showing that each of these angles with
two of the external angles is equal to two right angles.

*.* (138) Cor. 12.—The sum of the internal angles of a figure is equal
to a number of right angles expressed by twice the number of sides,
deducting four ; also as each reentrant angle must be greater than two
right angles, the sum of the reentrant angles must be greater than
twice as many right angles as there are reentrant angles. Hence it
follows, that twice the number of sides deducting four, must be greater
than twice the number of reentrant angles, and therefore that the
number of sides deducting two, must be greater than the number of
reentrant angles ; from which it appears, that the number of reentrant
angles in a figure must always be at least three less than the number
of sides. There must be therefore at least three angles in every figure,
which are each less than two right angles.

*.* (189) Cowr. 13.—A triangle caunot therefore have any reentrant
angle, which also follows immediately from considering that the three
angles are together equal to two right angles, while a single reentrant
angle would be greater than two right angles,

*2" (140) Cor. 14.—No equiangular figure can have a reentrant angle,
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for if one angle were reentrant all should be so, which cannot be

138).

o )(141) Cor. 15.—If the number of sides in an equiangular figure
be given, the magnitude of its angles can be determined. Since it can
have no reentrant angle, the sum of its external angles is equal to
four right angles ; the magnitude of each external angle is therefore
determined by dividing four right angles by the number of sides. This
being deducted from two right angles, the remainder will be the mag-
nitude of each angle. Thus the fraction whose numerator is 4, and
whose denominator is the number of sides, expresses the part of a right
angle which is equal to the external angle of the figure, and if this
fraction be deducted from the number 2, the remainder will express
the internal angle in parts of a right angle. In the notation of arith-
metic, if # be the number of sides, the external angle is the ;tb and the
internal angle the (2 — £)® of a right angle.

*.* (142) Cor.16.—The sum of the angles of every figure is equal to
an even number of right angles. For twice the number of sides is neces-
sarily even, and the even number four being subducted leaves an even
remainder. Hence it appears, that no figure can be constructed the
sum of whose angles is equal to 3, 5, or 7 right angles, &ec.

*.* (143) Cor.17.—If the number of right angles to which the sum of
the angles of any figure is equal be given, the number of sides may he
found. For since the number of right angles increased by four is
equal to twice the number of sides, it follows, that half the number of
right angles increased by two is equal to the number of sides.

*.* (144) Cor. 18.—If all the angles of a figure be right, it must be
a quadrilateral, and therefore a right angled parallelogram. For (141)
the magnitude of each external angle is determined in parts of a right
angle by dividing 4 by the number of sides; in the present case each
external angle must be a right angle, and therefore 4 divided by the
number of sides must be 1, and therefore the number of sides must be
four. Each of the four angles being right, every adjacent pair is
equal to two right angles, and therefore the opposite sides of the figure
are parallel.

*.¥ (145) Cor. 19.—The angle of an equilateral triangle is equal to
one third of two right angles, or two thirds of a right angle.

. That one third of two right angles is equal to two thirds of one
right angle, easily appears from considering that as three thirds of a
right angle is equal to one right angle, six thirds will be equal to two
right angles, and one third of this is two thirds of one right angle.
(146) Cor. 20.—To trisect a right angle. Construct any equilateral
triangle and draw aline (XXIII), cutting off from the given angle an
angle equal to an angle of the equilateral triangle. This angle being
two thirds of the whole, if it be bisected, the whole right angle will be
trisected. .
By the combination of bisection and trisection a right angle mnay be
divided into 2, 8, 4, 6, 8, &c. equal parts.

N. B. The general problem to trisect any angle is one which has

never been solved by plane Geometry.

*.* (147) Cor. 21.—The multisection of a right angle may be ex-
tended by means of the angles of the regular pclygons.
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In a regular pentagon the external angle is four fifths of a right
angle; the complement of this angle being the fifth of a right angle
solves the problem to divide a right angle into five equal parts.

In a regular heptagon the external angle is four sevenths of a right
angle, which being divided into four equal parts (IX) gives the seventh,
of a right angle, and solves the problem to divide a right angle into
seven equal parts.

Thus in general the problem of the multisection of a right angle is
resolved to that of the construction of the regular polygons, and wice
versa. On this subject the student is referred to the fourth book of the
Elements.

(148) Cor. 22.—The vertical angle A of a triangle is right, acute or
obtuse, according as the line AD which bisects the base B C is equal
to, greater or less than half the base B D. ,

1. If the line A D be equal to half the base B D, the A
triangles A D B and A D C will be isosceles, therefore ﬁ
the angles B A D and C A D will be respectively equal ® )
to the angles B and C. The angle A is therefore equal to the sum of
B and C, and is therefore (126) a right angle.

2. If A D be greater than BD or D C, the anglesBA D and CAD
are respectively less than the angles B and C, and therefore the angle
A is less than the sum of B and C, and is therefore (128) acute.

3 IfADbelessthan BD or D C, the anglesBAD and C A D are
respectively greater than B and C, and therefore the angle A is greater
than the sum of B and C, and is therefore (128) obtuse.

(149) Cor. 23.—The line drawn from the vertex A of a triangle
bisecting the base B Cis equal to, greater or less than half the base,
according as the aungle A is right, acute, or obtuse.

1. Let the angle A be right. Draw A D so that . A
the angle B A D shall be equal to the angle B. The
line AD will then bisect B C, and be equal to half 3¢
of it. )

For the angles B and C are together equal to the angle A (125), and
since B is equal to B A D, C must be equal to C A D. Hence it follows,
(VI) that BD A and C D A are isosceles triangles, and that B D and
C D are equal to-A D and to each other.

2. Let A be acute, and draw AD bisecting BC. The line AD
must be greater than B D orD.C; for if it were equal to them the
angle A would be right, and if it were less it would be obtuse (148).

3. Let A be obtuse, and draw A D bisecting BC. The line AD
must be less than each of the partsBD, D C; for if it were equal to
them the angle A would be right, and if it were greater the angle A
would be acute (148).

(150) Cor. 24.—To draw a perpendicular to a given right line
through its extremity without producing it.

Take a part A B from the extremity A, and construct on %
it an equilateral triangle AC B. Produce B C so that N
C D shall be equal to A C, and draw D A, This will be c
the perpendicular required. For since A C bisects B D,
and is equal to half of it, the angle D A B is right (148). % >
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Pnoposm.on XXXIII. THEOREM.

(150) Right lines (A C and B D) which join the adja-
cent extremities of two equal and parallel right
lines (A B and C D) are themselves equal and
parallel.

Draw the diagonal A D, and in the triangles CD A and B A D
the sides CD and B A are equal (by hyp.); ADis ¢
common to both triangles, and the angle C BA is equal
to the alternate B A D (XXIX); therefore the linesAC | /
and BD are equal, and also the angles CAD and |/
BDA; therefore the right line AD cutting the right 4
lines A C and B D makes the alternate angles equal, and therefore
(XXVII) the right lines A C and B D are parallel.

Prorosition XXXIV. TaEOREM.

(151) The opposite sides (AB and CD, A C and
B D) of a parallelogram. (A D) are equal to
one another, as are also the opposite angles
(A and D,C and B), and the parallelogram
itself is bisected by its diagonal (A D).

For in the triangles CD A, B A D, the alternate angles CD A
and BAD,CAD and B DA are equal to one another o »
(XXIX), and the side A D between the equal angles is
common to both triangles; therefore the sides G D and
C A are equal to AB and B D (XXVI), and the triangle
CDA is equal to the triangle BAD, and the angles A=
ACD and ABD are also equal; and since the angle ACD
with CAB is equal to two right angles taS( XIX), and ABD
with CD B is equal to two right angles, take the equals ACD
and ABD from both, and the remainders CAB and CD B are
equal.

(152) Cor. 1.—If two parallelograms have an angle in the one
equal to an angle in the other, all the angles must be equal each to
each. For the opposite angles are equal by this proposition, and the
adjacent angles are equal, being their supplements.

(153) Cor. 2.—If one angle of a parallelogram be right, all its
angles are right; for the opposite angle is right by (151), and the
adjacent angles are right, being the supplements of a right angle.
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(154) Both diagonals A D, B C being drawn, it may, with a few
exceptions, be proved that a quadrilateral figure which has any #wo of
the following properties will also have the others:

1° The parallelism of AB and C D.

2° The parallelism of A C and B D.

8° The equality of A B and CD.

4° The equality of A C and B D.

5° The equality of the angles A and D.

6° The equality of the angles B and C.

7° The bisection of A D by B C.

8° The bisection of B C by A D.

9° The bisection of the area by A D.

10° The bisection of the area by B C.

These ten data combined in pairs will give 45 distinct pairs; with
each of these pairs it may be required to establish any of the eight
other properties, and thus 360 questions respecting such quadrilaterals
may be raised. These questions will furnish the student with an use-
ful geometrical exercise. Some of the most remarkable cases are
among the following corollaries:

The 9th and 10th data require the aid of subsequent propositions.
(155) Cor. 3.—The diagonals of a parallelogram bisect each other.

For since the sides AC and BD are equal, and , 2
also the angles CAE and BD E, as wellas ACE
and D B E, the sides (XXVI) C E and B E, and also

A E and E D are equal. ¢ D
(156) Cowr. 4.—If the diagonals of a quadrilateral bisect each other,
it will be a parallelogram.

For since AE and E C are respectively equal to D E and E B,
and the angles AEC and D E B (XV) are also equal, the angles
A CE and DB E are equal (IV); and, therefore, the lines A C and
B D are parallel, and, in like manner, it may be proved that A B and
C D are parallel.

(157) Cor. 5.—In a right angled parallelogram the diagonals are
al.

equ

For the adjacent angles A and B are equal, and the 4 B
opposite sides A C and B D are equal, and the side A B
is common to the two triangles CA B and A B D, and
therefore (IV) the diagonals A D and CB are equal. >

If the diagonals of a parallelogram be equal, it will be right angled.

For in that case the three sides of the triangle C AB are respect-
ively equal to those of D B A, and therefore (VIII) the angles A and
B are equal. But they are supplemental, and therefore each is a
right angle.
*4" (158) The converses of the different parts of the 84th proposition
are true, and may be established thus:

If the opposite sides of a quadrilateral be equal it is a parallelogram.

For draw A D. The sides of the triangles ACD and §—P
ABD are respectively equal, and therefore (VIII) the J ‘
angles CAD and AD B are equal, and also the angles ,

h

CDA and DAB. Hence the sides AC and BD, and |
8lso the sides AB and C D are parallel, y




50 ELEMENTS OF EUCLID.

Hence a lozenge is a parallelogram, and a square has all its angles"
t. .

If the opposite angles of a quadrilateral be equal, it will be a
parallelogram.

For all the angles together are equal to four right angles (134) ; and
since the opposite angles are equal, the adjacent angles are equal to
half the sum of all the angles, that is, to two right angles, and there-
fore (XXVIII) the opposite sides are parallel.

If each of the diagonals bisect the quadrilaleral, it will be a
parallelogram.

This principle requires the aid of the 39th proposition n
to establishit. The triangles CAD and CBD are \\
equal, each being half the whole area, therefore
(XXXIX) the lines AB and C D are parallel. In the ¢ D
same manner DA B and D C B are equal, and therefore A C and B D
are parallel.

*.¥ (159) The diagonals of a lozenge bisect its angles.

For each diagonal divides the lozenge into two isosceles triangles
whose sides and angles are respectively equal.

*» Y (160) If the diagomals of a quadrilateral bisect its angles, it will
be a lozenge.

For each diagonal in that case divides the figure into two triangles,
having a common base placed between equal angles, and therefore
(VI) the conterminous sides of the figure are equal.

*.* (161) To divide a finite right line A L into any given number of
equal parts.

From the extremity A draw any right line A X
of indefinite length, and take upon it any part A B. -
Assume B C, C D, D E, &c. successively equal to 8. S :

A B (III), and continue this until a number of parts

be assumed on A X equal in number to the paris 4 2 ¢ 4 *

into which itis required to divide AL. Join the extremity of the last
part E with the extremity L, and through B C D, &c. draw parallels
to EL. These parallels will divide A L into the required number of
equal parts.

It is evident that the number of parts is the required number.

But these parts are also equal. For through b draw b m parallel
to AE, and b c is a parallelogram ; therefore b m is equal to BC or
to AB. Also theangle A is equal to the angle cbm, and AbB to
bem, Hence (XXVI) A b and bc are equal. In like manner it may
be proved, that b ¢ and ¢ d are equal, and so on.

(162) Parallelograms whose sides and angles are equal are them-
selves equal. Forthe triangles into which they are divided by their
diagonals have two sides and the included angles respectively equal,
and are therefore (IV) equal, and therefore their doubles, the parallelo-
grams, are equal.

(163) Hence the squares of equal lines are equal.

(164) Also equal squares have equal sides. For the diagonals being
drawn, the right angled isosceles triangles into which they divide the
squares are equal ; the sides of these triangles must be equal, for if not
let parts be cut off from the greater equal to the less, and their extre-
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mities being joined, an isosceles right angled triangle will be found

® equal to the isosceles right angled triangle whose base is the diagonal
of the other square (IV), and therefore equal to half of the other square,
and also equal to half of the square a part of which it is ; thus a part
of the half square is equal to the half square itself, which is ahsurd.

ProrosiTion XXXV,

(165) Parallelograms on the same base (B C) and be-
tween the same parallels are equal.

For the anﬁles BAF and CDF and also BEA and CFD
are equal (XXIX), and

the sides AB and DC ¢ F AL DF » B »
are also equal (XXXIV?,
and therefore (XXVI) L

the triangles BAEand ® ¢ ® €

CDF are equal. These being successively taken from the whole
quadrilateral B A F C, leave the remainders, which are the paral-
lelograms B D and B F, equal.

We have in this proof departed from Euclid in order to avoid the sub-
division of the proposition into cases. The equality which is expressed
in this and the succeeding propositions is merely equality of area, and
not of sides or angles. The mere equality of area is expressed by
Legendre by the word equivalent, while the term equal is reserved for
equality in all respects. We have not thought this of sufficient import-
ance however to justify any alteration in the text.

Prorosition XXXVI. ‘ THEOREM.

(166) Parallelograms (B D and E G) on equal bases
and between the same parallels are equal.

Draw the right lines BF and CG.
Because the lines BC and FG are equal to the same E H
(XXXIV), thi{som equal to one another; *—2__F o

but they are parallel, therefore B F and
C G which join their extremities are parallel
(XXXIII), and B G is a parallel sthere- = —<¢ @ =
fore equal to both BD and EG (XXXYV), and therefore the

parallelograms B D and E G are equal.

It is here supposed that the equal bases are placed in the same right
line.
(167) Cor.—If two opposite sides of a parallelogram be divided
into the same number of equal parts, and the corresponding points of
division be joined by right lines, these right lines will severally divide
the parallelogram into as many equal parallelograms.
E2
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ProrositTion XXXVII. THEOREM. ‘-

(168) Triangles (BAC and BF C) on the same base
and between the same parallels are equal.

Through the point B draw BE parallel to CA, and draw
B D parallel to C F, and produce A F to meet
these lines at E and D. The figures BEAC and
BDFC are parallelograms on the same base BC /
and between the same parallels, and therefore, §—
(XXXYV) equal; and the triangles BAC and BF C are their
halves (XXXIV), and therefore also equal.

ED A Y

ProrosiTion XXXVIII.

(169) Triangles on equal bases and between the same
parallels are equal.

For by the same construction as in the last proposition they
" are shown to be the halves of parallelograms on equal bases and
between the same parallels.

(170) Cor. 1.—Hence a right line drawn from the vertex of a
triangle bisecting the base bisects the area.

This proves that if two triangles have two sides respectively equal,
and the included angles supplemental, the areas will be equal ; for the
two triangles into which the bisector of the base divides the triangle
are thus related. :

(171) Cor. 2.—In general, if the base of a triangle be divided
into any number of equal parts (161) lines drawn from the vertex to
the several points of division will divide the area of the triangle into as
many equal parts.

ProrosiTion XXXIX. THEOREM.

(172) . Equal triangles (B A C and BD C) on the same
base and on the same side of it are between
the same parallels.

For if the right line AD which joins the vertices of the tri-
angles be not parallel to B C, draw through the
point A a right line AE parallel to BC, cutting a
side B D of the triangle B D C or the side produced
in a point E different from the vertex, and draw

o

Because the right lines AE and B C are parallel, the triangle
BEC is equal to BAC (XXXVII); but B E) C is also equal to
B A C (hyp.), therefore B E C and BD C are equal ; a part equal
to the whole, which is absurd. Therefore the line AE is not
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parallel to B C; and in the same manner it can be demonstrated,
- that no other line except A D is parallel to it;therefore AD is
parallel to BC.

ProrosiTion XL. THEOREM.

(173) Equal triangles (BAC and EDF) on equal
bases and on the same side, are between the

same parallels.
For if the right line AD which joins the vertices of the two
triangles be not parallel to B F, draw through o
the point A the right line A G parallel to BF,
cutting a side D E of the triangle EDF, or
the side produced in a point G different from
the vertex, and join F G. : o %

Because the right line A G is parallel to BF, and B C and
E F are equal, the triangle G E F is equal to BA C (XXXVIII);
but EDF is also equal to BAC ?hyp), therefore E G F and
EDF are equal; a part equal to the whole, which is absurd.
Therefore A G is not parallel to BF, and in the same manner it
can be demonstrated, that no other line except A D is parallel to
BF, therefore AD is parallel to BF.

From this and the preceding propositions may be deduced the fol-
lowing corollaries.
(174) Cor. 1.—Perpendiculars being drawn through the extremities
of the base of a given parallelogram or triangle, and produced to meet
the opposite side of the parallelogram or a parallel to the base of the
triangle through its vertex, will include a right angled parallelogram
which shall be equal to the given parallelogram ; and if the diagonal
of this right angled parallelogram be drawn, it will cut off a right
angled triangle having the same base with the given triangle and equal
toit. Hence any parallelogram or triangle is equal to a right angled
parallelogram or triangle having an equal base and altitude.
(175) Cor. 2.—Parallelograms and triangles whose bases and alti-
tudes are respectively equal are equal in area.
(176) Cor. 3.—Equal parallelograms and triangles on equal bases
have equal altitudes.
(177)  Cor. 4.—Equal parallelograms and triangles in equal altitudes
have equal bases.
(178) Cor. 5.—If two parallelograms or triangles have equal alti-
tudes, and the base of one be double the base of the other, the area of
the one will be also double the area of the other. Also if they have
equal bases and the altitude of one be double the altitude of the other,
the area of the one will be double the area of the other.
(179) Cor. 6.—The line joining the points of bisection of the sides of
a triangle is parallel to its base.

For if lines be drawn from the extremities of the base to the points
of bisection they will each bisect the area (170) of the triangle ; there-
fore the triangles having the base of the given triangle as a common
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base, and their vertices at the middle points of the sides, are equal, and
therefore between the same parallels.

(180) Cor. 7.—A parallel to the base of a triangle through the
point of bisection of one side will bisect the other side.

For by the last Cor. the line joining the points of bisection of the
sides is parallel to the base, and two parallels to the same line cannot
pass through the same point. .
(181) Con. 8.—The lines which join the middle points
D ETF of the three sides of a triangle divide it into four =~ >{A®
triangles which are equal in every respect, A F o
(182) Cor.9.—The line joining the points of bisection of each pair
of sides is equal to half of the third side.

" (188) Cor. 10.—If two conterminous sides of a parallelogram be
divided each into any number of equal parts, and through the several
points of division of each side parallels be drawn to the other side, the
whole parallelogram will be divided into a number of equal parallelo-
grams, and this number is found by multiplying the number of parts in
one side by the number of parts in the other. This is evident from
considering, that by the parallels through the points of division of one
side the whole parallelogram is resolved into as many equal parallelo-
grams as there are parts in the side through the points of which the
parallels are drawn ; and the parallels through the points of division of
the other side resolve each of these component parallelograms into as
many equal parallelograms as there are parts in the other side. Thus
the total number of parallelograms into which the entire is divided, is
the product of the number of parts in each side.

*.¥ (184) Cor.11.—The square of a line is four times the square of
its half,

*.* (185) Cor.12.—If the sides of a right angled parallelogram be
divided into any number of equal parts, and such that the parts of one
side shall have the same magnitude as those of the other, the whole
parallelogram will be equal to the square of one of the parts into which
the sides are divided, multiplied by the product of the number of parts
in each side. Thus, if the base of the parallelogram be six feet and the
altitude be eight feet, the area will be one square foot multiplied by
the product of six and eight or forty-eight square feet. In this sense
the area of such a parallelogram is said to be found by multiplying its
base by its altitude.

®.¥ (186) Cor. 13.—Also, since the area of any parallelogram is equal
to that of a right angled paralle’ogram having the same base and alti-
tude, and that of a triangle is equal to half that area, it follows that
the area of a parallelogram is the product of its base and its altitude,
and that of a triangle is equal to half that product.

The phrase ‘ the product of two lines,’ or ‘multiplying one line by
another, is only an abridged manner of expressing the multiplication
of the number of parts in one of the lines by the number of parts in the
other. Multiplication is an operation which can only be effected,
Rroperly speaking, by a number and not by a line.

*«" (187) Cor. 14.—The area of a square is found numerically by mul-
tiplying the number of equal parts in the side of the square by itself.
Thus a square whose side is twelve inches centaius in its area 144
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square inches. Hence, in arithmetic, when a number is multiplied
by itself the product is called its square. Thus 9, 16, 25, &c. are the
squares of 3, 4,5, &c.; and 3, 4, 5, &c. are called the square roots of
the numbers 9, 16, 25, &ec. Thus square and square root are corre-
lative terms.

*.* (188) Cor. 15.—If the four sides of a quadrilateral figure AB C D
be bisectell, and the middle points EF H G of each pair of conterminous
sides joined by right lines, those joining lines will form a parallelogram
E F H G whose area is equal to half that of the quadrilateral.

- Draw CA and BD. The lines E F and G H are parallel to CA
(179), and equal to half of C A (182). Therefore E F
and G H are equal and parallel, and therefore (XXIII)
EF HG is a parallelogram. But E B F is one-fourth
of CB A, and G HD one-fourth of C D A (181), and
therefore EB F and G D H are together one-fourth of
the whole figure. In like manner ECG and FA H are
together one-fourth of the whole, and therefore FBE,
ECG,GDH,and HAF are together one-half of
the whole figure, and therefore E F H G is equal to half the figure.
*. (189) Con. 16.—A4 trapezium is equal to @ parallelogram in the
same altitude, and whose base is half the sum of the parallel bases.

* Let CD be bisected at H, and through H draw G F parallel
to AB. B € G
Since CG and F D are parallel, the angles G C H and -
G are respectively equal to D, and H F D (XXIX) and
CH is equal to HD, therefore (XXVI) CG isequalto 4 ¥ »
FD, and the triangle CH G to the triangle D HF. Therefore AF
and B G are together equal to AD and BC, and the parallelogram
A G to the trapezium A C; and since A F and B G are equal, A F is
half the sum of A D and B C.

Prorosirion XLI. TueorewM.

(190) If a parallelogram (B D) and a triangle (B EC)
have the same base and be between the same

parallels, the parallelogram is double of the tri-
angle. :
Draw CA. The triangle BE C is equal to the A
triangle BA C (XXXVII); but BD is double of the
triangle BAC (XXXIV), therefore BD is also
double of the triangle B E C. 3
(191) This proposition may be generalized thus: If a parailelogram
and triangle have equal bases and altitudes, the parallelogram is double
the triangle (175).
(192) Also, If a parallelogram and a triangle have equal altitudes,
and the base of the triangle be double the base of the parallelogram, the
parallelogram and triangle will be equal (178).
(193) If a porallelogram and triangle have equal bases, and the
altitude of the triangle be double the altitude of the parallelogram, they
will be equal.
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Proposition XLII. ProsLEM.

(194) To construct a parallelogram equal to a given
triangle (B A C) and having an angle equal to
a given one (D).
Solution.

Through the point A draw the right line A F parallel to B C,
bisect B C the base of the triangle in E, and at AT G
the point E and with the right line C E make the
angle C E F equal to the given one D ; through C /L
draw C G parallel to EF until it meet the line
AFinG. CF is the required parallelogram. =

Demonstration.

Because E C is parallel to A G (const.), and E F parallel to
CG, E G is a parallelogram, and has the angle C E F equal to the
given one D (const.) ; and it is equal to the triangle B A C, because
it is between the same parallels and on half of the base of the
triangle (192).

ProposiTion XLIII. THEOREM.

- (195) In a parallelogram (A C) the complements (A K
and K C) of the parallelograms about the dia-
gonal (E G and HF) are equal.

Draw the dial.gonal BD, and through alg int in it K draw
the right lines FE and G H parallel to and An o
BA; then EG and HF are the parallelograms /
about the diagonal, and AK and K C their com- ./
plements.

Because the triangles BAD end BCD are ™* ¢ °
equal (XXXIV), and the triangles BGK, KFD are equal to
BEK, KHD (XXXIV); take away the equals BG K and
KEB,DFKand KHD from the equals BCDand BAD, and
the remainders, namely, the complements AK and KC, are
equal
(196) Each parallelogram about the diagonal of a lozenge is itself a
lozenge equiangular with the whole. For since’A B and A D are equal,
ABD and ADB are equal . ButE K B and AD B are equal
(XXIX), therefore E K B and EB K are equal, therefore E K and
E B are equal, and therefore E G is a lozenge. It is evidently equi-

lar with the whole.
(197) It is evident that the parallelograms about the diagonal, and
also their complements, are equiangular with the whole parallelogram ;
for cach has an angle in common with it (152).
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ProrosiTion XLIV. ProBLEM.

(198) To a given right line (A B) to apply a parallel-
ogram which shall be equal to a given triangle
(C), and have one of its angles equal to a given

angle (D).
€ (D) Solution.

Construct the parallelo, B E F G equal to the given triangle
C, and having the angle B equal to D,

FE .3
and so that BE be i the same right
line with AB; and produce FG, and :j
through A draw AH parallel to BG, /c)\ 7 3
and join HB. Then because HL and WA Tn
FK are parallel the angles LHF and F are together equal to
two right angles, and therefore BHF and F are together less
than two right angles, and therefore H B and F E being produced
will meet as at K. Produce H A and G B to meet parallel
to HF, and the parallelogram A M will be that which is required.

Demonstration.

It is evidently constructed on the given line AB; also in the
parallelogram F L, the parallelograms AM and GE are equal
(XLIII); but GE is equal to C (const.), therefore AM is equal
to C. The angle E B G is equal to ABM (XV), but also to D
(const.), therefore ABM is equal to D. Hence AM is the
parallelogram required.

Prorosition XLV. ProBLEM.

(199) To construct a parallelogram equal to a given
rectilinear figure ABCED, and having an
angle equal to a given one (H).
Solution.
Resolve the given rectilinear figure into triangles; construct a

arallelogram R Q equal to the triangle 4
EDA (XLIV), and having an angle I . n

equal to the given apgle H; on a side of T .
it, RV, construct the parallelogram XV - v
equal to the triangle EB D, and having v x »
an angle equal to the given one (XLIV), ,!_ L ¥

and so on construct parallelograms equal to the several triangles
into which the figure is resolved. L Q is a parallelogram equal
to the given rectilinear figure, and having an angle I equal to the
given angle H.
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Demonstration.

Because RV and 1Q are parallel the angle VRI together
with I is equal to two right angles (XXIX); but VRX is equal
to I (const.), therefore VRI with VRX is equal to two nght
angles, and therefore I R and R X form one right line (XIV); in the
same manner it can be demonstrated, that R X and X L form one
right line, therefore 1 L is a right line, and because Q V is parallel
to IR the angle Q V R together with VR is equal to two right
angles (XXIX); but IR is parallel to VF, and therefore IR§ is
equal to FVR (XXIX), and therefore QV R together wth
FVRis equal to two right angles, and QV and FV form one
right line g(IV) ; in the same manner it can be demonstrated of
V F and FY, therefore QY is a right line and also is parallel to
1L; and because LY and RV are parallel to the same line X F,
LY is parallel to RV (XXX&; but 1Q and RV are parallel,
therefore LY is parallel to I Q, and therefore LQ isa l_fn.mllel-
ogram, and it has the angle I equal to the given angle H, and is
equal to the given rectilinear figure AB CE D. ‘
(200) Cor.—Hence a parallelogram can be applied to a given
right line and in a given angle equal to a given rectilinear figure,
by applying to the given line a parallelogram equal to the first
triangle.

ProrosiTion XLVI. ProBLEM.
(201) On a given right line (AB) to describe a
square.
Solution.

From either extremity of the given line A B draw a line AC
perpendicular (XI), and equal to it (III); throughC ¢ o
draw CD parallel to AB (XXXI), and through B
draw B D parallel to AC; AD is the required square. 't+—§

Demonstration.

Because AD is a parallelogram (const.), and the angle A a
right angle, the angles C, D, and B are also right (153) ; and be-
cause AC is equal to AB (const.), and the sides CD and DB
are equal to AB and AC (XXXIV), the four sidles AB, AC,
CD, % B are equal, therefore A D is a square.

ProrosiTion XLVIL THEOREM.

(202) In a right angled triangle (A B C) the square of
the hypotenuse (A C) is equal to the sum of
the squares of the sides (A B and C B).
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On the sides AB, AC, and B C describe the squares A X,
AF, and BI, and draw B E parallel to either =
CForAD, and join BFand AL

Because the angles ICB and ACF are

ual, if BCA be added to both, the angles
ICA and BCF are egual, and the sides IC,
C A are equal to the sides B C, CF, therefore
the triangles IC A and BCF are equal (IV);
but A Z is parallel to C1, therefore the paral- TE
lelogram C% is double of the triangle I 8 A, as they are upon the
same base C1I, and between the same parallels (XLI); and the
parallelogram CE is double of the triangle BCF, as they are
upon the same base CF, and between the same parallels (XLI);
therefore the parallelograms CZ and CE, being double of the
equal triangles ICA and BCF, are equal to one another. In
the same manner it can be demonstrated, that AX and A E are
equal, t}.(hgrefore the whole D ACF is equal to the sum of CZ
and A X.

. (203) Con. 1.—Hence if the sides of a right angled triangle be
given in numbers, its hypotenuse may be found ; for let the squares o.
the sides be added together, and the square root of their sum will be
the hypotenuse (187).

- (;I(’)(;) Cor. 2.—If the hypotenuse and one side be given in num-
bers, the other side may be found ; for let the square of the side be sub-
tracted from that of the hypotenuse, and the remainder is equal to the
square of the other side. The square root of this remainder will there-
fore be equal to the other side.

(205) Cor. 3.—Given any number of right lines, to find a line whose
square is equal to the sum of their squares. Draw two lines A B and
BC at right angles, and equal to the first two of the given E
lines, and draw A C. Draw C D equal to the third and per- D
pendicular to AC, anddraw AD. Draw D E equal to the
fourth and perpendicular to A D, and draw A E, and so on.
The square of the line A E will be equal to the sum of the
squares of AB, BC, CD, &c., which are respectively equal B 4
to the given lines.

For the sum of the squares of AB and B C is equal to the square
of AC. The sum of the squares of A C and CD, or the sum of the
squares of AB, B C, CD is equal to the square of AD, and so on;
the sum of the squares of all the lines is equal to the square of A E.
{206) Cor. 4.—Tofind a right line whose square is equal to the differ
ence of the squares of two given right lines.

Through one extremity A of the lesser line A B draw an indefinite
perpendicular A C; and from the other extremity B inflect
on A C a line equal to the greater of the given lines (60) ; b}
which is always possible, since the line so inflected is -
greater than B A, which is the shortest line which can
be drawn from B to AC. The square of the intercept A D
will be equal to the difference of the squares of B D and
B A, or of the given lines.

[+
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(207) Cor. 8.—If a perpendicular (B D) be drawn from the vertc
of a triangle to the base, the difference of the squares of the sid
(A B and C B) is equal to the difference between the squares of tl
segments (A D and C D). For the square of A B is equal to the su
of the squares of A D and B D, and the square

B
of CB is equal to the sum of the squares of y
CDandB D. The latter being taken from the /
former, the remainders, which are the difference S £ :

of the squares of the sides AB and CB, and *
the difference of the squares of the segments A D and C D, are equa
(208) To understand this corollary perfectly, it is necessary to atten
to the meaning of the term segments. When a line is cut at any poin
the intercepts between the point of section and its extremities are calle
its segments. When the point of section lies between the extremitic
of the line it is said to be cut infernally ; but when, as sometimes haj
pens, it is not the line itself butits production that is cut, and therefo:
the point of section lies beyond one of its extremities, it is said to 1
cut externally. By due attentionto the definition of segments give
above, it will be perceived that when a line is cut tnéernally, the line
the sum of its own segments ; but when cut ezxternally, it is their differenc

The case of a perpendicular from the vertex on the base of a triang

offers an example of both species of section. If the perpendicular fa
within the triangle, the base is cut internally byit; but if it fall outsid
it is cut externally. In both cases the preceding corollary applies, an
is established by the same proof. The segments are in each case ti
intercepts AD and C D between the perpendicular and the extrem
ties of the base.
(209) " Cor. 4.—If a perpendicular be drawn from the vertex B to ¢}
base, the sums of the squares of the sides and alternate segments a
equal.

qFor the sum of the squares of AB and B C is equal to the sum
the squares AB, BD and C D, since the square

of B Cis equal to the sum of the squares of A ,
B Dand D C. Fora similar reason, the sum /
A DC o 1

of the squaresof AB and B C is equal to the
sum of the squares of AD, DB and B C.
Hence the sum of the squares of AB, B D and D C is equal to that «
AD, B Dand BC. Taking the square of B D from both, the sui
of the squares of A B and C D is equal to that of B C and AD.

Whether we consider the 47th proposition with reference to the pect
liar and beautiful relation established in it, or to its innumerable use
in every department of mathematical science, or to its fertility in th
consequences derivable from it, it must certainly be esteemed the mo:
celebrated and important in the whole of the elements, if not in th
whole range of mathematical science. It is by the influence of thi
proposition, and that which establishes the similitude of equiangule
triangles (in the sixth book), that Geometry has been brought unde
the dominion of Algebra, and it is upon these same principles that th
whole science of Trigonometry is founded.

The XXXIId and XLVI1Ith propositions are said to have been dit
covered by Pythagoras, and extraordinary accounts are given of h
exultation upon his first perception of their truth. It is howew
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supposed by some.that Pythagoras acquired a knowledge of them iun
Egypt, and was the first to make them known in Greece.

Besides the demonstration in the Elements there are others by which

this celebrated proposition is sometimes established, and which, in a
principle of such importance, it may be gratifying to the student to
know.
*.* (210) 1° Having constructed squares on the sidesA B, B C on
opposite sides of them from the triangle, pro- L
duce I H and F G to meet at L. Through A a
and C draw perpendiculars to the hypotenuse, K o
and join K O, 2 \ "

In the triangles A F' K and A B C, the angles
F and B are equal, being both right, and F A K 1
and B A C are equal, having a common comple- N\
ment K A B, and the sides FA and A B are Noc
equal. Hence A K and A C are equal, and in like manner C O and
A C are equal. Hence A O is an equilateral parallelogram, and
the angle at A being right, it is a square. The triangle L. G B is, in
every respect, equal to B C A, since B G is equal to B A, and LG is
equal to B H or B C, and the angle at G is equal to the right angle B.
Hence it is also equal in every respect to the triangle KF A. Since,
then, the angles GL B and FK A are equal, K A is parallel to B L,
and therefore AL is a parallelogram. The square A G and the
parallelogram A L are equal, being on the same base A B, and
between the same parallels (XXXV); and for the same reason the
parallelograms AL and KN are equal, A K being their common
base. Therefore the square A G is equal to the parallelogram K N,

In like manner the square C H is equal to the parallelogram O N,
and therefore the squares A G and C H are together equal to A O.

2% (211) 2° Draw AG perpendicular and equal to A C, and produce
B A, and draw G D perpendicular to it. In the same 5 , , »

manner draw C H perpendicular and equal to C A, and
produce B C and draw H F perpendicular to it. Produce x ¢
F Hand D G to meet in E, and draw G H. : e

The triangles G D A and H F C are equal in every
respect to A B C (XXVI). Hence FC,GDandAB ® 4 B
are equal, and also HF, D A and B C, and the angles in each triangle
opposed to these equal sides are equal. Also, since G A and H C are
equal to A C, and therefore to each other, and the angles at A and C
are right, A H is a square (XXXIII). Since G His equal to A C,
and the anglesat G and H are right, it follows that the triangle G E H
is in all respects equal to A B C (XXVI), in the same manner as for
the trianglesG D A and HF C.

Through C and A draw the lines CK and A L parallel to BD
and BF. Since C B and A I are equal and also CB and A D, it
follows that A K is the square of B C, and in like manner that C L
is the square of A B. The parallelograms B I and K L have bases
and altitudes equal to those of the triangle A B C, and are therefore
each equal to twice the triangle, and together equal to four times the
triangle. Hence BI and K L are together equal to ABC, CFH,
HE G and G D A together. Taking the former and the latter success-
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ively from the whole figure, the remainders are in the one case
squares D I and C L of the sides B C and B A, and in the latter tl
square A H of the hypotenuse. Therefore, &c.

(212) 8° On the hypotenuse A C construct the square A H, an
draw GD and H E parallel to C B and A B, and produce these line
to meet in F, E and D. The triangles ABC,AD G, GEH an
H F C are proved in every respect equal (XXVI). It is
evident, that the angles D, E, F, B are all right. But
also since D G and A B are equal, and also G E and
A D, taking the latter from the former D E and D B
remain equal. Hence B E is a square on the difference
D B of the sides; and therefore the square of AC is & J
divided into four triangles, in all respects equal to A B C and th
square BE of the difference of the sides.

Now let squares B G and B I be constructed on the sides, and tak
A E on the greater side equal to B C the less, and x_x
draw E H parallel to B C, and produce G C to K.
Draw G E and A H.

The part B E is the difference of the sides AB o ¢
and B C. And since BFisequal to AB, FC is
also the difference of the sides, wherefore F Lis the A
square of this difference. Also since AE and B D are equal AB and
D E are equal, therefore the parallelogram D L is double the triangle
ABC. The sides and angles of the parallelogram A H are equal
respectively to those of D L, and therefore these two parallelograms
together are equal to four times the triangle A B C. Hence the
squares A F and B G may be divided into four triangles GDE, G L E,
AEHand A IH in all respects equal to the triangle A B C, and the
square C H of the difference of the sides. But by the former con-
struction the square of the hypotenuse was shown to be divisible into
the same parts. Therefore, &c.

The peculiarity of this proof is, that it shows that the. squares of the
sides may be so dissected that they may be laid upon the square of the
hypotenuse so as exactly to cover it, and vice versa, that the square of
the hypotenuse may be so dissected as to exactly cover the squares of
the sides.

(218) The forty-seventh proposition is included as a case of the
following more general one taken from the mathematical collections of
Pappus, an eminent Greek Geometer of the fourth century.

In any triangle (A B C) parallelograms A E and C G being de-
scribed on the sides, and their sides D E and 1
F G being produced to meet at H, and H B I 2
being drawn, the parallelogram on A C whose @
sides are equal and parallel to B H is equal to » W
AE and C G together. r
For draw A K and C L parallel to B H, to A 1 c
meet D Hand FHinK and L. Since A H is a parallelogram,
A K isequal to B H, and for a similar reason C L is equal to B H.
Hence C L and A K are equal and parallel, and therefore (XXXIII)
A L is a parallelogram. The parallelograms A E and A H are
equal, being on the same base A B, and between the same parallels,




BOOK TIIE FIRST. 63

and also A H and K I whose common base is AK. Hence the
parallelograms AE and KT are equal. In like manner the paral-
lelograms C G and LI are equal, and therefore AE and C G are
together equal to A L.

This proof is applied to the forty-seventh in (210).
(214) The forty-seventh proposition is also a particular case of the
following more general one: )

In any triangle (A B C) squares being constructed on the sides (A B
and B C) and on the base; and perpendiculars (A D F and C E G)
being drawn from the extremities of the base to the sides, the parallelo-
grams A G and C F formed by the segments C D, A E, with the sides
of the squares, will be together equal to the square of the base A C.

For draw A Hand B I; and also B K perpendicular to A C. .

The parallelograms K C and C F ate proved equal, exactly as
CE and C Z are proved G
equal in the demonstra- B
tion of the XLVIIth. ,
And in like manner it
follows, that AK and x
AG are equal, and
therefore the square A ¢
on AC is equal to the
parallelograms A G and
CF together. ) K1

If the triangle be right angled at B, the lines GE and D F will
coincide with the sides of the squares, and the proposition will become
the XLVIIth.
(215) If B be acute the perpendiculars A D and C E will fall within
the triangle, and the parallelograms A G and C F are less than the
squares of the sides; butif B be obtuse the perpendiculars fall outside
the triangle, and the parallelograms A G and C F are greater than the
squares of the sides.

Hence the forty-seventh proposition may be extended thus:

The square of the base of a triangle is less than, equal to, or greater
than the sum of the squares of the sides, according as the vertical angle
18 less than, equal to, or greater than a right angle.

ProrosiTion XLVIII. THEOREM.

(216) If the square of one side (A C) of a triangle
(ABC) be equal to the sum of the squares of
the other two sides (A B and B C), the angle
(A B C) opposite to that side is a right angle.

From the point B draw B D perpendicular (XI) to one of the

zidl;s A B, and equal to the other B C (III), and join ,

The square of AD is e‘(jlual to the squares of AB 2
e sqi

and B D (XLVII), or to iares of AB and BC
which is equal to B D (const.); but the squares of A
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AB and BC are together equal to the square of A C (hyp.),
therefore the squares of AD and A C are equal, and therefore
the lines them;:lves are equal; but also DB and B C are equal,
and the sidle AB is common to both triangles, therefore the
triangles ABC and ABD are mutually equilateral, and there-
fore also mutuaH{ equiangular, and therefore the angle ABC is
equal to the angle BD; but ABD is a right angle, therefore
A B C is also a right angle.

This proposition may be extended thus:

The vertical angle of a triangle is less than, equal to, or greater than
a right angle, according as the square of the base is less than, equal to,
or grealer than the sum of the squares of the sides.

For from B draw B D perpendicularto A B and equal »
to B C, and join A D.

The square of A D is equal to the squaresof AB end | >&
BDorB C. Theline A C is less than, equal to, or greater
than A D, according as the square of the line A C is less 4 c
than, equal to, or greater than the squares of the sides AB and B C.
But the angle B is less than, equal to, or greater than a right angle,
according as the side A C is less than, equal to, or greater than A D
(XXV, VIII); therefore, &c.



BOOK Il

DEFINITIONS.

(217) 1. Every rectangle or right angled parallelogram is said
to be contained by two right lines which contain
one of its right angles.

¢218) Il In any parallelogram either of the pa- =
rallelograms about the diagonal (EK x| Ne g
or O F) with the two complements (A G
and G D) is called a gnomon. A

(219) Next to the triangle, the most important rectilinear figure is
the rectangle or right angled parallelogram. The areas of all figures
whatever, whether bounded by straight lines or curves, are expressed
by those of equivalent rectangles. To determine a rectangle it is only
necessary to know two sides which are conterminous, for the other
sides being opposed to these are equal to them, and the angles are all
right. It is usual, therefore, to express a rectangle by its two conter-
riinous sides, and it is said to be contained by these. Thus, if A and
B express two lines which are the conterminous sides of a rectangle,
the rectangle itself is called * the rectangle under A and B.’

(220) It was proved in (186) that the area of a parallelogram
can be expressed in numbers by multiplying the number which ex-
presses the length of its base by that which expresses the length of its
altitude. Hence, the area of a rectangle is expressed by multiplying
the numbers representing its sides. The product then expresses the
area. In arithmetic and algebra the product of two numbers is ex-
pressed by placing the sign X between them. Hence, we derive a
shorter way of expressing a rectangle whose sides are A and B, scil.
A x B.

By what has been established in (186), it appears that the area of
every parallelogram is expressed by the product of its base and alti-
tude, and that every triangle is expressed by half the product of any
side and the perpendicular on it from the opposite angle.

The entire of the second book is appropriated to the investigation of
the relations between the rectangles under the segments of right lincs
divided into two or more parts.

Prorosition I. TueOREM.

(221) If there be two right lines (A and B C), one of
which is divided into any number of parts
¥
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(BD, D E, EC), the rectangle under the tw
lines is equal to the sum of the rectangle
under the undivided line (A) and the sever:

parts of the divided line (B C).

H

From tite point B draw B H perpendicular
to B C, take on it B Fequal to A, and through
F draw FL parallel to B C, and draw DG,
EK,andCLpamlleltoBF. A B

It is evident that the rectangle B L is equal to the rectangl
BG, DK, and E L; but the rectangle BL is the rectang
under A and B C, for BF is equal to A: and the rectangles B (
DK, and E L are the rectangles under A and BD, A and D |
and A and E C, for each of the lines B F, DG,and EK
equal to A (XXXIV, Book L.). :

If the line B C be considered as the sum of the several lines B ]
DE, &c. this proposition may be thus announced : *The rectangl
under one line and several others is equal to the rectangle under th
line and the sum of the others.’

(222) Cor.—The rectangle under any two lines is equal to twice 1
rectangle under either of them and half the other, to three times i
rectangle under cither of them and a third of the other, &e. &c.

ProrosiTion II. THEOREM.

(228) If a right line (A B) be divided into any tv
parts (in C), the square of the whole line
equal to the sum of the rectangles und
the whole (A B) and each of the par
(A- C’ CB)'

On A B describe the square ADF B (XLVI, Bookl.), a
through Cdraw CE parallelto AD. Thesquare AFis »
equal to the rectangles AE and CF. But the rectangle
A E is the rectangle under AB and A C, because AD
is equal to A B (const.), and the rectangle C F is the rect- *—=
angle under A B and C B, because CE is equal to A B (XXXI
Book 1. and const.).

(224) In this and the succeeding propositions there is no necess
for the absolute construction of the rectangles to establish the relatic
they express. We shall, therefore, subjoin to each a second demc
stration independent of any construction.
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We are to prove that the square of A is equal to the rect-
angles A X rand A X y taken together.

Let B be drawn equal to A. By (I*) the rectangle B x A is
equal to the rectangles B X 2 and B X y taken together; that is,
(since B is equal to A) to the rectangles A X z and A X y taken
tegether.

As we shall frequently have occasion to express the equality o.

uantities, the language will be abridged by the use of the sign =.

us, ‘A = B’ means ‘ the line A is equal to the line B.’

(225) The second book is generally found to be one of the greatest
difficulties which the student has to encounter in plane geometry. One
- of the causes of this (if not the only cause) is, the great variety of
forms under which the same proposition may present itself. We cannot
do any thing more calculated to remove this difficulty, than to show
from whence this variety of forms arises. We have already stated
that the object of most of the propositions of this book is, to determine
the relations between the rectangles under the parts of divided lines.
We shall first confine our attention to a finite right line divided into
iwo parts.

In this case there are three lines to be considered; 1st, the whole
line; 2nd, its greater part; 8rd, its lesser part; and in the present
proposition the square of the first is compared with the rectangles
under it and the second and third.

If, however, the two parts be considered as two independent lines,
the whole line must be considered as their sum. Under this view the
second proposition becomes, ¢ The square of the sum of any two lines
is equal to the rectangles under the sum and each of them.’

Again, if the whole line A be considered as the greater of two given
right lines and one of the parts x as the less, the other part y must be
their difference. Thus the greater line is, in fact, supposed to be divided
into two parts equal to the less and difference. Under this view, the
second proposition assumes the form, ¢ The square of the greater of two
lines is equal to the rectangle under those lines together with the rectangle
under the greater and difference.’

These, though apparently different from the second proposition, as
announced in the text, are really the same, no other change being
made than in the names given to the line and its parts. They
should not, therefore, be denominated corollaries, as is sometimes
the case. '

If W express the whole line, and P, p its parts, the proposition as
announced in the text may be expressed thus: -

The square f W=W x P + W x ».
(The sign - interposed between two magnitudes signifies their sum.)

It L, ! express any two lines and S express their sum, the second
method of announcing the proposition may be expressed thus :

The square of S = S x L + S x L

Let A be the right line divided into the parts  and y. ' j

* When a reference is made to a proposition without any mention of a ¢ Book,’ the
present book is to be understood.
F2
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And if D represent the difference between L and I, the third me-
thod is: .
The squareof L=L x4+ L x D

In the study of the second book considerable facility may be derived
from the use of these symbols.

ProrosiTion III. THEOREM.

(226" If a right line (AB) be divided into any two
parts (in C), the rectangle under the whole
line (AB) and either part (AC) is equal to
the square of that part (A C) together with
the rectangle under the parts (A C and C B).

On A C describe the square AD FC, and through B draw B E

arallel to A D, until it meet D F produced to E.

gl)'he rectangle A E is equal to the square ADFC "——F
together with the rectangle CE.

But the rectangle AE is the rectangle under
ACand AB, for AD is equal to AC (const.), * ¢ »
and the square A D FC is the square of AC (const.), and the
rectangle CE is the rectangle under AC and C B, for CF is
equal to A C (const.).

Otherwise thus:

Let A be the right line divided into the parts r and y, and *
let B be another line equal to . By (I) the rectangle A x B
=B x *+4 B xy. But since B=ux, *.* the rectangle
B % z is the square of z, and the rectangle B % y is equal
to the rectangle z X y. Hence, &e.

(227) Conformably to the observations on the last proposition, this
may be announced in two other ways.

1. If the two parts of the divided line be considered as two inde-
pendent lines, the whole line being their sum, the proposition becomes,
¢ The rectangle under the sum of two lines, and one of them, is equal
to the square of that one together with the rectangle under the lines.’

2. If the whole line be considered as the greater, one part as the
less, and the other as the difference, the proposition becomes, ¢ The
rectangle under two lines is equal to the square of the less together
with the rectangle under the less and difference.’

(228) Cor. 1.—From this and the last proposition combined it
follows, that the difference of the squares of two lines is equal to the
rectangle under their sum and difference. For by the second, the

B
J
A

* This sign expresses the word ¢ therefore.’
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square of the greater is equal to the rectangle under the lines together
with the rectangle under the greater and difference ; and by the third, the
rectangle under the lines is equal to the square of the less together with
the rectangle under the less and difference. Hence, the square of the
greater is equal to the square of the less together with the rectangles
under the difference of the lines and the lines themselves respectively.
But by (I) the rectangles under the difference, and the lines respectively,
are together equal to the rectangle under the difference and the sum of
the lines. Hence, the square of the greater of two lines is equal to
the square of the less together with the rectangle under their sum and
difference. This rectangle is therefore equal to the difference of their
squares.

this, which is one of the most important principles established in
the second book, is commonly deduced as a corollary from the fifth pro-
position. From the proof just given it appears, however, to be only a
combination of the results of the second and third propositions.
(229) The second and third propositions might be incorporated and
brought under one enunciation, thus: ¢ The difference between the
rectangle under two lines and the square of one of them is the rectangle
under that one and their difference.” If that one be the greater, this is
the second proposition ; and if it be the less, it is the third.
(230) Cor. 2.—Since the greater of two lines is equal to the sum of the
less and difference, it follows, that the sum of the lines is equal to twice
the less together with the difference. Hence we may infer that the rect-
angle under the sum and difference is equal to the square of the dif-
ference together with the rectangle under twice the difference and less,
(III), or to the square of the difference together with twice the rect-
angle under the difference and the less. Hence it follows, that the
difference of the squares of two lines exceeds the square of their differcnce
by twice the rectangle under the less and difference.

ProrosiTioN IV. THEOREM.

(231) If a right line (A B) be divided into any two
parts (in O), the square of the whole line is
equal to the sum of the squares of the parts
and twice the rectangle under the parts.

On A B describe the square AC D B, draw A D, and through
O draw OK parallel to AC, cutting AD in G, and ¢_x__»o
through G draw E F parallel to A B. R

The square AC D B is equal to the squares EO and ¥ T —*
K F together with the rectangles CG and GB. But 12 o s
KF is the square of B O (196), and EO is the square of A O,
for FG is equal to BO; and CG and G B together are equal
to double the rectangle under the parts, because GK is equal
to BO, and B G is the rectangle under the parts A O and O B,
because O G and O A are equa’ (196).
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Otherwise thus:

Let A be the line divided into the parts r andy. By (II) tt
square of A is equal to the rectangles A X x and A X y together; b
Ly (III) the rectangle A x z is equal to the square of x together wit
the rectangle X y, and also the rectangle A X y is equal to the squar
of y together with the rectangle 2 X y. Hence the square of A i
equal to the squares of the parts zand y and twice the rectangle unde
them.

(232) Cor. 1.—The square of a lineis four times the square of ii
half. For if the line be bisected, the squares of the parts are twice th
square of half, and the rectangle under them is the square of the half.
(233) Cor. 2.—It appears, also, that half the square of a line is equa
to double the square of half the line.

(234) This proposition may also be announced thus : ¢ The square ¢
the sum of any two lines is equal to the sum of their squares togethe
with twice the rectangle under them.’

(285) Cor. 3.—It will not be difficult to extend this proposition t
a line divided into any number of parts; in this case the square of th
line will be equal to the sum of the squares of all the parts together wit,
the double rectangle under every distinct pair of them. Thus if it b
divided into three parts z, ¥, 2, the square of the whole line is equal t
the sum of the squares of z, y, and z together with twice the sum of th
rectangles 2 X y, ¥ X 7, and 2 X z.

ProrosiTioN V. THEOREM,

(236) If a right line (A B) be cut into equal part:
(in C), and into unequal parts (in D), the
rectangle under the unequal parts (A D amx
D B), together with the square of the interme
diate part (C D), is equal to the square of th

‘half line (C B).
On CB describe the square C KM B, draw K B, and throug]
the point D draw D L parallel to C K, and cutting " M

KB in G, and through G draw H G E parallel to
A B, until it meet the line A E drawn through A =__= o
parallel to CK. i
Because the lines AC and CB are equal

(const.), the rectangles AF and CH are equal (XXXVI, Book I.
but the rectangles CG and GM are ez&so equal, therefore t
rectangle A G 1s equel to the gnomon C H L (218) ; add to bot
the square F L, and the rectangle A G together with the squar
FLis equal to the square C IEM B. But the rectangle A G i
the rectangle under AD and DB, for DG is equal to D B, an
F L is the square of CD, because FG and CD are equ
(XXXIV, Book I.), and C KM B is the square of C B.

C D B
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Otherwise thus : :

The rectangle A D XD B is equal to the rectangles A C xD B and
CDxDB,orto CBxD Band CDxDB (I). But the rectangle
CB x DB is equal to the square of D B together with the rectangle
CD xD B (III). Hence therectangle A D x D B is equal to the square
of D B together with twice the rectangle C D xD B. Addto both the
square of CD, and the rectangle A D x D B together with the square
of CD is equal to the squares of CD and D B together with twice the
rectangle C D x D B, or to the square of C B (IV).

In this proposition the given finite line is supposed to be divided in
two points, equally and unequally. In this case several distinct linear
magnitudes are to be considered, viz. the whole line, the equal seg-
ments, the unequal segments, the infermediate part, or the part inter-
cepted between the points of equal and unequal section.

(237) Between these several lines there are some obvious and impor-
tant relations. The whole line is the sum of the unequal segments, and
each of the equal segments is half the sum of the unequal segments.
Again, since the greater segment exceeds the half line by the interme-
diate part, and the half line exceeds the lesser segment by the interme-
diate part, it follows, that the greater segment exceeds the lesser seg-
ment by twice the intermediate. Hence it appears, that the interme-
diate part is half the difference of the unequal parts.

(238) When three quantities are so related that the first exceeds the
second by as much as the second exceeds the third, they are said to be
in arithmetical progression. The first and third are called ex(remes,
and the second is called the mean. The greater segment A D, the half
line A C, and the lesser segment, are thus related, for A D exceeds A C
by the intermediate C D; and again, A C or C B exceeds the lesser
segment D B by the intermediate part C D. Hence the half line C A
is an arithmetical mean between the unequal parts A D and D B.
(239) When three quantities are thus related, it appears therefore
that the difference between the mean and each extreme is the same, and
is therefore called the common difference. Thus the three lines A D, A C.
D B are in arithmetical progression, the common difference being the
intermediate part C D.

(240) It will be easy to establish similar conclusions, whatever be
the nature of the quantities which are supposed to be in arithmetical
progression ; and it may in general be assumed, that * the arithmetical
mean is half the sum of the extremes, and that the common difference
is half the difference of the extremes.’

(241) 'The-fifth proposition may then be announced thus: ¢ The
square of the arithmetical mean is equal to the rectangle under the
extremes together with the square of the common difference.’

(242) IfAD and DB be considered as two independent lines, the
proposition assumes another form: * The rectangle under any two
lines together with the square of half their difference is equal to the
square of half their sum.’

KMS) Again, this proposition may still assame a different form. Let

C and C D be considered as two independent lines. The line A D
will be their sum, and D B their difference. Thus the proposition be-
comes, ‘ The rectangle under the sum and difference of two lines toge-
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ther with the square of the less is equal to the square of the greater
or, ¢ The difference of the squares of two lines is equal to the rectang]
under their sum and difference :’> a result already obtained in (228).
(244) Cor. 1.—It appears that wherever the point of unequal sectio
may be, the rectangle under the unequal parts together with the squar
of the intermediate make up the same sum ; viz. the square of half th
line. Hence it follows, that as the intermediate part diminishes th
rectangle increases, and vice versa. If the point of unequal section b
supposed continually to approach the middle point of the line, th
rectangle will continually increase, since the intermediate continu
aily diminishes; and when the point of unequal section arrive
at the point of equal section, the rectangle under the unequa
parts becomes equal to the rectangle under the equal parts, or u
the square of half the line. If the point of unequal section be sup
posed to move beyond the middle point of the line, the rectangl
begins to diminish. This affords a remarkable instance of a very ex
tensive class of mathematical problems, in which the marima or mi.
nima values of variable quantities are sought. In the present instanc
let us suppose a line given, and that it is required to cut it so that th
rectangle under the segments shall be a marimum; that is, so tha
the rectangle under the segments shall be greater than the rect
angle under any other segments into which the same line cai
be divided. Let us suppose that the point of section is first placec
at the middle point of the line ; the rectangle is then equal to th
square of half the line. If it be moved toward either extremity, thq
rectangle will be diminished by the square of the space through whicl
it is moved ; and this diminution will continue until the point of sec
tion shall arrive at the extremity, when the square of the space througt
which it has been moved is the square of half the line, and the rect.
angle becomes absolutely nothing. Thus the rectangle is a mazimun
when the line is bisected, and its maximum value is the square of hal
the given line.

(245) Cor. 2.—Since the square of a divided line is composed of the
sum of the squares of its parts and twice the rectangle under them, i
follows, that the greater tﬁe rectangle is, the less will be the sum of the
squares of the parts ; and therefore, when the rectangle is a mazimum
the sum of the squares of the parts will be a minimum. Hence it ap-
pears, that the sum of the squares of the parts is a minimum when the
line is bisected. The minimum value of the sum of the squares of the
parts will evidently be twice the square of half the line.

(246) Cor. 3.—Of all rectangles having the same perimeter th
square contains the greatest area. For by (242), the area of the square
exceeds the area of any other isoperimetrical rectangle by the square o
half the difference of the sides of the rectangle.

(247) Cor. 4.—OFf all rectangles equal in area the square is containea
by the least perimeter. For the square of the fourth part of the peri-
meter of a rectangle exceeds the area of an equivalent square by the
square of half the difference of the sides of the rectangle ; therefore, the
perimeter of the rectangle must be greater than that of the equivalen
square.

(248) We have already noticed the distinction between the interna
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and erfernal section of aline. In each case the segments are the
parts intercepted between the point of section and the extremities
(208). If aline be bisected and cut externally the lesser segment, the
intercept between the points of equal and unequal section and the
greater segment are in arithmetical progression, the common difference
being half the given line. Hence it follows (240), that in this case the
intermediate part between the two points of section is half the sum of
the segments. This is a principle to which we shall have frequent
occasion to refer.

(249) Con. 5.—If a perpendicular be drawn from the vertex of a
triangle lo the base, the rectangle under the sum and difference of the
sides is equal to the rectangle under the sum and difference of the seg-
ments (207). )

(250) Cor. 6.—The difference between the squares of the sides of a
triangle is equal to twice the rectangle under the base and the distance
of the perpendicular from the middle point.

For if the perpendicular fall within the base, this distance is half the
difference of the segments, and the base is their sum; and if it fall
outside the base, this distance is half the sum of the segments, and the
base is their difference. Hence we may infer the principle from (207)
and (249). .

Prorosition VI. THEOREM.

(251) If aright line (A B) be bisected (in C), and pro-
duced to any point (F), the rectangle under
the whole line, thus produced (A F), and the
produced part (B F), together with the square
of the half line (C B), is equal to the square of
(CF) the line made up of the half and produ-
ced part.

On C F describe the square C E G F, draw E F, and through the
Point B draw B P parallel to F G, and cutting E F .
in K, through K draw LO parallel to CF and —re
meeting A O, which is drawn through A parallel to
CD. "

Because A C and C B are equal (hyp.), the 5
rectangle A D is equal to the qrectaggﬁ) )C K i
(XXXVI, Book I.) ; but the rectangles C K and K G are equal
(XLIII, Book 1.), therefore A D is equal to K G ; add to both L,
and A L is equal to the gnomon C Ll!‘; add to both D P, and the
sum of AL and D P is equal to the square of CF. ButAL is the
rectangle under the whole produced line and the produced part,
‘(?'i?,Ff!‘ xs_te:qua}ill to BF (lf9fi3:2,Kami D P is the square of the halt

, for it is the square o 96), and DK is equal t '

(XXX1V, Book I?). (199 cquel 0 OB
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Otherwise thus :

The rectangle AF x F B is equal to the square of B F together wi

twice the rectangle CBxBF (I, IIL). Add to both the square
CB, and the rectangle A F x F B together with the square of C B
equal to the squares of C B and B F together with twice the rectang
under CB and BF, or (IV) to the square of C F. )
(252) This proposition differs only in appearance from the fifth,
this case the line A B is cut externally at F, and the intermediate p:
C F is half the sum of the segments. We have shown that the fi
may be announced thus: ¢ The square of half the sum of two lines
equal to the rectangle under them together with the square of h
their difference.” Now, in the present instance, C F is half the sum
AF and BF, and C B is half their difference, so that the present pr
position is, in fact, identieal with the fifth.
(253) Cor.—If a line AD be drawn from the vertex A of an i
sceles triangle to the base or its production, the difference between t
squares of this line and the side of the triangle is the rectangle und
the segments B D x D C of the base.

For by (207) the difference of the squares of A D and A C is eqt
to the difference of the squares of the half base A
CE and the intermediate part D E; but this
is equal to (V, VI) the rectangle B D x D C. :

If the line AD be perpendicular to the base it
will coincide with A E, and the intermediate® © CB E C
part D E will vanish.

Prorosition VII. TuEOREM.

(2564) If a right line (A B) be divided into any tv
parts, the sum of the squares of the whole lii
(A B) and either segment (CB) is equal
double the rectangle under the whole, and th

segment, together with the square of the oth
segment (A C).

Describe the square of A B, draw F B;through the point
draw CG lel to A F, and through P, its intersec- » a:
tion with F' B, draw D E parallel to A B.

The square AK is equal to the rectangles AE
and P K together with the square D G : add to both |
the square CE, and the squares AK and CE, taken 4¢3
together, are equal to the rectangles AE and CK together wi
the square D G.

But AE is equal to the rectangle under AB and CB, L
cause CB and B E are equal (196), and CK is also equal to t
rectangle under AB and CB, because KB is equal to A
(const.), and D G is the square of AC because DP and AC ¢
equal (XXXIV, Book L).

4
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Otherwise thus :

The square of A B is equal to the sum of the squares of A C and
C B together with twice the rectangle A C x C B (IV). Add toboththe
square of C B, and the sum of the squares of A B and CB is equal to
the square of A C together with twice the rectangle A C x-C B and
twice the square of C B. But the rectangle A Cx C B together with
the square of C B is equal to the rectangle A Bx BC. Hence the
sum of the squares of A B and B C is equal to twice the rectangle
A B x B C together with the square of A C. ,
(255) Cor. 1.—If we consider AB and BC as two independent
lines, and AC as their difference, this proposition will be thus an-
nounced : ¢ The sum of the squares of any two lines is equal to twice
the rectangle under them together with the square of their difference.’
(256) Cor. 2.—Hence and by (IV) it appears, that the square of the
sum of two lines, the sum of their squares, and the square of their differ-
ence, are in arithmetical progression, the common difference being twice
the rectangle under the lines. For by (IV), the square of the sum
exceeds the sum of the squares by twice the rectangle ; and by (VII),
the sum of the squares exceeds the square of the difference by twice
the rectangle.

Prorosition VIII. TaEOREM. .

(257) If a right line (A C) be divided into any two
parts (in B), the square of the sum of the
whole line (A C), and either segment (B C),
is equal to four times the rectangle under the
whole line (A C), and that segment (B C), to-
gether with the square of the other segment
(A B).

Produce AC till CD is equal to BC; on AD describe the
square ARZD (XLVI, Book I.), and through the points B
and C draw BS and CV parallel to AR; having drawn R D,
draw through the points G and K, E H and L' P parllel to
AD.

Because S V is equal to BC (XXXIV,Book I.),and BC toC D
(const.), and CDto VZ,SVand V Z are

ual, and therefore the rectangles S G and
?H are equal (XXXVI, Book f), butVH < lo
and AG are equal (XLIII, Book I.), * ol
therefore S G is equal to A G; and becanse * FR=
F G isequalto BC (XXXIV,Book I.),FG 4 B¢
and CD are equal, and therefore the square F O is equal to the
square C H ; but also E K and KV are equal (XLI11, Book1.); to
these equals, if the equals C H and F O be added, E K and CH

R S ve
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together shall be equal to S G, and therefore to A G : therefore A G,
SG, and V H, together with EK and C H, are four times A G;
but A G, SG, and V H, together with E K, C H, and the square
L S, are equal to the square A Z ; therefore A G, four times taken
together with L S, is equal to A Z.

%ut A G is the rectangle under A C and B C, because CG is
equal to C D (196), and therefore to B C, and LS is the square of
A B, because AB and RS are equal (XXXIV, Book I).

’ Otherwise thus :

By (IV), the square of the sum of A C and B C is equal to the sum
of their squares together with twice the rectangle under them ; and by
(VII), the sum of the squares of A C and B C is equal to twice the
rectangle under them together with the square of A B; hence the
square of the sum of A C and B C is equal to four times the rectangle
under them together with the square of A B.

This proposition may evidently be expressed thus: ¢ The square of
the sum of two lines is equal to four times the rectangle under them
together with the square of their difference.’

Otherwise thus :

By (V), the square of half the sum of two lines is equal to the rectangle
under them together with the square of half the difference. Therefore
four times the square of half the sum (or the square of the sum (232) )
is equal to four times the rectangle under the lines together with four
times the square of half the difference (or the square of the difference).

ProrosiTion IX. THEOREM.

(258) If aright line be cut into equal parts (in C), and
into unequal parts (in D), the sum of the
squares of the unequal parts (A D and D B) is
equal to double the sum of the squares of the

“half (A C) and of the intermediate part (C D).

From the point C draw C E perpendicular to AB and equal
to either A C or C B (XI, 111, Book L), join AE and E B, and
through D draw D F parallel to CE, and through F draw F G
parallel to CD, and join F A.

Because the angle ACE is a right angle, and the sides A C
and CE are equal (const.), CE A is half a right
angle; in the same manner it can be demon- Nor
strated, that C E B is half a right angle, therefore }'

A E B is aright angle; on account of the parallels Ak
GF and CD, the angle EGFisequalto ECB “ -0 B
(XXIX, Book 1.), therefore E G F is a right angle; but GEF is
half a right angle, therefore G FE is also half a right angle, and
therefore G E and G F are equal (VI, Book L) ; likewise FD B is
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! riiht angle, because it is equal to the augle E CB, on account
of the parallels FD and CE; but DBF is half a right angle,
therefore D F B is half a right angle, and therefore D F and D B
are eclual (VI, Book I.). Since, therefore, A C and C E are equal
and the angle A CE right, the square of A E is double the square
of AC, and because E G and F%i are equal and theangle EGF
right, the square of E F is double the square of G F; but G Fand
C D are equal, therefore the square of EF is double the square
of CD, and therefore the squares of A E and EF are double the
squares of ACand CD; but because the angle A E F is right,
the square of AF is equal to the squares of AE and E F
(XLVII, Book I.), therefore the square of A F is double the squares
of AC and CD; but the square of AF is equal to the squares of
A D and DF as the angle A DF is right, therefore the sum of the
squares of AD and D F is double the sum of the squares of AC
and CD; but DF and D B are equal, and therefore the sum
of the squaresof AD and D B is double the sum of the squares of
ACand CD.
Otherwise thus:

The square of A D is equal to the squares of A C and C D together
with twice the rectangle A C x C D, or to the sum of the squares of
B C and C D together with twice the rectangle BC x CD. Add to
both the square of B D, and we have the sum of the squares of AD
and D B equal to the sum of the squares of B C and C D together
with twice the rectangle B C x CD and the square of BD. But
twice this rectangle with the square of B D is equal to the sum of the
squares of BCand CD, * &c.

This proposition may be expressed (237) thus: ¢ The sum of the
squares of any twolines is equal to twice the square of half their
sum together with twice the square of half their difference.’

Otherwise thus :

By (256) the square of the sum, the sum of the squares, and the
square of the difference are in arithmetical progression; <’ the sum
of the squares is equal to (240) half the square of the sum together
with half the square of the difference, or to twice the square of half the
sum together with twice the square of half the difference (233).

ProrositTion X. THEOREM.

(259) If a right line (A B) be bisected (in C), and pro-
duced to any point (D), the square of the
whole line thus produced (A D) together with
the square of the produced part (B D), is equal
to double the square of the line (C D) made up
of the half and produced part together with
double the square of (A C) half the given line.
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From the point C draw C E pergendicula.r to AB and equal
to either CA or CB; join AE, and draw B ¥
through the point E the line EF parallel \ }
to AB, and through D, DF parallel to 1 LI
CE; and because the angles CEF and N
DFE are equal to two right angles, on e
account of the parallel lines C E and D F (XXIX, Book I.), the
angles BEF and D FE are less than two right angles, therefore
the lines E B and F D, if produced, shall meet : let them meet in
G, and draw G A.

Because CA and C E are etglal (const.), and the angle C a
right angle (const.), the angle C E A 1s half a right angle, and
in the same manner it is proved that CE B is half a right
angle, therefore A EB is a nght angle; and because D G and
E C are parallel, the alternate angles GD B, E CB are equal,
therefore g DBisa rifht angle ; also theangles DBGand EBC
are equal (XV, Book L.), but E B Cis half a right angle, therefore
DBG is half a right angle, and also D G B, and therefore the
sidles DB and D G areequal (VI, Book 1.) ; and because EGF
is half a right angle, and the angle at F right, being equal to
its opposite C (XXXIV, Book I.), FEG is half a nght angle,
and therefore the sides E F and F G are equal.

Because AC and C E are equal, and the angle ACE right,
the square of A E is double the square of A C, and because G F
and F E are equal, and the angle F right, the square of GE is
double the square of EF; hut E F and C D are equal (XXXIV,
Book L), therefore the square of G E is double the square of CD;
the square of AE is also double the square of A C, therefore the
squares of AE and EG are together double the squares of
A C and C D: but the square of AG is equal to the squares of
A E and E G, and is therefore double the squares of A C and
C D, and the squares of A D and D G are equal to the square of
A G, and therefore double the squares of ACand CD; but BD
and D G are equal, and therefore the squares of A D and DB
are double the squares of AC and C D.

This proposition is identical with the ninth, and the second and
third demonstrations of the ninth may, without any change whatever,
be applied to this. This proposition holds the same relation to the
ninth as the sixth does to the fifth. ‘

(260) These ten propositions contain the whole theory of the relations
of the rectangles and squares of divided lines and their parts. All the re-
lations which have been here established respecting lines may be applied
to numbers, by supposing a number to be divided into parts equal or
unequal, or both, as the case may be, and substituting the product of
the parts in place of the rectangle under them. Thus, the fifth propo-
sition, applied to numbers, is thus expressed: * The product of twe
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vumbers together with the square of half their difference is equal
to the square of half their sum.’ If, for example, the numbers be
6 and 10, the product is 60, the square of half their difference is
4, which added to 60 gives 64, which is the square of 8, or the hall
of 16.

When lines are expressed numerically, various problems may be
proposed respecting them, the solution of which may be derived from
the preceding propositions. We shall here subjoin some of these
problems, which will probably be sufficient to familiarize the studen
with such investigations. ‘
(261) Given the sum and difference of two magnitudes to find the
magnitudes themselves.

Add half the difference to half the sum, and the resuit is the
greater of the sought magnitudes, and subtract half the difference from
half the sum, and the remainder is the less.

(262) Since the area of a rectangle is equal to the product of its
sides, it follows that if the area be divided by ome side the quote will
be the other side. It is scarcely necessary to observe, that when we
speak of the multiplication or division of geometrical magnitudes we
mean only to apply these operations to such magnitudes expressed
numerically.

(263) There are five quantities depending on a rectangle, any two
of which being given, the sides of the rectangle can be found.

1° The sum of the sides.

2° The difference of the sides.

8° The area.

4° The sum of the squares of the sides.

5° The difference of the squares of the sides.

These five data being combined in pairs give the following ten

roblems.
(264) 1. If 1° and 2° be given, the sides are found by (261).
(265) II. If1°and 8° be given, subtract the area from the square
of half the sum, and the remainder is the square of half the differ-
ence, which reduces the problem to I.
(266) III. If 1°and 4°be given, subtract the sum of the squares
from the square of the sum and the remainder is twice the rectangle,
which reduces the problem to II.
(267) IV. If 1° and 5° be given, divide the difference of the
squares by the sum of the lines and the quote is their difference, which
reduces the problem to L.
(268) V. If 2° and 3° be given, add the square of half the difference
of the sides to the area and the result is the square of half the sum of
the sides, which reduces the problem to I. )
(269) VI. If 2°and 4° be given, subtract the square of the difference
from the sum of the squares and the remainder is twice the rectangle,
which reduces the problem to V.
(270) VII. If 2°and 5° be given, divide the difference of the squares
by the difference of the sides and the quote is the sum of the sides,
which reduces the problem to I.
(241) VIII. Jf 38° and 4° be given, add twice the rectangle to the
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sum of the squares and the result is the square of the suin. Thus

problem is reduced to II.

(272) IX. If 4° and 5° be given, the squares of the sides may
found by (261), and thence the sides themselves.

(273) X. If3°and 5° be given; this is the only case which prese
any considerable difficulty. We shall postpone the investigation
this case until we shall have proceeded farther in this book, a:
will require the aid of some principles which still remain to be es
blished.

(274) 1t is evident that if two rectangles agree in any two of !
five quantities expressed in (263), their sides will be equal. Thus
their areas and the sums of their sides be equal the sides themsel
will be equal; for if the equal areas be taken from the squares of L
the sums of the sides, the remainders, which are the squares
the half differences of the sides, will be equal; and since the h
differences and half sums of the sides are equal, it is evident ti
the sides themselves will be equal. In a similar way, the si¢
may be proved equal if the rectangles agree in any two of the f
quantities.

(275) Hence also it appears, that if two equal right lines be

internally so that the rectangles under their segments be equal,

segments themselves are equal; or, if the sums of the squares of -
segments, or the ditferences of the squares of the segments, be

the segments themselves will be equal. The student will find

difficnlty in proving these, and applying similar investigations to eq
lines cut externally. :

(276) If the three sides of a triangle be given in numbers, its a
may be found. For, let the difference of the squares of any two 1
equal sides be found; half of this will be equal to the rectangle un
the remaining side and the distance of the perpendicular on it fr
its middle point. If this half difference, therefore, be divided by
remaining side, the quote will be the distance of the perpendicu
from the middle point. This quote, added to half the divisor, v
give the greater segment made by the perpendicular. The square
this segment, subtracted from the square of the greater side, leave
remainder equal to the square of the perpendicular ; the square r
of this remainder is the perpendicular itself, which multiplied i
half the divisor gives the area of the triangle. .

If it happen that the triangle is isosceles, the perpendicular is «

tained by subtracting the square of half the base from the square
either of the equal sides, and taking the square root of the remaind
This multiplied by half the base gives the area.
(277) There are some well-known properties of a right angled
angle, which may be derived from the propositions of the secc
book, combined with the 47th proposition of the first book. It v
not be necessary to trace the steps of each proof. Let S and 8 be -
sides about the right angle, H the hypotenuse, P the perpendicul
¢ and ¢ the segments of the hypotenuse, conterminous with S and
respectively.

1. The square of P = sx#§. For, by (XLVII, Book L.), the squa
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of S and S' together are equal to the squares of s, #, and twice the
square of P. But, by (IV), the square of H is equal to the squares
of s'and s’ together with twice the rectangle s+ X #. Hence, &c.

2. The square of S=H x s. For the square of S = the squares
of P and s; but the square of P = s x ' *.- by (III), &c.

8. In like manner the square of "= H % .

4. H x P=S8 x S/, for each is twice the area (186).

(278) The converses of these properties may be easily established, scil.
that a triangle, having any of these properties, must be right angled.

1. If the square of P=135 X #, let twice that square be added to the
sum of the squares of s and &', and we shall, by (XLVII, Book I.), obtain
a magnitude equal to the sum of the squares of S and S’; and, since
twice the square of P is equal to twice the rectangle s x &, we shall
also have the same magnitude (IV) equal to the square of H. Hence,
by (XLVIII, Book I.), the angle opposite to H is right.

2. If the square of S = H X &, we have also the square of 8 = the
squares of P and &. Take the square of s from both, and we have the
square of P == s X #; therefore, by the last case, the angle opposite
to H is right.

In these cases, the perpendicular P is supposed to fall within the
side H ; if not, the propositions are not necessarily true.

8. IfH x P=S % S. In this case S x S’is twice the area, and
also 8 x the perpendicular on it from the opposite angle is twice the
area; ‘. S’ is equal to that perpendicular, and therefore must be the
perpendicular itself, since no line equal to it could be drawn from the
same point,

Proposition XI. ProBLEM.

(279) To divide a given finite right line (A B) so that
the rectangle under the whole line and one
segment shall be equal to the square of the
other segment.

From the point A erect AC perEendicular and equal to the
given line Aﬁ?bisect it in E, join E B, produce CA

until E F is equal to EB, and in the given line AB
take AH equal to AF; the square of A H is equal
to the rectangle under the other segment HB and the .

whole line A B. l ®

Complete the square of A B, draw through H the @
right line G K parallel to A C, and through F the right line FG
parallel to A B.

Because C A is bisected in E, and A F is added to it, the rect-
angle under CF and F A together with the square of E A is equal
to the square of E F (VI), or to the square of E B which is equal
to EF?const.), and therefore to the squares of E A and AB
(XLVII, Book L.) ; take away the common square of E A, and the

¢}

c X D
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rectangle under C F and F A is equal to the square of AB: but
because A F and F G are equal, C G is the rectangle under C F
and F A, therefore C G and A D are equal, and if the common
rectangle C H be taken away A G and H D are equal ; but AG
is the square of A H, for A H and A F are equal (const.), and the
angle A is a right angle; and H D is the rectangle under A B and
H B, for B D is equal to A B.

A line divided, as in this proposition, is said (vide Book VI.) to be
cut ¢ in extreme and mean ratio.’

(280) Cor, 1.—By attending to the solution of this problem, it will
appear that, in order to cut a line in extreme and mean ratio, it is
first necessary to produce it in extreme and mean ratio; that is, to
produce it so that the rectangle under the whole produced line and
produced part shall be equal to the square of the line itself. In
the demonstration of the proposition, it appears that the rectangle
CF % FA is equal to the square of C A, and therefore C A has been
produced to F in this way, and C A is equal to the given line A B.

(281) Cor. 2.—Considering C F as a line cut in extreme and mean
ratio at A, it will easily appear that the rectangle under the greater
segment, and the difference of the segments, is equal to the square of
the lesser segment; for A C is the greater segment, and is equal to
A B;AF, which is equal to A H, is the less, and therefore H B is the
difference of the segments. But by the demonstration of the proposi-
tion A B x H B is equal to the square of A H. :

Hence it appears, that if @ line be cut in ertreme and mean ratio,
the greater segment will be cul in the same manner, by taking on it a
part equal to the less. And the less will be similarly cut, by taking on
it a part equal to the difference, and so on.

(282) We have here taken for granted that if the rectangle CF x
F A = thesquare of C A, that C A is greater than AF. This is, in
fact, also taken for granted in the demonstration of the proposition
itself. It is, however, easily proved. The rectangle CF x F A is
equal to the rectangle C A x A F, together with the square of A F, -.-
the square of CA exceeds the square of A F by the rectangle C A
x A F, and .* the line C A must be greater than A F. )

(283) Cor. 8.—Hence it also appears, that when a line is cut in ex-
treme and mean ratio, the rectangle under its segments is equal to the
difference between their squares.

Let A be a line cut in extreme and mean ratio, and G its greater
segment, L its lesser segment, D the difference of its segments. The
student will find no difficulty in establishing the following properties.
(284) 1. The sum of the squares of A and L is equal to three times
the square of G.

(285) 2. The square of the sum of A and L is equal to five timnes the
square of G.

(286) 3. Ax D=G x L.

(287) 4. The square of L—= G x D.

It may also be shown, that a line cut so as to have any of these
properties will be cut in extiene and mean ratio.
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ProrosiTioN XII. THEOREM.

(288) In any obtuseangled triaggle (A B C), the square
of the side (A B)subtending the obtuse angle
exceeds the sum of the squares of the sides
(BCand C A) which contain the obtuse angle
by double the rectangle under either of these
sides (B C), and the external segment (C D)
between the obtuse angle and the perpendi-
cular drawn from the opposite angle.

The square of B A is equal to the sum of the squares of A D
and D B (XLVII, Book 1.); but the square of D B A
is equal to the squares of D C and C B together
with double the rectangle under D C and CB -

(IV); therefore the square of A B is equal to the

squares of A D, D C, and C B together with double

the rectangle under D C and C B; but the square of A Cis
equal to the squares of A D and D C (XLVII, Book L); and
therefore the square of A B is equal to the squares of A C and
C B together with double the rectangle under B C and C D,
therefore the square of A B exceeds the sum of the squares of
A C and C B by double the rectangle under D C and C B.

It is evident that if the perpendicular were drawn from B to A C
produced, it would in like manner be proved that double the rectangle
under A C and its production would be equal to the excess of the
square of A B above the squares of A B and BC. And hence it fol-
lows, that the rectangle BC xC D is equal to the rectangle under
A C and its produced part.

Prorosition XIIL THEOREM.

(289) In any triangle (A B C) the square of the side
(A B) subtending an acute angle (C) is less
than the sum of the squares of the sides (A C
and C B) containing that angle, by twice the
rectangle under either of them (A C) and the
segment between the acute angle and the per-
pendicular (B F) let fall from the opposite
angle.

a2
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The squares of A C and CF are equal to twice the rectangle

under AC and CF together with the 3 »
square of A F (VII), and if the square of
the perpendicular B F be added to both,

the squares of AC,CF, and BF are ¥ x—% {5
equal to twice the rectangle under A C and CF together with
the squares of BF and AF, or with the square of A B, which is
equal to them; but the squares of BF and CF are equal to the
square of BC, and therefore the squares of BC and A C are
equal to twice the rectangle under A C and C F together with
the square of AB; therefore the square of A B is less than the
sum of the squares of A C and CB by twice the rectangle
under AC and CF.

If the angle A happen to be a right angle, the perpendicular
BF will coincide with B A, and the points F and A will be the
same; but the demonstration remains unchanged.

(290) If the angle A be right the double rectangle A C x C F becomes
equal to twice the square of A C, and the proposition becomes equiva-
lent to the forty-seventh of the first book.

(291) This proposition and the twelfth may be reduced to one, thus:
¢ The difference between the square of one side of a triangle, and the
sum of the squares of the other two sides, is equal to twice the rect-
angle under either of these two sides and the intercept between the
perpendicular on it and the angle included by the sides.’

(292) Cor. 1.—If a perpendicular to B C be drawn from the angle
A, the rectangle under the side B C and the part intercepted between
this perpendicular and C is equal to the rectangle AC x CF. For
each of these rectangles is half the difference between the square of
A B and the squares of BC and A C.

(293) Cor. 2.—If the three sides of a triangle be given in numbers, its
area may be found by these principles. Find half the difference be-
tween the square of any side and the sum of the squares of the other
two sides. Thisis the rectangle under either of those other two sides
and the intercept between the perpendicular and the included angle.
J.et this then be divided by either of the other sides, and the quote
will be that intercept. Take its square from the square of the other
side, and the remainder is the square of the perpendicular, the square
root of which is the perpendicular itself. This multiplied by half the
divisor gives the area.

If it happen that the square of one side be equal to the sum of the
squares of the other two, the angle included by those two must be
right, and in that case the area may at once be found by taking half
their product. .
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Prorosition XIV. ProBLEM.

(94) To construct a square equal to a given rectilinear
figure (Z).

Construct a rectangle CI equal to the given rectilinear figure
(XLV, Book 1.), if the adjacent sides be equal, the problem is
solved.

"If not, produce either side I A, and

make the produced part AL equal to the
adjacent side A C; bisect IL in O, and N
from the centre O with the radius O L cx -
describe a semicircle LB 1, and produce

CA till it meet the periphery in B; the square of A B is equal
to the given rectilinear figure.

For draw O B, and because I L is bisected in O and cut un-
equally in A, the rectangle under I A and A L together with the
square of O A is equal to the square of OL (V), or of OB,
which is equal to O L, and therefore to the squares of O A and
A B (XLVII, Book I.) ; take away from both &e square of O A,
and the rectangle under I A and A L is equal to the square of AB ;
but the rectangle under I A and AL is equal to IC, for AL
and A C are equal (const.); therefore the square of A B is
equal to the rectangle IC, and therefore to the given rectilinear

figure Z.

(295) Schol. From this proposition it appears, that if a perpendicular
B A be drawn from any point in a semicircle to the diameter, the
square of the perpendicular is equal to the rectangle under the seg-
ments into which it divides the diameter.

(296) The following is a selection from some of the most useful and
remarkable theorems and problems .which may be inferred from the
second book.

(297) To divide a line internally so that the rectangle under its seg-
ments shall have a given magnitude.

Let the given magnitude be equal to the square of the line A, and
let B C be the given line.

On B C describe a semicircle, and through Bdraw BD .
perpendicular to B C and equal to A. Draw D E perpen- » ~r
dicular to B D and EF perpendicular to BC. Then BC r ®
is cut as required at F. This appears from (295).

It is evident that if A were greater than half of BC,
the parallel DE would not meet the semicircle, and the
problem would be impossible ; and since, in general, the pa=
rallel meets the circle at two points, there are two points at which BC
may be cut as required, and these points are at equal distances from
its middle point.

[
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(298) To cut a line externally so that the rectangle under the segments

shall be equal to a given magnitude.
Let the given magnitude be equal to the square of A, and find
a line D whose square is equal to the sum of the squares D a

of A and half the given line B C. From the middle *
point E of B C take E F equal to this line, and F is =
the point of external section sought. This is evident !
from (VI).

Since E F may be taken from the :riddle point towards

either extremity, there are two points of section which solve the
problem, equally distant from the middle point.
(299) If a line A C be drawn from the vertex A of a triangle to the
middle point C of the opposite side, the sum of the squares of the other
sides BA and A D is equal to twice the sum of the squares of the
bisector A C and half B C of the bisected side.

If AB=A D then A CB is a right a

anfle, and the proposition is evident by N
XLVII, Book L. %
If not, draw the perpendicular A F. =

By (XII), the square of AB exceedsthe ® ¢ ®> ¢ ® ¥ ¢
sum of the squares of A C and C B by twice BC x CF, or twice
DCx CF.

By (XIII), the sum of the squares of-A C and C D, or A C and CB,
exceeds the square of A D by twice C D x CF. Hence it ap-
pears, that the sum of the squares of the bisector A C and half
the base is an arithmetical mean between the squares of the sides
A B, AD; and therefore (240) the sum of the squares of the sides is
equal to twice the sum of the squares of the bisector and half the
?isected side. the ; S

300) The sum of the squares o sides of a quadrilateral re
ABCD,is equa{to theq:tam " {Ize squares of the diagonals together
with four times the square of the line E F joining their points of
bisection.

Draw BF and DF. The sum of the squares of AB and BC is
equal to twice that of B F and CF, and the sum of the , c
squares of A D and D C is equal to twice that of D F M

and CF (299). But also the sum of the squares of E

BF and D F is equal to twice that of EF and D E.
Hence the proposition is manifest. A
(801) The sum of the squares of the sides of a parallelogram is equal
to that of the diagonals.

For in that case the line E F vanishes, since the diagonals bisect
each other (155).
(802) If the sum of the squares of the sides of a quadrilateral figure be
e to the sum of the squares of the diagonals, the quadrilateral will
be a parallelogram.
| For I?therwise it would be greater by four times the square of the
ine E F.
(803) If lines be drawn from the three angles of a triangle to the
middle points of the opposite sides, three times the sum of the squares of
the sides is equal to four times that of the bisectors.

D
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Let A, B, C, be the sides and &, b, ¢ the corresponding bisectors. The

sum of the squares of B and C is equal twice the sum of the squares
of @ and half of A, or twice the sum of the squares of B and Cis
equal to four times the square of @ together with the square of A,
In like manner twice the sum of the squares of A and B is equal to
four times the square of ¢ together with the square of C, and twice
the sum of the squares of A and C is equal to four times the square
of b together with the square of B. Hence, by adding these equals,
and taking the sum of the squares of the sides from both, the propo-
sition follows. . .
(304) If with the middle point C of a finite right line A B as
centre acircle be described, the sums of the squares of the distances
of all points in this circle from the extremities of the right line are the
same, and equal to twice the sum of the squares of the radius and half
the given line.

For the triangles AP B have a common base »

A B, and the bisectors CP of the base are equal, /}‘F?l\,
being radii of the circle. Hence the proposition fol- ARy,
lows from (299). . “é{i",
(305) Hence, if the base of a triangle and the
sum of the squares of the sides be given, the locus
of the vertex is a circle whose centre is the middle
point of the base, and the square of whose radius is half the differ-
ence between half the square of the base and the sum of the squares
of the sides.
(306) If a point be assumed within or without a rectangle, the
sum of the squares of lines drawn from it to two opposite angles is
equal to the sum of the squares of the lines drawn to the other two
opposite angles.

This is evident from (299), by considering that the diagonals are

equal and bisect each other.
(307) In a right angled triangle A B C if a perpendicular BD be
drawn, the rectangle AB x D C = the rectangle BD x BC. This
might be easily derived from the third book, and still more simply
from the sixth book. We shall in the present instance. however, prove
it by the 12th proposition of the second book.

Produce AB and D B sothat B E=D C, and ¥
BF=BC,and draw F E. The triangle BF E is equal
in every respect to BCD, s E is a right angle.
Draw AF. Since E and D are right angles, the
rectangle AB x BE=F B x B D (288 Obs.). But
FB=BCand BE=DC, s AB xDC=BCyx * b e
BD.

(308) We shall now solve the tenth case of the class of problems
mentioned in (268).

Given the difference of the squares of two lines and the rectangle
under them to find the lines.

Let a line D C be found (XIV), whose square is equal to the given
difference of squares, and on it let a rectangle C E be constructed
equal to the given rectangle (XLV, Book I.) Produce C D to A,

B
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80 that C A X A D shall be equal to the square of D E B
(208). From A inflect AB=D E on the perpendicular
D B, and draw B C; the required lines will then be B D
and B'C.

For since the square of A B isequal to CA x AD,
the angle ABCisright, s ABxDC=BD x BC.
But AB = DE, - the rectangle CE=BD x BC, and CE
equal to the given rectangle. It is evident that the difference of |
squares of B D and B C is equal to the square of D C, which is eq
to the given difference of squares,



(309) L
(310) 1L
(311) IIL
(312) 1IV.
(313) V.
(314) VL
(315) VIL.

BOOK III.

DEFINITIONS.

EquaL circles are those whose diameters are equal.

A right line is said to touch a
circle when it meets the circle
and, being produced, does not
cut 1t.

Circles are said to touch one ano-
ther which meet but do not cut
one another.

Right lines are said to be equally distant from the
centre of a circle when the perpendiculars drawn
to them from the centre are equal,

And the right line on which the greater perpendicu-
lar falls 1s said to be farther from the centre.

A segment of a circle is the figure con-
tained by a right line and the part of
the circumference it cuts off.

An angle in a ent is the angle contained by
two right lines drawn from any point
in the circumference of the segment
to the extremities of the right line
which is the base of the segment.

(316) VIIL. An angle is said to stand on the part of the cir-

(317) IX.

(318) X.

cumference, or the arch, intercepted between
the right lines that contain the angle.

by two radii and the arch between

A sector of a circle is the figure contained Q
them.

Similar segments of circles are those which contain
equal angles.

Circles which have the same centre are called concentric circles,
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(819) The subject of the third book of the elements is the properties
of the circle, those of the triangle and rectangle having been discussed
1 the first and second books respectively.

(320) The first definition is more properly a theorem. For ¢ equal
circles,’ like other equal figures, are those which may be laid one upon
the other so as perfectly to coincide. If two circles have equal radii,
and the centre of one be laid on the centre of the other, the circles
being placed in the same plane, their entire circumferences must be
coincident; for if not, a line might be drawn from the common centre
‘o the circumference of one, intersecting that of the other, and thus
the circles wonld have unequal radii, contrary to hyp.

(321) In the second definition the meaning of a right line ¢ cutting
a circle’ is not explained, and yet it seems as necessary to be defined
as ¢ touching a circle’ If a right line meet the circumference of a
circle, and being produced indefinitely in both directions lie entirely
without the circle, it is said to touch it. Thelinein this case evidently
lies entirely on the conver side of the circle.

On the other hand a right line which, when produced, meets a circle
in two points, is said to cuf the circle. The nature of confact and
section will appear more plainly as the student proceeds with the third
book.

(322) The same defect is observable in the third definition. Two
circles are said to fouch tnlernally when every point of the one, except
those at which they meet, is included within the other; and they touch
externally when every point of each, except those at which they meet,
lie without the other. It will appear by the thirteenth proposition,
that contingent circles can only meet at one point.

(323) Any part of the circumference of a circle is called an arc of
the circle, and the right line which joins its extremities is called its
chord. Itis evident that two arcs, which together make up the whole
circumference, have the same chord.

A diameter is the chord of a semicircle.

(824) The distance of a right line from a point is estimated by the
perpendicular from the point on the right line. Chords, therefore, are
said to be equally or unequally distant, according as the perpendiculars
on them from the centre are equal or unequal.

The figure included by an arc and its chord is a segment, and the
figure included by an arc and the radii through its extremities is
called a sector.

(825) It will be proved in Prop. XXI, that all angles inscribed in
the same segment of a circle are equal; and also it will appear, that
different segments of the same circle contain unequal angles. Thus
a segment becomes as it were characterised by the angle it contains,
and those segments of different circles which contain the same angles
are said to be similar. 1In the sixth book we shall show, that such
segments bear the same proportion to the entire circles, of which they
are parts.

(326) Sectors which have equal radii and equal angles are equal,
for they evidently admit of superposition.

(327) A sector whose angle is right, is therefore a fourth part of the
circle, and its arc is culled a ¢ quadraut.’
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ProrosiTiON 1. ProBLEM.

(328) To find the centre of a given circle (A C B).

Draw within the circle any right line A B, bisect it in D, from
D draw D C perpendicular to A B, and produce it to E; bisect
CE in F, and F is the centre.

For, if it be possible, let any other point G be the centre, and
draw G A, G D, and G B.

Because in the triangles GD A, GDB, the side
GA is equal to GB (hyp. and Def. XV, Book IL.), r
D A equal to D B (const.), and the side GD common }<7 N/
to both, the angles GDA and GDB are equal &
éVIII, Book I.), and therefore are right angles; but the angle

DB is a right angle (const.), therefore GDB is equal to
CDB (53), a part equal to the whole, which is absurd; G
therefore is not the centre of the circle A CB; and in the same
manner it can be proved that no other point which is not on the
line CE is the centre, therefore the centre is in the line C E, and
therefore is the point F.

(329) Cor. Hence it is manifest, that if in a circle a straight line
bisect another at right angles, the centre of the circle is in the line
which bisects the other.

It is assumed in the solution of this problem, that the perpendicular
through D will meet the circle at two points. It would have con-
tributed much to the rigour of the reasoning, had Euclid established
the following proposition previously to the above problem.

(380) Any point being assumed within a circle, a right line drawn
through it, and produced indefinitely in both directions, will meet the

- circle in two points, and not in more, and every point of the line
between these two points of intersection will be within the circle, and
every point beyond them without it.

First.—Let the right line through the given point also pass through
the centre. If parts be taken upon it in both directions from the
centre greater than the radius, their extremities will be without the
circle (22), and if parts be taken on it in both directions from the
centre less than the radius, their extremities will be within the
circle (22). If parts be taken on it in both directions equal to the
radius, their extremities will be on the circle. Hence, in this case,
the proposition is manifest.

Secondly.—If the line through the given point F within the circle
do not pass through the centre D, let a perpendicular D G from the
centre to that line be supposed to be drawn. D G islessthan D F,
and therefore less than the radius. Let a line be
found whose square is equal to the difference of
the squares of D G and the radius, and take on
each side of G, G B and G A equal to this line, ¢
and draw D B and D A. Since the squaresof B G
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and G D are together equal to the square of the radius, the lines
D B and D A must be equal each to the radius (XLVII, Book L.),
and therefore B and A are on the circle. The distance of every
point, as F between B and A from D, is less than the radius D A, and
therefore (22) every such point is within the circle ; and the distance
of every point, as E in the production of A B from D, is greater than
the radius D A, and therefore (22) every such point is without the
circle. Hence it is plain, that the right line can only meet the circle
at the points A and B.

It is no objection to this theorem, that we assume the centre D of
the circle without previously solving the problem to find it. In fact,
we only assume that the circle has @ centre, which is given by its
definition. Itis not necessary to the validity of the demonstration of a
theorem, that we should have solutions of all the problems requisite
for its construction.

In fact, if all the problems in Geometry were omitted, the reasoning
in the theorems would stand undisturbed, and would be equally valid
and conclusive.

To the validity of the reasoning contained in the theorems, however,
it is indispensably necessary that nothing should be assumed in the
construction which is not possible to be executed. Thus, if we were
required to draw a right line through three given points, we would
not be warranted in supposing this done, unless it were also given or
proved that the three points have such a position, that the right line
through two of them will also pass through the third.

It follows from what has just been proved, that a right line cannot
meet a circle in more than two points.

Prorosition II. THEOREM.

(331) Ifany two points (A and B) be taken in the
circumference of a circle, the right line which
joins them falls within the circle.

For, if it be possible, let A E B be a right line in which the
point E is without the circle, and draw D A, D E, and D B.

Because in the triangle ADB the sides DA and DB are
equal, the angle D B A is equal toD A B (V, Book L.);
but the external angle DEA is ter than the in-
ternal angle DB A g{VI, Book 1.), therefore ter
than the angle D A B, and therefore the side D A is
greater than the side D E (XIX, Book 1.); but the :
right line D F is equal to D A, and therefore is greater than D E,
a [Ert greater than the whole, which is absurd, therefore the line
A E B 1s not a right line; and in the same manner it.can be de-
monstrated, that if the point E be in the circumference the line is
not a right line.

This proposition has been already proved by direct reasoning
in (330).
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ProrosiTion III. THEOREM.

(332) 1If a right line (B L) drawn through the centre
of a circle bisect a right line (C.F) which does
not pass through the centre, it is perpendicular
toit. And if it intersect it at right angles, it
bisects it.

Part 1°.—Draw A C and AR. 1In the triangles AOC, AOF,
the side A Cisequalto A F, and also OC to O F B

(hyp.), and A O is common to both, therefore the

angle AOC is equal to AOF (VIII, Book 1.);

therefore each of them is a right angle, and therefore o>/
L

B O is perpendicular to C F.

Part 2°—Because the triangle F AC is isosceles the angle
A FC is equal to the angle ACF (V, Book 1.), therefore in the
triangles CA O, FA O, the angles ACO and AFO are equal;
also A O C and A O F are equal (hyp.), and the side A O, opposite
to the equal angles AC O and A F O, 1s common to both, therefore
the side O C is equal to O F (XXVI, Book 1.), and therefore the
right line CF is bisected.

Hence it appears, that if a system of parallel chords be drawn in a
circle, the locus of their points of bisection is the diameter of the circle,
which is perpendicular to them. .

It also follows, that the right line which bisects any chord perpen-
dicularly, bisects every chord parallel to it perpendicularly, and is a
diameter of the circle.

ProrosiTion 1V. TrEOREM.

(333) 1If in acircle two right lines cut one another,
which do not both pass through the centre,
they do not bisect one another.

If one of the lines pass through the centre, it is evident that it
cannot be bisected by the other, which does not pass through the
centre.

But if neither of the lines B C or F L pass through the centre,

draw O A from the centre to their intersection. If

BC be bisected n A, OA is perpendicular to it ;Q

(III), and therefore the angle O A C a right angle; """\
o (]

and if F L be bisected in A, O A is perpendicular to

FL (II}I%, therefore the angle O A L is a right angle, and there-
fore equal to the angle O AC, a part equal to the whole, which
is absurd, therefore the lines BC and FL do not bisect one
another.



94 ELEMENTS OF EUCLID.

Hence it follows, that no parallelogram, except a rectangle, can be
inscribed in a cirele. For the diagonals bisect each other (155), and
therefore must both pass through the centre, and must therefore be
equal, each being a diameter. Hence the parallelogram must be a

rectangle (157).
ProrosiTiON V. TuEOREM.

(834) If two circles (ABC, ABF) cut one another,
they have not the same centre.

For, if it be possible, let A be the centre of both !
circles, and draw two right lines, the one A F cutting
both circles in C and F, the other AB to the inter- o
section B.

Because A is the centre of the circle ABC, AB is equal to
AC, and because A is the centre of the circle ABF, AB is
equal to A F, therefore A C is equal to AF, a part to the whole,
w(ixich is absurd; A therefore is not the centre of both circles;
and in the same manner it can be proved that no other point is
the centre of both.

This proposition may be better announced thus : ¢ Concentric circles
cannet meet, and that which has the lesser radius will be included
within the other.’ If the circles had the same radius they would coin-
cide, and, in fact, be the same circle.

The points of the circumference of that which has the lesser radius,
being less distant from the centre than those of the circumference of
that which has the greater radius, must be all within the latter (22).
Consequently, the circles cannot meet, either by contact or intersection.
This proof alse includes the following proposition.

ProrosiTion VI. TueorEM.

(335) Iftwo circles (ABC, ABF) touch one another
internally, they have not the same centre.

For, if possible, let A be the centre of both circles, =
and draw two right lines, the one A F cutting both
circles in C and F, the other A B to the point of '
contact.

Because A is the centre of the circle A B C, A B is equal to
A C, and because A is the centre of the circle ABF, AB is equal
to A F, therefore AC is equal to A F, a part equal to the whole,
which is absurd; therefore the point A is not the centre of both
circles; and in the same manner it can be demonstrated that no
other point is.

Vide observations on the last proposition.

\
\

|
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ProrosiTion VII. THEOREM.

(336) If from any point within a circle which is not
the centre right lines be drawn to the cir-
cumference, the greatest is that which passes
through the centre.

The remaining part of the diameter is the
least.

Those lines which make equal angles with
the diameter are equal.

That line which is nearer to the line passing
through the centre is greater than one more
remote.

And more than two right lines cannot be
drawn which shall be equal.

Part 1°.—The line C B passing through the centre is greater
than any other C D.

Draw from the centre A the line AD; AB is equal to AD,
therefore if C A be added to both, C B shall be equal to CA and
A D taken together; but C'A and A D are geater than CD
(XX, Book 1.), therefore C B is greater than CD.

In fact, C B is equal to the sum of the sides of a triangle, of which
any other line, as C D, is the base.

Part 2°.—The other part of the diameter CF is less than any
other line C E. "
Draw AE; AC and C E taken together are \!'
greater than A E (XX, Book 1.), and therefore greater N
than A F; take away the common line A C from
both, and C E shall be greater than C F ¥

The line C F is the difference of the sides of a triangle, of which
any other line C E is the base (99).

Part 3°.—The right lines C L and C D, which make equal angles
with the line C B passing through the centre, are equal.
~_ For, if possible, let one of them C L be the greater, and make
C G equal to CD, and draw AD and AG.

In the triangles ACG and ACD the side AC is common
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to both, CG is equal to CD (hyp.), and the angles ACG and
A CD are equal, therefore the sides AG and AD are equal
(IV, Book L); but AD is equal to AO, and therefore A G is
equal to A O, a part equal to the whole, which is absurd. There-
fore neither C L nor C D is greater than the other, and therefore
they are equal.

Part 4°.—The line CD or CL, which is nearer to the line
passing through the centre, is greater than one CE more re-
mote. .

If the given lines CD and CE be at the same side of C B,
draw AD and AE. In the triangles C A D, C A E, the sides
CA and AD are equal to CA and AE, and the angle CAD
is greater than CA E, therefore the side C D is greater than
C]?EXXIV, Book I.).

But if the given lines CL and CE be at different sides of
C B, construct the angle ACD equal to ACL, and CD shall
be equal to CL (Part 3°.); but C D is greater than CE, and
therefore CL is greater than CE,

Part 5°.—More than two right limes cannot be drawn which
shall be equal.

For let any three right lines be drawn from the point C to the
circumference, and either one of them shall be part of a dia-
meter, and therefore greater or less than either of the others
(by Part 1°. and 2°.), or two of them must be at the same side
of the diameter, and therefore unequal (by Part 4°.).

The results of this proposition may be expressed thus :—

If a line always terminated in the circumference revolve round a
point C, within a circle different from the centre, it will vary in its
magnitude between certain limits. As it revolves from the position
C AB towards F in either direction, it diminishes, and at equal dis-
tances at each side of C A B it has equal magnitudes; and this diminu-
tion continues until, having made half a revolution, it assumes the posi-
tion C F. In the positions C B and C F it is therefore a maximum
and minimum ; and the nearer it is to the maximum position the greater
it is, and the nearer to the minimum position the less it is.

Prorosition VIII, THEOREM.

(837) If from any point without a circle lines be
drawn to the circumference, those which make
equal angles with the line passing through the
centre are equal.
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Of those lines which are incident upon the
concave circumference, the greatest is that
which passes through the centre.

Of the rest, that which is nearer to the line
passing through the centre is greater than the
more remote.

But of those incident upon the convex cir-
cumference, that line is the least which, if
produced, would pass through the centre.

Of the rest, that which is nearer to the least
is less than the more remote.

Only two lines can be drawn either to the
concave or convex circumference which shall
be equal.

Part 1°.—The right lines A B and A X, which make equal angles
with AZ, are equaf.

For, if it be possible, let one of them A B be greater than
the other ; make A E equal to AX, and draw Z E and Z X.

In the triangles Z A E, ZA X, the side ZA is common,

AE is equal to AX (const), and the angle =
ZAEis equal to ZAX (hyp.), therefore the I A
sidles ZE and Z X are equal (IV, Book I.); o

but the line ZO is equal to Z X, therefore

ZE is equal to Z O, a part equal to the whole, which is absurd.
Therefore neither AB nor A X is greater than the other, and
therefore they are equal.

Part 2°.—Of those lines which are incident upon the concave
circumference, that line AY which passes through the centre is
greater than any other A X

Draw Z X; and ZY is equal to Z X, therefore if A Z be
added to both, A Y shall be equal to AZ and Z X taken together;
but A Z and Z X together are greater than A X (XX, Book 1.),
therefore A Y is greater than Agx.

A'Y is the sum of the sides of a triangle, of which any other line
A X is the base,

Part 3°.—The line A B or A X, which is nearer to the greatest,
is greater than the more remote A D.

H
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If the given lines AX and A D be at the same side of AY,
draw Z X and ZD. 1In the triangles AZX, AZ D, the sides
AZ, ZX are equal to the sides AZ,ZD,and the angle AZX
is greater than AZD, therefore the side AX is greater than
AD (XXIV, Book L). -

But if the given lines AB and AD be at different sides of
AY, make the angle ZAX equal to ZAB, and A X shall be
equal to AB (Part 1°.); but A X is greater than A D, therefore
A B is greater than AD.

Part 4°.—Of those lines which are incident on the convex cir-
cumference, that line A F, which if produced would pass through
the centre, is less than any other A X.

Draw Z F and Z X. X and X A are

greater than Z A (XX, Book L), and >
therefore if the equals ZX and ZF be A
taken away, A X is greater than A F.

AF is the difference of the sides of a triangle, of which any other
line A X is the base.

Part 5°.—That line AB or A X which is nearer to the least is
less than the more remote A C.

If the given lines A X and A C be at the same side of A Z,
draw ZX and ZC. ZCand C A taken together are er
than Z X and X A; take away the equals ZC and Z X, and
A C is greater than A X. But if the given lines A B and AC
be at different sides of A Z, make the angle Z A X equal to
Z A B, and A X shall be equal to AB (Part1°); but AC is
greater than A X, and therefore greater than A B.

Part 6°.—Only two equal lines can be drawn either to the
concave or convex circumference.

If any three lines be drawn, either one of them shall pass
through the centre, and therefore be either greater or less than
either of the others, or two must be at the same side of the line
passing through the centre, and therefore unequal.

Hence if a line be supposed to revolve round the fixed point A, as it
recedes from AY in either direction it diminishes. When it recedes so far
that the part intercepted within the circle vanishes, and the two points
of intersection with the circle unite and become one, the line becomes
a tangent. If it recede beyond this, it will not meet the circle at all.
(The line is called a secant so long as it meets the circle in two points).
As the line revolving from the tangential position again approaches
AT, being terminated in the convex part of the circumference, it still
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diminishes; and becomes a minimum where it assumes the position
AF. Thus it appears, that the tangent is less than any secant from
the same point, but greater than the external part of the secant.

Prorosition IX. TuEOREM.

(338) Ifapoint be taken within a circle, from which
more than two equal right lines can be drawn
to the circumference, that point is the centre
of the circle. .

For if it were a point different from the centre, only two equal
right lines can be drawn from it to the circumference (VII)-

Thus the criterion for the determination of the centre is, that
more than two points of the circumference should be equally distant
from it. '

ProrosiTioN X. THEOREM.

(339) One circle (B D F) cannot intersect another
(BLF) in more than two points.

For, if it be possible, let it intersect the other in three points,
B, F, and C; let A be the centre =
of the circle B L F, and draw
from it to the points of intersection X % )2
the lines AB, AF, and AC; 4
these lines are equal (Def.), but g
as the circles intersect, they have not the same centre (V), there-
fore A is not the centre of the circle B D F, and therefore as
three right lines A B, AF, A C are drawn from a point not the
centre, these lines are not equal, (VII and VIII); but it was
shown before that they were equal, which is absurd; the circles
therefore do not intersect in three points.

”
Py
Gl

By this proposition two eircles cannot interseet in more than two
points; but the same demonstration will show that they cannot touck
in more than two points; hence, in general, two circles cannot have
more than two points in common.

Hence also it appears, that if two circles coincide at three points
they will coincide at every point, or only one circle can be drawn
through three given points. The problem to describe a circle through
three given points is the same as to circumscribe a circle round a
triangle, and has been solved in (77).

H2
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Prorposrrion XI. TaEOREM.

(340) If two circles (ECF) and (D CL) touch one
another internally, the right line joining their
centres, being produced, shall pass through a
point of contact.

For, if it be possible, let A be the centre of the circle ECF, B
the centre of the circle D CL, let D L be the line C
joining the centres, and from C, a point of con-
tact, draw the lines CB and C A.

Because in the triangle BA C the sides BA
and A C, taken together, are gredter than B C (XX, Book 1.), and
B C is equal to ge D, as they are radii of the circle D CL, the
lines B A and A C, taken together, are greater than BD; take
away B A, which is common to both, and A C shall be greater
than AD; but A Cis equal to A E, because they are the radii
of the circle E CF, and therefore AE is greater than A D, a part
greater than the whole, which is absurd. The centres are not,
therefore, so placed that a line joining them can pass through any
point but a point of contact.

In the enunciation and demonstration of this and the next proposi-
tion, in Simson’s and other translations, the definite article * the" is
applied to the point of contact through which the line joining the cen-
tres is proved to pass: thus it is said, that * the line passing through
the centres, being produced, shall pass through tke point of contact.’
In this phraseology there is a silent assumption that there is dut one
point of contact, which is true, but is not established until the thir-
teenth proposition.

Prorosition XII. THEOREM.

(841) If two circles (A O C and B F C) touch one ano-
ther externally, the right line joining their
centres passes through a point of contact.

For, if it be possible, let A and B be the centres, and let the right

line A B joining them not pass through a point of
contact, and from C, a point of contact, draw C A A
and CB to the centres. =D

Because in the triangle A CB the sum of the
sides A C and CB is greater than A B (XX, Book 1), and the
line A O is equal to A'C, as they are radii of the circle AOC,
and the line B F is equal to BC, as they are radii of the circle
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BFC, AO and B F taken together are greater:than B A,.a par:
greater than the whole, which is absurd. The centres are not,
therefore, so placed, that the line joining them can pass through
any point but a point of contact.

From this and the last proposition it follows, that the line joining
the centres of contingent circles is the sum of the radii when the con-
tact is external, and the difference of the radii when it is internal.

ProrosiTion XIII, TueoreM.

(842) One circle cannot touch another either externally
or internally in more points than one.

For, if it be possible, let the circles AD E and BDF touch
one another internally in two points D and C; draw
the line A B joining their centres, and produce it until
it pass through one of the points of contact D, and
draw A C and BC.

Because BD and B C are radii of the same circle
BDF,BDis equal to BC, and therefore, if A B be added to
both, A D shall be equal to AB and BC; but AD and AC are
radii of the circle ADE, therefore AD is equal to AC, and
therefore A B and B C are equal to AC; but they are greater than
it (XX, Book 1.), which is absurd.

ut if the points of contact be the extremities of ¢
the right line joining the centres, C D must be bisected
in A, and also in B, because it is a diameter of both
circles, which is absurd.

Next, if it be possible, let the two circles ADE and ~®
BD F touch one another externally in two

points D and C; draw the right line A B Y e
joining the centres of the circles, and passin,
through one of the points of contact C, an '

draw AD and DB.

Because AD and A C are radii of the circle ADE they are
equal; and because B C and B D are radii of the circle BDF
they also are equal, therefore AD and B D together are equal to
AB; but they are greater than it (XX, Book I.), which is absurd.
There is, therefore, no case in which two circles can touch one
another in two points.

In the 11th and 12th propositions it was proved, that the line joining
the centres of contingent circles passed through a point of contact;
and in the present we show that this is the only point of contact, by
proving that an absurdity would follow from supposing the existence
of any other. :
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" ‘Chiz propesition, kowever, admits of direct proof. We shall express
the proposition thus :

If a circle touch another internally, every point of its circumfer-
ence, except the common point through which the line drawn joining
their centres passes, must be within the other.

Let C be any point on the circumference of the lesser circle ; A D is
greater than A C (VII). Since A Cis less than the
radius A D of the circle A D E, the point C is within
the circle A D E (22) ; and, in the same manner, every
peint of the lesser circle may be proved to be within
the greater, except the point D, at which they meet.

If the circles touch externally, B D is greater
than B C (VIII), * D lies without the circle
BCF; and, in like manner, every point of the
circle ACD, except the point C, at which they
meet, may be proved to lie without B CF.

By the same kind of reasoning it will not be difficult to prove, that
if the line joining the centres of two circles be equal to the difference of
their radii, they have internal contact, and if it be equal to the sum of
their radii, they have external contact.

The following propositions may also be established. If one circle
be contained within another without meeting it, the distance between
their centres is less than the difference of their radii.

If the distance between the centres be less than the difference be-
tween the radii, the lesser circle will be contained within the greater
without meeting it.

If two circles lie each without the other, and do not meet, the dis-
tance between the centres is greater than the sum of the radii.

If the distance between the centres of two circles be greater than
the sum of the radii, theylie eachwithout the other, and do not meet.

These propositions may be all proved by (VII) and (VIII), united
with the criterion established in (22), for determining whether a point
be within or without a circle. :

ProrosiTion XIV. TrEOREM.

(843) In acircle equal right lines (BC and F L) are
equally distant from the centre.
And right lines (B C and F L) which are equally
distant from the centre are equal.

Let A be the centre of the circle; join A C, A L, and draw A O
and A I perpendicular to B C and FL.

Part 1°.—Because B C and F L are equal (hyp.), and the per-
pendiculars from the centre bisect them (III),0C ¢
and IL are equal, and therefore their squares are ,"
equal; A C and AL are also equal, and there- u"
fore their squares are equal ; but the square of A C ® i
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is equal to the squares of AO and OC (XLVII, Book 1.),
and the square of A L is equal to the squares of Aland IL
(XLVII, Book 1.), therefore the squares of AO and OC are
eqnal to the squares of AI and IL: take away the equal
squares of OC and IL, and the sclua.res of AO and A1 are
equal, and therefore the lines themselves are equal.

Part 2°.—Because A O and AT are equal (hyp.), their squares
are equal; but A C and A L are equal, and therefore their
squares are equal; but the square of A C is equal to the
squares of A O and OC (XLVII, Book 1.), and the square
of AL is equal to the squares of AI and IL, therefore the
squares of AO and O C are equal to the squares of AI and
IL: take away the equal squares of A O and A I and the squares
of OC and IL are equal, therefore the lines themselves are
equal; but because AO and Al bisect BC and FL (III),
OC and 1L are the halves of BC and FL; and since they are
equal, the lines B C and F L are also equal.

ProrositioN XV. THEOREM.

 (844) The diameter is the greatest right line in
a circle: and of all others, that which is
nearest to the centre is greater than the more
remote.

Part 1°.—The diameter A B is greater than any line E D.

For draw CD and CE. CD is equal to CB and CE to CA,
therefore A B is equal to CD and CE together; but CD and
CE together are geater than E D (XX, Book 1.), therefore A B
is greater than E D.

Part 2°.—That which is nearer the centre is greater than one
more remote.

First, let the given lines be E D and I K, which ,
are at the same side, and do not intersect; draw ,\'
CD,CE,CI,andCK. 'ﬁ

In the triangles ECD, ICK, the sides E C and
CD are equal to IC, CK; but the angle ECD is gI'r(eater than
1C K,I ;herefore the side ED is greater than IK (XXIV,
Book 1.).

Let the given lines he XZ and I K, which either are at
different sides, or intersect; draw C O and CF perpendicular to

LR
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ZX and IK, aud from the greater CF cut off CV equal to the
less CO, and through V draw E D perpendicular to CF.
Because Z X and ED are equally distant from the centre
gconst.), ED is equal to Z X (XIV); but ED is greater than
K, and therefore Z X is greater than I K.

This proposition might have been proved in a manner similar to
the preceding. The sum of the squares of a semichord and its dis-
tance from the centre is equal to the square of the radius. This
sum being therefore always the same whatever the chord be, it
follows that the greater the square of the semichord, the less will be
the square of its distance, and vice versa ; and the square of the semi-
chord is greatest when its distance from the centre vanishes. Hence
the results of the proposition may easily be inferred.

(345) The shortest chord which can be drawn through a given point
A in a circle, is that which is perpendicular to the longest.

The longest is the diameter. Draw the diameter BD, and EF
perpendicular to it. Draw any other chord G H, and the =
perpendicular CI. C A is greater than C I, and (XV)
therefore G H is greater than E F'; and since the same ).
is true of any other chord, it follows that E F is the ©
least.

'The less the angle a chord makes with the diameter through A, the
greater the chord will be.

For it is easy to see, that as the angle H A B diminishes the per-
pendicular C I will also diminish.

Prorosition XVI. THEOREM,

(846) The right line drawn from the extremity of the
diameter of a circle perpendicular to it falls
without the circle.

And if any right line be drawn from a point
within that perpendicular to the point of con-
tact, it cuts the circle,

Part 1°.—For, if it be possible, let B G, which meets the circle
again, be perpendicular to A B, and draw CG.

Because in the triangle CB G the side G C is equal to C B,
the angle CBG is equal to CGB (V, Book 1.), and therefore
each of them is acute (XVII, Book I.); but CBG is a right
angle (hyp.), which is absurd, therefore the right line drawn
through B perpendicular to A B does not meet the circle

again,
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- Part 2°.—Let BF be perpendicular to AB, and let EB be a
line drawn from a point between it and the clrcle,
which, if it be possible, does not cut the circle.

Because the angle CBF is a right angle,
C B E is acute; draw CI perpendicular to B E,
and it must fall at the side of the angle CBE.

Then in the triangle BC1 the angle CIB is
greater than C B I, therefore the side C B is (3
greater than CI; but CO is et}ual to CB, and
therefore C O is greater than Cl, a part greater
than the whole, which is absurd. Therefore the point I does
not fall outside the circle, and therefore the right line B E cuts
the circle.

(847) This proposition might have been proved directly, thus:

Draw any line CI to the right line BF. Since CBI is a rlght
angle C B is less than CI, - the point I is without the
circle; and the same may be proved of every point of
the right line except the point B.

Let B E make the angle E B C acute, and draw the
perpendicular C G. Hence CG is less than CB, and
therefore G is within the circle, and therefore B E in-
tersects the circle.

The line F F is a tangent to the circle, and it follows, that a ta.ng'ent
can meet the circle only in one point.

Hence, to draw a tangent to a point on a circle, it is only necessary
to draw a diameter through that point and to draw a line perpendiculer
to it.

{848) From this proposition a method has been derived of proving
the infinite divisibility of linear magnitude.

Let BF be a tangent at B to the circle whose centre is C. Draw
any line CI meeting the circle at O. The line OI
may be infinitely divided by describing circles with
centres at C', C", C", &c., touching BF at B. *

)

This is obnous
If several circles touch each other, either inter-
nally or externally, they have at their point of con-

/°\
tact a common tangent. For the same right line 8 i’
is perpendicular to that which passes through their

centres.
(349) From this proposition it follows, that tangents through the
extremities of the same diameter are parallel.

Proposition XVII. ProsLEM,

(850) From a given point (A), without a given circle
(CB F), todraw a right line which shall be a
tangent to the circle.
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Let C be the centre of the given circle, and from the centre
with the radius C A describe a circle C A E; draw
C A, which meets the circle in the point F, and draw P\
through the point F the line F E perpendicularto C A, N7
and meeting the circle CA E in E; draw the line
C E meeting the given circle in B, and the right line drawn fro;
B to the given point A is a tangent.

For in the triangles A C B, E CF the sides AC and C B a
equal to E C and C F, and the angle at C is common to both
therefore the angle A BC is equal to E FC (IV, Book L.); b
the angle E F C is a right angle (const.), therefore A B C is
right angle, and therefore the right line A B is a tangent to th
circle C F B (XVI).

(851) It is evident that two tangents and not more can be draw
from the point A ; for the perpendicular to C A through F meets tb
circle CA E in two points and no more, and each of these points wi
determine a tangent. '

The two triangles AB C are evidently equal in every respec
Hence the two tangents A B are equal, and equally inclined to th
line A C through the centre, lying on different sides of it.

Prorosition XVIII. THEOREM.

(852) If a right line (D B) be a tangent to a circle, th
right line (C D) drawn from the centre to th:
point of contact is perpendicular to it.

_ For, if it be possible, let the right line C F be perlpendicular t
B D, and in the triangle C F D, because the angle

CF D is a right angle, the angle CD F is acute
(XVII, Book 1.), therefore the side C D is greater
than the side C F (XIX, Book L.); but C E is equal
to C D, and therefore C E is greater than C F, a part
greater than the whole, which is absurd. Therefore C F is no
perpendicular to BD; and in the same manner it can be demon
strated, that no other line except C D is perpendicular to it.

Proposition XIX. THEOREM.

(853) Ifarightline (BC) be atangent to a circle, th
right line (B A) drawn perpendicular to it fron
the point of contact passes through the centr
of the circle.
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For, if it be possible, let the centre Z be without o
the line B A, and draw Z B.

Because the right line Z B is drawn from the
centre to the point of contact, it is perpendicular to
the tangent (RXVIII), therefore the angle Z B C is
a right angle; but the angle A B C is also a right angle (hyp.),
and there?ore Z B C is equal to A B C, a part to the whole, which
is absurd.

Therefore Z is not the centre; and in the same manner it can
be demonstrated, that no other point without the line A B is the
centre.

(354) ¥rom this and the preceding propositions we may deduce the

following consequences :— )
Two concentrical circles being described, if a chord of the greater

meet the less, the parts intercepted between the two circles are equal.
Let CD be perpendicular to A B.

1°. Let A B intersect the lesser circle. Then A D=BD aZ-—8n
and E D=F D (III), ‘A E=FB. e

2°, Let A B touch the lesser circle. The angle CDA Ay
is right (XVI), .- AD=D B.

Hence all chords of the greater circle which touch the lesser, are -
bisected at the points of contact.

All such chords are equal, since their distances from the centre are
equal to the radius of the lesser circle (XIV).

*.* Itis obvious that if any number of equai chords be drawn in a
circle the locus of their points of bisection is a circle, the square of whose
radius is equal to the difference between the squares of the radius of
the given circle and half the chord.

® X Through a given point within or without a circle to draw a chord
of a given length.

© In order that the solution of this problem be possible, it is necessary
that the given length should not be greater than the diameter of the
circle (XV); and if the given point be within the circle, it is further
necessary, that it should not be less than the chord through the given
point at right angles to the diameter through the same point (345).

When the solution then is possible, let any chord be drawn in the
circle equal. to the given magnitude, by taking any point on the circle
as centre and the given length as radius, and describing another circle,
and drawing from the assumed point to a point of intersection of the
two circles a chord. From the centre let a perpendicular be drawn to
this chord, and with that perpendicular as radius describe a concen-
trical circle. Through the given point draw a tangent to this circle,
and it will be the line required,

The demonstration will easily be inferred from the preceding articles.
*.* Between a circle and a right line, or between two circles not
concentrical, to inflect a line of a given length which shall touch one
of the circles. Draw any tangent A B to one of the given circles, and
take A B equal to the given length, and draw C B from the centre C,
Describe the concentric circle C B D, and draw the tangent D E from
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the point D where this circle meets the given right A
line or the other circle. The demonstration is evi-
dent from (351).
If the circle C B D do not meet the given right
line or the other circle the solution is impossible. £

Prorosition XX.

(855) The angle (A C D) at the centre of a circle,
double the angle (A B D) at the circumferen
when they have the same part of the circu
ference for their base. '

1°. Let the centre be on A B a side of the angle ABD at
circumference. Because in the triangle D C % the
sides DC and CB are equal, the angles CBD and [/ _
CDB are equal SV, Book I.). But the external N
angle A CD is equal to the sum of CBD and CD B, X
or to twice C BD (XXXII, Book L.).

2°, Let the centre be within the angle ABD; draw BC
the angles AB C and C A B are equal, and the angles B
CBD and CDB are slso equal, because of the \
equality of the sides CD, CB, CA, (V, Book I). <
Hence the sum of the angles CAB, CBA, CBD, X
and CD B is double the angle ABD. But ECA is x
equal to the sum of CBA and CA B, and E C D is equal to
sum of C B D and C D B, therefore A CD is equal to the sun
CAB,CBA, CB D, and CD B, and therefore ACD is dou
of ABD.

8°. Let the centre be without the angle ABD; draw BC
The angle ECD is double the angle EB D (Part 1°.), and it
equal to the angles EC A and A CD taken together.
The angle EBD is equal to EBA and A BD taken c
together. Therefore the angles ECA and ACD
taken together are equal to twice the angle EBA *—x
together with twice the angle ABD. But the angle ECA
equal to twice the angle E%A (Part 1°.). These equals bei
taken away from both the former, the remainder are equal, t
is, the angle ACD is equal to twice the angle A BD.
(856) The first case of this demonstration is omitted by Euclid,
in the proof of the third case, it is assumed, that if one magnitude
double another, and from these respectively be taken two magnituc
one of which is double the other, the former remainder will be dou
the latter remainder. In the demonstration, as we have modified
it is only assumed, that the double of a whole is equal to the double
its parts taken together, which may easily be inferred from the si
and ninth axioms.
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"The relation established in this proposition between the central and
circumferential angles on the same arc extends to the
cases in which the central angle is greater than two right A
angles (14, 135). Let BCD presented towards E be such % /o
an angle. Draw ACE. The reverse angle BCD is ’
equal to the sum of the angles BCE and DCE. But
BCE is twice BAC, and DCE is twice DAC, < the ¥
reverse angle BCD is equal to twice the angle BAD. .
This_generalization would give considerable brevity to some of the
succeeding demonstrations.

ProrposiTioNn XXI. THEOREM.

(857) The angles(BAD, BED) in the same segment
of a circle are equal.

1°. Let the segment B AD be greater than a semicircle, let
C be the centre of the circle, and draw CB and C D. A

The angle B C D at the centre is double of the
angle B A D, and also double of BED (XX); there-
fore BAD and BED are equal to one another. »

2°, Let the segment BAD be a semicircle, or less than a
semicircle, let C be the centre of the circle, and draw the right
lines ACF and EF.

Because the segment BDF is greater than a semicircle, and
in it are the angles BAF and BEF, BAF is equal "
to BE F (Part 1°.) ; and because the segment FBA D
is greater than a semicircle, and in it are the angles
FADand FED, FADis equal to FED (Part 1°.);
therefore the sum of the angles BAF and FA D, or ¥

the angle BAD, is equal to the sum of BEF and FED, or to
the angle BED.

(358) If the term ‘angle’ had been extended by Euclid, as it has been
in modern science, to angles greater than two right angles,
no subdivision of this demonstration into cases would be
necessary. ‘The second case would be proved as the first.
Each of the angles B AD and BE D would be equal to
half the reverse central angle B C D.

If two equal angles stand on the same are, and the vertex of one be
in the opposite segment, the vertex of the other will also be in it.

For if not at E let it be within or without it at F, and
draw B E. The angles B AD and B F D are equal (hyp.),
but BA D and BE D are equal (XXI) also. Hence the
angles BE D and BF D are equal; but one is greater
than the other by (XVI, Book I.), hence, &c. B

\D
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Hence it appears, that if innumerable triangles be constructed oa
the same base with equal vertical angles, the vertices would form the
segment of a circle. In other words, if the base and vertical angle of
a triangle be given, the locus of the vertex is the segment of a circle.

There is no difficulty in proving that any angle within a segment
contained by lines drawn to the extremities of its base, is greater than
an angle in it, and vice versa, and any such angle without it is less
than an angle in it, and vice versa.

Prorosition XXII. THEOREM.

’859) The opposite angles of a quadrilateral figure
(FABC) inscribed in a circle, are together
equal to two right angles.

Draw the diagonals A C and F B.

Because the angles ACB and A F B are in the same segment
AFCB, ACB is etlual to AF B (XXI), and because the
angles AC F and A B F are in the same segment
ABCF, A CFisequal to AB F (XXI), there- B
fore the angle B C F 1s equal to the angles AFB
. and A B F taken together ; but the angles AF B s
and A B F together with F A B are equal to two
right angles (XXXII, Book 1.), and therefore B C F together
with F A B is equal to two ri%xt angles: in the same manner it
can be demonstrated, that A B C and A FC are equal to two
right angles.

(360) If any side F C be produced, the external angle B C E will be
equal to the opposite internal angle F A B, for they have a common
supplement F C B.

(361) This proposition might be derived from the twentieth, thus :—

Draw DF and D B. The angle FC B is half of

F D B, and the angle FA B is half of the reverse angle ,-B
F DB, °: the angles A and C together are equal to half v
the sum of the angles round the point D, that is, to two
right angles. c
(862) If two chords cut off similar segments from the same or differ-
ent circles, the other segments will also be similar, since the angles
they contain are supplemental to those in the former segments.
(363) If opposite angles of a quadrilateral be equal, they must be both
right, right angles being the only equal angles which are supplemental.
(364) If the opposite angles of a quadrilateral be supplemental, a
circle may be circumscribed about it.

For if a circle be described passing through the vertices of three
of its angles A, B, F, it must also pass through the fourth A
C. Take any point D in the segment FD B, and draw
DF,D B. The angle D is supplemental to A (XXII), »
and -, equal to C, and since they are on the same base ()
F B, and D is in the circle, C must also be in it (358).
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Prorosirion XXIII.  THeOREM.

365) Upon the same right line, and upon the same
side of it, two similar segments of circles
cannot be constructed which do not coincide.

For, if it be possible, let two similar segments ACB and
ADB be constructed, and let the point D in one
of them fall without the other, and draw the right @
lines D A, D B, and C B. A >

Because the segments ACB and AD B are si- :
milar the angle ACB is equal to ADB (Def.); but ACB is
external to ADB, and therefore greater than it (XVI, Book 1.),
which is absurd: therefore no point in either of the segments
falls without the other, and therefore the segments coincide.

Prorosition XXIV. THEOREM.

(866) Similar segments of circles standing upon equal
right lines (A B and C D) are equal.

For if the equal right lines A B and C D be applied one on the
other so that the point A may fall on C, the

point B must fall upon D, and therefore the
right lines coincide ; therefore the segments m m

themselves coincide (XXIII), and therefore
they are equal.

*.* (367) Henceit follows, also, that similar segments having equal
chords have also equal arcs.

Also, since two circles must coincide in every part, if they agree in

more than two points, it follows that similar segments having equal
chords are parts of equal circles. .
*,* (868) Sectors whose radii and angles are equal, are themselves
equal. For if the chords of the arcs be drawn, they will be divided into
triangles and segments. The triangles will be equal (IV, Book L.);
and since the angles at the centres are equal, those at the circum-
ference are also equal (XX), and also those in the arcs of the sectors
(XXII). Hence the segments are similar, and being on equal right
lines, are equal.

ProrosiTion XXV. PRrOBLEM.

(369) A segment (A BC)of a circle being given, to
describe the circle of which it is the segment.
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From any point B draw two right lines B A and B C, bisect
them, and from the points of bisection F and E draw B
two lines FO and E O perpendicular to AB and
B C; the intersection O of these perpendicularsis a(” Yy Ve
the centre.

Because the right line A B terminated in the circle is bisected
by a perpendicular F O to it, F O passes through the centre (I),
likewise E O passes through the centre (I), therefore the centre
must be O, the intersection of these lines F O and E O.

It is here assumed that the perpendiculars E O and F O will meet.
This appears from considering that if the line F E be drawn, they will
make angles with it, which are together less than two right angles.

ProrosiTion XXV THEOREM.

(870) In equal circles (ABC,DEF), equal angles
AOCand DHF, ABC and D E F), whether
they be at the centres or at the circumfer-
ences, stand upon equal arches.

First, let the given angles A O C and D HF be at the centres ;
draw to any points B and E in the circumferences the lines A B
and CB and DE, FE, and join AC and DF.

Because in the triangles AOC, DHF the angles O and H
are equal (hyp.), and the sides AO and O C

B h
equal to D H and HF (hyp.), the bases A C
and D F are equal (IV, Book I.); but the 6
angles ABC and DEF are equal (XX), % »

and therefore the segments ABC and DEF

are similar (Def), but they stand upon equal right lines A C and
DF, and are therefore equal (XXFV); take away these equals
from the equal circles, and the remaining segments are equal,
and therefore the arches AGC and D K l§are equal.

In the same manner it can be demonstrated, that the arcs
AGC and DKF are equal, if the given angles at the circum-
ferences ABC and DEF are acute, by drawing OA and O C
and also HD, HF.

But if the given angles at the circumferences are either right
or obtuse, bisect them, and the halves of them are equal, and it
can be proved as above, that the arcs upon which thesé halves
stand are equal, whence it follows that the arcs on which the
given angles stand are equal.

(371) It is evident that this proposition extends to equal. central or
circumferential angles in the same circle, and also to the cases of
reverse angles.
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*.* (372) Hence if the opposite angles of a quadrilateral in a circle
be equal, the diagonal opposite them mast be a diameter ; and since in
this case the angles are both right, it follows that a segment containing
a right angle is a semicircle.

*+* (378) There is no difficulty in deducing from this proposition,
that if one central or circumferential angle in the same or equal circles
be greater than another, the arc on which the one stands will be greater
than that on which the other stands.

Hence it appears, that if of two opposite angles of a quadrilateral
inscribed in a circle, one be acute, and therefore the other obtuse, the
arc on which the former stands will be less, and the latter greater, than
a semicircle. Hence the segment which contains an acute angle is
greater, and that which contains an obtuse angle less, than a semicircle.
These results are the converse of Prop. XXXI.

*+* (374) Supplemental circumferential angles in the same or equal
circles, stand on arcs whose sum is equal to a whole circumference.
*«* (375) Diameters intersecting at right angles divide the circum-
ference into four equal arcs.

*.* (876) Anynumber of central angles in the same or equal circles,
whose sum is equal to four right angles, stand on ares whose sum is
equal to a whole circumference.

®«" (877) Any number of circumferential angles in the same or equal
circles, whose sum is equal to two right angles, stand on arcs whose sum
is equal to a whole circumference.

*+* (878) Similar arcs of equal circles are equal.

*«* (379) Parallel chords AB,CD of a circle intercept equal arcs ;
and vice versd.

Draw A C. The alternate angles BAC and ACD B
are equal, therefore the ares B C and A D on which they , c
stand are equal. Agzin, if AD = BC, then (XXVII)
ACD=BAC; ** AB is parallel to D C. »

*o* (380) If two chords A B, C D, intersect within a circle, the sum of
the arcs they intercept is equal to the arc which a circum-

Jerential angle equal to that under the chords would inter- A<— @
cept.

Draw A E parallel to CD. Then AC= DE, -° c»
EB =the sumof ACand BD. ButBAE=BFD. B
*«* (381) If two chords intersect at a point without a circle, the differ-
ence of the arcs which they intercept is equal to the i D
arc which a circumferential angle equal to that under »__—* -
the chords would sntercept. "

Draw A E parallel to CD. Then AC=DE," 2
B E is the difference between BD and AC: but BAE=BFD.
*»* (382) If chords within-a circle intersect at the same angle, the
sums of the arcs they respectively intercept are equal; and if they
intersect without the circle the differences are equal ; and if one pair
intersect within and the other without, the sum of the one pair of
arcs is equal to the difference of the other.

*.% (383) If chords intersect at a right angle, the sum of the arcs
they intercept is equal to a semicircle.
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ProrosiTioN XXVII. THEOREM.

(384) In equal circles (ABC, D E F), the angles
(ABCand DEF) which stand upon equal
arches are equal, whether they be at the
centres or at the circumferences.

For, if it be possible, let one of them D E F be greater than
the other, and make the angle D E G equal

wABC. 1
Because in the equal circles ABC and A\
DEF the angle ABC is equal to DEG XXk

(const.), the arcs A HC and D G are equal
sXXVI) , but AHC and D G F are also equal (hyp.), and there-
ore D G is equal to D F, a part equal to the whole, which is
absurd : neither angle therefore is greater than the other, and
therefore they are equal.
*.* (385) This proposition extends, like the former, to arcs in the same
circle, as well as in equal circles, and inferences follow which are con-
verses to those made from (XXVI).—Ez. gr. : The sum of the central
angles subtended by arcs, whose sum is equal to an entire circumfer-
ence, is equal to four right angles. The sum of the circumferential
angles subtended by the same arcs is equal to two right angles, &c.

A quadrant subtends a right angle at the centre, and a semicircle
at the circumference.

It follows also from this proposition that equal arcs of equal circles
contain similar segments.

Prorosition XXVIII. TrEOREM.

(386) In equal circles (A BC, D EF), equal right lines
(A C and DF) cut off equal arcs, the greater
equal to the greater (ABC to D EF), the
less to the less (A GC to DH F).

If the equel right lines be diameters the proposition is evident.

If not, let K and L be the centres of the
circles, and draw the lines KA, K C, LD,
and LF.
Because the circles are equal (Def)), AK & ¢ D A
H

and K C are equal to LD and L'F, and also

AC and DF are etbua.l hv.), therefore the angle AK C is
equal to the angle D LF (VIIL, Book I.), and therefore the
arc A G C 1s equal to the arc DHF (XXVI); and since the
circles are equal, take away these equal arcs from them, and the
remaining arcs AB C and D E F are equal.
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ProrosiTion XXIX. THEOREM.

(387) In equal circles (A B C, DE F), the right lines
(A C and D F) which subtend equal arcs are
equal.

If the equal arches be semicircles the proposition is evident.
But if not, let K and L be the centres of

tI].];‘ circles, and draw A K, K C, DL, and
Because the arcs AGC and DHF are )
equal (hyp.), the angles AKC and DLF

are equarpXXVII) but in the triangles AK C and D LF the
sides AK and K C are equal to DL a.nd L F (hyp.), and there-
fore the bases A C and D F are equal (IV, Book 1.).

ProrosiTion XXX, ProBLEM.
(388) To bisect a given arc (A BC).

Draw the right line A C; bisect it in E, through E draw EB

perpendicular to A C, and it bisects the arc in B.
raw the right lines A B and C B.

In the triangles A E B, CE B, the sides AE and E C are equal
(const.), EB is common, and the angle AEB is
equal to C E B (const.), therefore the sides A B and S
B C are equal (IV, Book L.), and_therefore the
arcs which they subtend are equal %(XVIII), and ®
therefore the given arc is bisected in

[

Prorosition XXXI. TrEOREM.

(389) In a circle the angle in a semicircle is a right
angle, the angle in a segment greater than a
semicircle is acute, and the angle in a segment
less than a semicircle is obtuse.

Part 1°.—The angle A B C in a semicircle is a right angle
Let O be the centre of the circle, and draw O

and A C. V4 \
Because in the triangle A O B the sides O B and “"

O A are equal, the angles OA B and OB A are also
equal (V, Book 1.); m the same manner it can be proved, that
the angles OCB and OB C are equal, therefore the angle

12
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ABC is equal the sum of the angles BCA and BAC, and
therefore the angle A B C is a right angle (XXXII, Book L.).

Part 2°.—The angle A B C in a segment greater than a semi-
circle is acute.

Draw A D, a diameter of the circle, and also the lines C D, CA.

Because in the triangle A C D the angle ACD
in a semicircle is a right angle (Part 1°.), the angle
A DCis acute (XXXII, Book I.); but the angles
ADC and A B C are in the same segment AB D C,
and therefore equal (XXI), therefore the angle ABC
is acute.

Part 3°.—The angle A B C in a segment less than a semicircle
is obtuse.

Take in the opposite circamference any point D, and draw D A
and D C.

Because in the quadrilateral figure A BCD
the opposite angles B and D are equal to two
right angles (XXII), but the angle D is less than
abright angle (Part 2°.), the angle AB C must be
obtuse.

>
@u
a v

>
e@
L
aQ

(390) The second part of this proposition might have
been more elegantly and concisely proved by drawing
D B instead of D C; we should then have AB D a right 4
angle, *» A B C acute.
A similar method might be applied to the third case; draw the dia-
meter A D, and draw B D. The angle AB D is right, .
and °* A B C obtuse.
But the proof might be still more elegantly derived A
from the established relation between central and circum-
ferential (XX) angles having the same subtense. The
central angle which stands on a semicircle is equal to two right angles,
and therefore the circumferential angle is one right angle. The cen-
tral angle, which stands on an arc less than a semicircle, is less than
two right angles, and therefore the circumferential angle is less than a
right angle ; and the central angle, which stands on an arc greater than
a semicircle, is greater than two right angles ; and therefore the cir-
cumferential angle is greater than a right angle.

D

(4

o

c

D

B

ProrosiTion XXXII. THEOREM.

(391) If a right line (E F) be a tangent to a circle, and
from the point of contact a right line (A C) be
drawn cutting the circle, the angle FAC
made by this line with the tangent is equal to
the angle (A B C) in the alternate segment of
the circle,
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If the chord should pass through the centre, it is evident the
augles are equal, for each of them is a right angle (XVI, XXXI.)

%ut if not, draw through the point of contact the line A B per-
pendicular to the tangent E F, and join B C.

Because the right ine EF is a tangent to the circle, and A B
is drawn through the point of contact perpen- »

dicular to it, AB passes through the centre o
(XIX), and therefore the angle ACB is a
right angle (XXXI); therefore in the triangle

ABC, the sumof the angles ABCand BAC * * ¥
is equal to a right angle (XXXII, Book 1.), and therefore equal
to the angle BAF; take away the common angle BAC, and
the remaining angle C AF is equal to the angle ABC in the
alternate segment.

The angles EA C and A D C are also equal.

Draw the right lines AD and D C; because in the quadrilateral
A B CD the opposite angles AB C and AD C taken to%ether are
equal to two right angles (XXII), the sum of the angles EAC
and FACis equal to the sum of ABCand AD C; take away
the equals FAC and AB C (Part 1°.), and the remaining angle
E Ag is equal to the angle A D C in the alternate segment.

(392) This proposition might be otherwise proved, thus :—The angle
ACD=DAF. Draw AB perpendicular to EF. The B
angle A C B=BAF, since both are right; BCD=BAD,
being in the same segment. Taking the latter from the d
former, DAF=ACD. L
Also draw G B. We have AGB=BAE, both being & 4~ ¥
right; and D G B=D A B, being in the same segment ; adding these
equals, we have DG A=DAE.
If we consider a triangle inscribed in a circle as a quadrilateral, one

of whose sides vanishes, this proposition may at once c
be derived from the twenty-second. By that propo- .
sition in the quadrilateral A B C D, the external angle

A B

CDE is equal to the internal opposite angle B.

While the point D approaches A, and the side AD

diminishes, the angle C D E remains of the same magnitude, and still
equal to B. When D coincides with A, and A D vanishes, A E becomes
a tangent, and the angle CAE under the chord and tangent is equal
to the angle B in the alternate segment.

*.* (393) If several circles touch each other, either internally or
externally, any right line passing through the point of contact will cut
off similar segments from them. For since they have a common tan-
gent (348), the angles in all the segments are equal to the angle
under the line drawn and the common tangent.
*.* (394) If several circles touch each other
internally or externally, and any two right lines
be drawn through the point of contact P, cut-
ting each of them at A and B, the lines A B
will be parallel; for by (393) the alternate
angles P A B are equal.

’a
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#.% (895) Tangents through the extremities of the same chord
make equal angles with it on the same side. For each angle is equal
to the angle in the alternate segment.

*.*% (896) The chord joining the points of contact of parallel tan-
gents is a diameter. For the angles on the same side are equal
(395), and supplemental (XXIX, Book 1.), and are therefore right.
Therefore the chord is a diameter (XIX).

Prorosition XXXIII. ProBLEM.

(8397) On a given right line (A B)to describe a seg-
ment of a circle that shall contain an angle
equal to a given angle (V).

If the given angle be a right angle, bisect the given line;
describe a semicircle on it. This will evidently be the segment
required, since it contains a right angle (XXXI).

f the given angle V be acute or obtuse, make with the given

line A B at either extremity of it A an angle c
BAE equal to V; through A draw AC .
perpendicular to E A, and at B make the R A
angle ABO equal to BAC. The circle de- a-
scribed from the centre O with the radiusOA ®* 4 %
passes through B, because O A and O B are equal, and its seg-
ment A C B contains an angle equal to the given acute angle V,
and itsvsegment AG B contains an angle equal to the given obtuse
angle V., :

ngBecause EA is a tangent to the circle at A (XVI), and from
A the chord AB is drawn, the angle in the segment ACB is
equal to the acute angle EAB (XXXII), and therefore to the
given acute angle V (const.); and also the angle in the segment
AGB is equal to the obtuse a$le EAB (XXXII), and there-
fore to the given obtuse angle V (const.).

(398) This problem might be solved by constructing on the given right
line A B any angle equal to the given angle V, and circumscribing
round this triangle a circle (78). Euclid, however, does mnot intro-
duce the problem to circumscribe a circle round a triangle, until the
fourth book.

*.% (399) From this problem we derive the solution of another—
¢ Giiven the base and vertical angle of a triangle to construct tire locus
of the vertex.’

This problem is useful, therefore, in the solution of all problems
relating to the determination of a triangle, where two of the three data
are a side and the angle opposite to it. In such cases, having con-
structed on the given side the segment which contains the opposite
angle, all that remains to be determined is the point in this segment
where the vertex is placed. The third datum ought to be sufficient to

—‘——;—4—"‘ —

- — —
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determine this. Thus, for example, if the third datum be the perpen-
dicular from the vertex on the given side, the place of the vertex may
be determined by drawing any line perpendicular to the given side,
and taking a part on it from the side equal to the given perpendicular.
A parallel to the side through the extremity of this will intersect
the circle in two points, either of which will serve for the vertex.

*." (400) Again, suppose the base, vertical angle, and the perpen-
dtcular from the extremity of the base on the opposite side, be given
to find the triangle.

Ou the given side A B describe a segment A CB containing the
given angle. Also describe a semicircle ADB. It is c
evident that the vertex of the triangle must be in the for-
mer, and the point where the perpendicular meets the
side in the latter. Inflect A D equal to the perpendicular, !
and draw B D to meet the first segment at D : the tri.
angle A B C is that required. The demonstration is evident.

It would be impossible to enumerate the cases in which this prin-
ciple is useful ; and the student cannot obtain a better exercise than in
combining with the base and vertical angle of a triangle the various
data which may be sufficient to determine the place of the vertex in the

segment.
ProrosiTion XXXIV. ProBLENM.

(401) To cut off from a given circle (AB C) a seg-
ment which shall contain an angle equal to a
given angle.

Draw F A, a tangent to the circle at any point A ; at the point

of contact make with the line AF an angle EO

equal to the given angle; the segment ABC con-

tains an angll: equal to the given angle. o
Because F A is a tangent to the circle, and AC

cuts it, the anile in the segment AB C is equal to

F A C (XXXII), and therefore equal to the given angle (const.).

ProrposiTioNn XXXV. TueoreM.

(402) If two right lines (A B and C D) within a circle
cut one another, the rectangle under the seg-
ments (A E and E B) of one of them is equal

to the rectangle under the segments (C E and
E D) of the other.

1°. If the given right lines pass through the centre they are
bisected in the point of intersection ; therefore the rectangles under
then;l segments ure the squares of 'their halves, and therefore are
equ
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2°. Let one of the given lines (D C) pass through the centre,
and the other (A B) not; draw OA and OB. The »
rectangle A E B is equal to the difference between the "
squares of OE and of O A (253), that is, to thedif- | 7~
ference between the squares of OE and of OC,or & _/
to the rectangle DE C (V, Book IL.).

3°. Let neither of the given lines pass through the centre,
draw through their intersection a diameter F G, ang ¥

the rectangle under FE and EG is equal to the

rectangle under D E and E C, and also to the

rectangle under BE and E A (Part 2°.); therefore

the rectangle under DE and ECis equal tothe 4@ °
rectangle under BE and E A.

i

The demonstration of the second case has been somewhat abridged
by the principle established in (253). In Euclid’s demonstration the
proof of that principle is really incorporated.

Prorosition XXXVI. TuHEOREM.

(408) If from a point (B) without a circle two right
lines be drawn to it, one of which (BF) is a
tangent to the circle, and the other (B C) cuts
it; the rectangle under the whole secant (B C)
and the external segment (B O) is equal to the
square of the tangent (B F).

1°. Let B C pass through the centre; draw AF from the
centre to the point of contact; the square of BF
is equal to the difference between the squares
of B A and of AT (XVIII), thatis, to the differ-
ence between the squares of B A and of A O, or °®
to the rectangle under CB and B O (VI, Book

IL.).

%". If BC do not pass through the centre, draw AO and
AC. The rectangle under CB and BO is r
equal to the difference between the squares of </
AB and of A O (253), that is, to the differ- %“
ence between the squares of A B and A F,
or to the square of B F (XVIII).

404) Cor.—Hence, if from any point without a circle two right
lines be drawn cutting the circle, the rectangles under them and
their external segments are equal, for each of the rectangles is
equal to the square of the tangent.

The demonstration of the second case has been abridged as in the
last proposition.
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Prorosition XXXVII. TaEOREM.

(405) If from a point (B) without a circle two right
lines be drawn, one (B C) cutting the circle,
the other (B F') meeting it, and if the rectangle
under the secant and its external segment be
equal to the square of the line which meets
the circle, the line (B F) which meets it is a
tangent.

Draw from the point B the line B Q, a tangent to the circle,
and draw E Fand EQ.

The square of B Q is equal to the rectangle under BC and BO

XXXV(&) but the square of BF is also equal

to the rectangle under B C and B O (hyp.), there- 0‘.
fore the squares of B F and B Q are equal, and K
therefore the lines themselves are equal; then, in
the triangles EFB and E QB the sides EF
and FB are equal to the sides EQ and Q B, and the side EB
is common, therefore the angle EF B is equal to EQB (VIII,
Book 1.); but EQBisa rlght angle (XVIII), therefore E F B
is a nght angle, and therefore the right line BF is a tangent to
the circle (X%’



BOOK IV.

DEFINITIONS.

(406) 1. A rectilinear figure is said to be inscribed in another,
when all the angular points of the inscribed figure
are on the sides of the figure in which it is said to
be inscribed. .

(407) 1I. A figure is said to be described about another figure,
when all the sides of the circumscribed figure
pass through the angular points of the other

figure.

(408) III. A rectilinear figure is said to be in-
scribed in a circle, when the vertex 7 \
of each angle of the figure is in the N7,

circumference of the circle.

(409) 1IV. A rectilinear figure is said to be circumscribed about
a circle, when each of its sides is a tangent to the
circle.

(410) V. A circle is said to be inscribed in a rectilinear figure,
when each side of the figure is a tangent to the
circle.

(411) VI, A circle is said to be circumscribed about a recti-
linear figure, when the circumference passes
through the vertex of each angle of the figure.

(412) VII. A right line is said to be inscribed in a circle, when
its extremities are in the circumference of the
circle.

(413) The fourth book of the Elements is devoted to the solution of
problems, chiefly relating to the inscription and circumscription of
regular polygons and circles.

A regular polygon is one whose angles and sides are equal.



BOOK THE FOURTH. 123

Prorosrrion 1. PROBLEM.

(414) In a given circle (BC A) to inscribe a right
line equal to a given right line, which is not
greater than the diameter of the circle.

Draw a diameter A B of the circle, and if this is equal to the
given line, the problem is solved.

If not, take in it the segment A E equal to the given line (111,
Book 1.) ; from the centre A with the radius A B c
describe a circle E C, and draw to either intersec- 5
tion of it with the given circle the line A C; this
line is equal to A E, and therefore to the given line.

Prorosition II. ProBLEM.

(415) In a given circle (B A C) to inscribe a triangle
equiangular to a given triangle (ED F.)

Draw the line G H a tangent to the ai’ven circle in any point
A ; at the point A with the line A H make ¢ v
the angle HA C equal to the angle E, and 5 'q
at the same point with the line A G make ¥
the angle G A B equal to the angle D, and
draw B C.

Because the angle E is equal to HA C (const.), and HAC
is equal to the angle B in the alternate segment (XXXII,
Book I11.), the angles E and B are equal ; also the angles D and C
are equal, therefore the remaining angle F is equal to BA C
S] II, Book 1.), and therefore the triangle B A C inscribed in

e given circle is equiangular to the given triangle ED F.

(<] A H

Prorosition III. ProBLEM.
(416) About a given circle (A BC) to circumscribe
a triangle equiangular to a given triangle
(EDF).

Produce any side D F of the given triangle both ways to G
and H; from the centre K of the M

iven circle draw any radius K A, B
ith this line at the point K make o =
the angle B K A equal to the angle _ﬁ__

E D G, and at the other side of KA “ AN @G> ¥R
make the angle AK C equal to EFH, and draw the lines
LM, L N, and M N. tangents to the circle in the points B, A
and C.
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Because the four angles of the quadrilateral figure LBK A
taken together are equal to four right angles (134), and the angles
KBL and KA L are right angles (const.), the remaining angles
AKB and ALB are together equal to two right angles; but the
angles ED G and ED F are together equal to two ﬁ%\t angles
(XIII, Book L.), therefore the angles AKB and ALB are to-
gether equal to ED G and ED F; but AK B and EDG are
equal (const.), and therefore ALB and EDF are equal. In
the same manner it can be demonstrated that the angles AN C
and EFD are equal; therefore the remaining angle M is equal
to the angle E (XXXII, Book 1.), and therefore the triangle
LM N circumscribed about the given circle is equiangular to the
given triangle.

Prorosrrion 1IV. PROBLEM.

(417) In a given triangle (B A C) to inscribe a circle.

Bisect any two anrgles B and C by the right lines
B D and C D, and from their point of concourse D
draw D F perpendicular to any side B C; the circle £ G
described from the centre D with the radius D F is
inscribed in the given triangle. 5 oy e
Draw DE and D G perpendicular to BA and AC. In the
triangles DEB, DF B the angles DEB and DBE are equal
to the angles DFB and DBF (const.), and the side D B is
common to both, therefore the sides D E and D F are equal
&XXVI, Book 1.): in the same manner it can be demonstrated
at the lines D G and D F are equal; therefore the three lines
DE, DF, and D G are equal, and therefore the circle described
from the centre D with the radius D F passes through the points
E and G; and because the angles at I, E, and G are right, the
lines BC, BA, and AC are tangents to the circle (XVI, Book
I11.), therefore the circle F E G 1s inscribed in the given triangle.

(418) It is assumed in the demonstration of the proposition, that the
two bisectors of the angles B C of the triangle will meet at the same
point. This, however, may be proved by showing that they make angles
with B C which are together less than two right angles.

In this demonstration, and in various other places, Euclid assumes,

that any point whose distance from the centre of a circle is equal to
the radius, must be on the circle. See (22).
(419) If D A be drawn it will bisect the angle A. ForED and G D
are equal, and A D the common side is opposite to right angles E and
G, and therefore the triangles D A E and D A G are in every respect
equal. Therefore the angles D A E and D A G are equal.

Hence the lines bisecting the three angles of a triangle intersect at
the same point, and that point is the centre of the inscribed circle.
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(420) The areas of the three triangles BDC, C D A,and A D B, are
respectively equal to half the rectangles under the radius of the in-
scribed circle and the sides B C, C A, and B A of the given triangle.
Hence the area of the given triangle is equal to the rectangle under
the radius of the inscribed circle and the semiperimeter of the
triangle.
*.* (421) Hence if the sides be given in numbers, the radius of the
inscribed circle may be found by dividing the area (found by (276))
by the semiperimeter.
*.% (422) The problem to inscribe a circle in a triangle is a particular
case of a more general problem, ¢ To describe a circle touching three
given right lines.’

1°. If the three given lines be parallel to one another, the problem
is ohviously impossible, since no circle touching two of them could
touch the third.

2°. If two of the lines A G, B H be parallel and the third A B inter-
sect them,

Draw the lines A D and B D bisecting the angles A and B. These

will intersect, since they make angles

with A B which are together less E_ @ _ Ag”
than two right angles. Let them ¥

meet at D. Perpendiculars D F, S
D G, and D H to the three given £

lines from D are equal. Thismaybe ¢ B H

proved as in the preceding proposition. Hence D is the centre and
D F the radius of the circle.

It appears from the diagram that there are two circles which touch
the given right lines.

8°. Let the three given right lines intersect so as to form a triangle.

In this case the circle is determined as in the proposition. But this
is not the only circle which may be drawn
touching the given right lines. Draw the lines
C D and A D bisecting the external angles at
A and C. These, as before, will meet at D,
and perpendiculars D E, DF, DG on the
given lines from this point are equal. Hence
D is the centre and D F the radius of a circle ¥
touching the three given lines. The demon-
stration of this is the same exactly as that of
the proposition.

In the same manner two other circles may
be described touching the given right lines as
in the diagram.

Thus if three right lines intersect so as to form a triangle, four
different circles may be described each touching them all.

By this case it appears that the bisector of any internal angle of a
triangle, and those of the remaining external angles, intersect at the
same point.

49, If the three given lines intersect at the same point, no circle can
be described touching them all.
=7 (423) It is plain the problem to describe a circle touching two
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given right lines is indeterminate. We can however in this case deter-
mine the locus of its centre.

1°. If the two right lines be parallel.

Draw theline A B intersecting them perpendicularly, and bisect it at
C, and through C draw D E parallel to

the given lines, This will be the locus of A
the centres. For if any other perpendi- 2 CD \ =
B [

cular F G be drawn, a circle described on
it as the diameter will touch the given
lines.

2°, If the given lines intersect.

Draw the lines AB and C D bisecting the
angles under the given lines. These lines will
be the locus of the centres. The demonstra- 4 -
tions will easily appear from that of Prop. IV.

and from the annexed diagram.
Prorosition V. PrOBLEM.
(424) About a given triangle (B A C) to circumscribe
a circle.

Bisect any two sides BA and A C of the given triangle, and
through the points of bisection D and E draw DF and E F per-
pendicular to AB and A C, and from their point of concourse F
draw to any angle A of the triangle B A C the line F A, the circle
described from the centre F with the radius F A is circumscribed
about the given triangle.

Draw F B and FC; in the triangles FD A, F D B the sides
D A and D B are equal (const.),

A A
FD is common to bolh, and (i ﬂ\ c
angles at D are right, therefore - n e\
t.hegsides FA a.ndnl%B are equal a v

(IV, Book 1.): in the same

manner it can be demonstrated that the lines F A and F C are
equal, therefore the three lines FA, FB, and FC are equal,
and therefore the circle described from the centre F with the
radius F A passes through B and C, and therefore is circum-
scribed about the given triangle BA C.

(425) Cor.—If the centre F fall within the triangle, it is evident
all the angles are acute, for each of them is in a segment greater
than a semicircle. If the centre F be in any side of the triangle
the angle opposite to that side is right, because it is an angle in a
semicircle (gS)KXI, Book II1.); and if the centre fall without the
triangle the angle opposite to the side which is nearest the centre
is obtuse, because it is an angle in a segment less than a semi-
circle (XXXI, Book IIL).
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This problem has been anticipated in (78). It is, in fact, the same
as to describe a circle through three given points which are not placed
in the same right line,

(426) A perpendicular from F will evidently bisect B C, and therefore
the perpendiculars from the middle points” of the sides of a triangle
have a common point of intersection, and this point is the centre of the
circumseribed circle.

(427) It is assumed in the demonstration of this proposition, that the
perpendiculars through D and E will intersect if produced. This may
be proved by drawing the right line joining D and E. The perpendi-
culars evidently make with this line angles which are together less
than two right angles.

ProrosiTion VI. ProBLEM.

(428) In a given circle (A B CD) to inscribe a square.

Draw any diameter AC of thegiven circle, draw another diameter
BD perpendicular to it,and join AB, BC, CD, DA; c
ABCD is a square inscribed in the given circle, ‘B

Because the angles at E are right, and therefore » »
equal, the arcs on which t.htz stand are equal (XXVI, '
Book IIL.), and therefore their subtenses are equal A
(XXIX, Book IIL.) ; the figure A B C D is therefore equilateral ;
and because B D 1s a diameter, the angle BAD is in a semi-
circle, and therefore right (XXXI, Book IIl.); in the same
manner it can be demonstrated that the angles B, C, and D are
right ; therefore, since the sides are also equal, the figure ABCD
is a square.

The inscribed square is equal to twice the square of the radius, or to
half the square of the diameter.

ProrosiTion VII. ProsLEM.

(429) About a given circle (A B CD) to circumscribe
a square. ,

Draw any diameter A C of the given circle and ¢ ¢ u
B D perpendicular to 1t, and through their extremi= [~ | N\
ties A, B, C, and D, draw the lines KF, FG,GH, = 2
and H K tangents to the circle; the figure FGHK
is a square circumscribed about the given circle. F AKX

Because E A is drawn from the centre to the point of contact
the angle E A F is right (XVIII, Book IIIL.), but the angle
AEB is also right (const.), therefore the lines FK and BD are
parallel ; in the same manner it can be demonstrated G H is
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parallel to B D, and also that F G and K H are parallel to
A C; therefore GD, BK, FC, and A H are parallelograms, and
because the angles at A are right, the angles at G and H opposite
to them are night (XXXIV, Book 1.) : in the same manner it
can be demonstrated that K and F are right angles; therefore
FGHXK is a rectangle, and because AC and B are equal,
and FK and G Hare equal to BD, and FG and K H are equal
to A C, it is evident that F G H K is also equilateral, and therefore
a square.

The circumscribed square is the square of the diameter, and is there-
fore twice the inscribed square, and four times the square of the radius

Prorosimion VIII.  ProBLEM.
(430) In a given square (F G H K) to inscribe a circle.

Bisect two adjacent sides (Fig. Prop. VII.) GH and F G of
the given square in C and B, through C draw CA parallel
to either F% or K H, and through B draw B D parallel to
either G H or F K; the circle described from the centre E
with the radius E C is inscribed in the given square.

Because GE, EH, EK, and EF are Barallelograms (const.),
their opposite sides are equal (XXXIV, Book I.), therefore C
and El{oare equal to GB and G C; but G B and G C are equal,
for they are halves (const.) of the equal lines F G and G H, there-
fore C% and E B are equal ; but ED and E A are equal to CE
and E B, for they are equal to CH and BF the halves of GH
and FG (const.), therefore the four lines EC, EB, E A, and
E D are equal, and therefore the circle described from the centre
E with the radius E C passes through B, A, and D; and because
the angles at C, B, A, and D are right, the sides of the square
are tangents to the circle (XVI, Book III.), which is therefore
inscribed in the given square.

Prorosition IX. ProBLENM.
(431) About a given square (A B CD) to circumscribe
a circle.

Draw A C and B D intersecting one another in E ; the circle
described from the centre E with the radius E A must pass
through B C and D.
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For since A BC is an isosceles triangle, and the angle B is
ri)%ht, the other angles are each half a right engle
(XXXII, Book I.) ; m the same manner- it can%e
demonstrated: that each of the angles into which the® o
angles of the square are divided, is half a right angle,
they are -therefore all equal, and therefore in the x
triangle AE B as the angles EAB and EB A are equal, the
sides EA and E B are equal (VI, Book 1) ; in the same manner
it can he demonstrated that E D and E C are equal to E A and
E B, therefore the four lines E A, E B, EC, and E D are equal,
and therefore the circle described from the centre E with the
radius E A passes through B, C, and D, and is circumscribed
about the given square. :

ProrosiTioNn X. ProBLEM.

(432) To construct an isosceles triangle, in which each
of the angles at the base shall be double of-
the vertical angle.

Take any line AB and divide it in C, so that the rectangle
under A B and C B shall be equal to the square of _
A C (XI, Book IL.); from the centre A with the
radius A B describe a circle B E D, and inscribe in \‘}
it a line B D equal to AC (I); join AD, and $ >
BAD is an isosceles triangle, in which the angles >
B and D are each double o? the angle A.
b Der DC, and circumscribe a circle A CD about the triangle

CA

Because the rectangle under AB and B C is equal to the
square of A C (const.), or to the square of B D (const.), the line
BD is a tangent to the circle AC D (XXXVII, Book IIL),
therefore the angle B D C is equal to the angle A in the alternate

ent (XXXII, Book Ill}) ; add to both the angle CD A, and

B %A is equal to the sum of the angles CD A and A ; but since
the sides AB and A D are equal, the angles B and BD A are
equal, therefore the angle B is equal to the sum of CD A and A;
but the external angle BCD is equal to the sum of CD A and
A (XXXII, Book 1.}, therefore the angles B and BCD are
equal, and therefore the sidles BD and CD are equal (VI,
Book I.); but BD and CA are equal (const.), therefore CD
and CA are equal, and therefore the angles Aand CD A are
equal; but B D A is equal to the sum of the angles A and
C D A, therefore it is double of A, and therefore the angle B is

also double of A.~
K
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ProrosiTion XI. ProsLEM.

'(433) In a given circle (ABC DE) to inscribe an
equilateral and equiangular pentagon.

Construct an isosceles triangle, in which each of the angles at
the base shall be double of the angle at the vertex 4
(X), and inscribe in the given circle a triangle ACE » £\,
equiangular to it (IT) ; bisect the angles at the base %".‘#
Aand% by the right lines A D and E B, and join X%
AB,BC,CD,and DE. :

Because each of the angles CAE and C E A is double of
E CA (const.), and is bisected, the five angles CE B, BEA,
ACE, CAD,and D AE are equal; and therefore the arcs
upon which they stand are equal (XXVI, Book III.), and there-
fore the lines a(l: l;.(,)g% gE, ];JIII), and D t(ljl which subtend these
wrcs are equal ( » Book IIL.), and therefore the n
ABC Deﬁ is equilateral. ) peatege

And because the arcs AB and D E are equal, if the arc BCD
be added to both, the arc ABCD is equal to BCDE, and
therefore the angles A E D and BAE standing upon them are
equal (XXVII, Book III.) , in the same manner it can be demon-
strated that all the other angles are equal, and therefore the
pentagon is also equiangnlar.

®_* (484) Each diagonal of a regular pentagon is parallel to the side
with which it is not conterminous. For since the arcs B A and DE
are equal, the chords B D and A E are parallel (8379) ; and the same
may be applied to the other diagonals.

Since the arcs AB and DE are together equal to B C D, it follows
(380) that the angle BF A is equal to BAD. Hence it appears
that A B F is an isosceles triangle equiangular with A C E, and there-
fore having its base angle equal to twice its vertical angles The same
is true of the triangles BC K, GCD, and FD E.

. It is easy to see that the fizure A B H E is a lozenge ; and the same
may be proved of A B C G, &c.
The figure F G H I K 18 aregular pentagon.

Prorosition XII. ProsLEM,

(435) About a given circle (A B C D E) to circumscribe
an equilateral and equiangular pentagon.
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Let the points A, B, C, D, and E be the vertices of the angles
of an equilateral nta§on inscribed in the circle, x
and draw G H,H K, KL,LM, and M G tangents BN
to the circle at these points; GHK LM isan * n
equilateral and equiangular pentagon, circumscribed 4 D
about the given circle. SE S

Draw FA,FG,FE, FM, and FD. In the triangles FGA,
FGE the sides G A and G E are equal (351), and also F A and
FE; F G is common, therefore the angles FG A and FG E are
equal, and also A F G and E F G, therefore the angle A GE is
double of F GE, and AFE double of G FE; in the same man-
per it can be demonstrated that DME is double of F M E,
and that DFE is double of MF E; but since the arcs AE
and ED are equal (const.), the angles A FE and DFE are

ual (XXVII, Book III.), and therefore their halves G F E and
RgFE are equal, and the angless FEG and FEM are also
equal, and the side E F is common, therefore the angles F G E
and FM E are equal, and also the sides G B and E M, and
therefore the line G M is double of G E; in the same manner
it can be demonstrated that G H is double of G A, but G E
and G A are equal, therefore GM and G H are equal; in
the same manner it can be demonstrated that the other sides
are equal, and therefore the pentagon GH K LM is equi-
lateral; and because the angles D M E and A G E are double
of FMEand FGE,and FME and FG E are equal, DM E
isequal to A G E; and in the same manner it can be demon-
strated that the other angles are equal, and therefore GHK LM
is also equiangular.

Prorosition XIII. PROBLEM.

436) In a given equilateral and equiangular pentagon
I i ilateral and equi lar pentag
' (A B CD E)to inscribe a circle.

- Bisect any two adjacent angles A and E bl¥ the right line A F
dnd E F, and from their point of concourse F draw F G perpen-
dicular to A E, the circle described from the centre F with the
radins F G is inscribed in the given penni‘gon.
* Draw F-F, FC, and F D, and from F let fall
the perpendiculars F H, F N, FM, F L.

In the triangles AF B, AFE the sides AB ®
and A E are equal ]ghyp.), AF is common, x ,
and the angles FAB and FAE are equal S

K 2

c
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, g:onst.), therefore the angles AB F and A E F are equal |

ook 1.); but the angles ABC and A E D are also e
. (hyp.), therefore since A E F is half of A E D (const.), A
is half of A B C; in the same manner it can be demonstr
that the other angles of the pentagon are bisected by the 1
drawn from F: wherefore in the triangles F B H, I'ZBM,
angles FB H and F B M are equal, the angles at H an
are right, and the side F B opposite to the equal angle:
and ;?is common, therefore the sides F H and % M are e
(XXVI, Book 1.); and in the same manner it is proved
all the perpendiculars are equal, therefore the circle descr
from the centre F with the radius F G passes through
points H, M, N, and L, and the sides of the given pente
a_reh tangents to it, because the angles at G, H, ]&: N,and L
right.

Prorposition XIV, ProBLEM.

(437) To circumscribe a circle about a given equilat
and equiangular pentagon (A BC D E).

Bisect the angles A ana E by the right lines A F and E F;
circle described from their point of concourse F as centre
the radius A F passes through the points B, C, D, and E.

Draw FB, FC, and FD. In the triangles FAE and F
the sides F A and A E are equal to F A and AB, c
and the angle FAE is equal to FAB (const.),
therefore the angles FB A and FE A are equal (IV, P®{F
Book 1.) ; but the angles A B C and AED are also N\
equal (hyi); therefore since the angle FEA is A
haif of AE D (const.), F B A is half of ABC, and there
A B C is bisected by FB ; and in the same manner it cai
demonstrated that the angles C and D are bisected. Henc
the triangle AF E the angles FAE and F E A, being ha
of the equal angles BA E and A E D, are equal, and there
the sides F E and F A are equal (VI, Book I.); and in
same manner it is proved that the remaining lines F B, 1
and F D are equal; therefore the five lines F A, FB, I
FD, and F E are equal, and therefore the circle described {
the centre F with &e radius F A passes through the pc
B,C,D, and E, and therefore is circumscribed about the g

pentagon.
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Prorosition XV. PRroOBLEM.

(438) In a given circle (ABCDEF) to inscribe an
equilateral and equiangular hexagon.

Let G be the centre of the given circle; draw any diameter
AGD; from the centre A with the radius AG de-
scribe a circle, and, from its intersections B and F
with the given circle, draw the diameters B E and
FC; join AB, BC,CD,DE,EF, and F A, and
the figure A B CD EF is an equilateral and equi-
angular hexagon inscribed in the given circle. ,

ince the lines A B and A G are equal, as being radii of the
sane circle BG F, and G A and G B also equal, as being radii
of the same circle ABC D EF, the triangle B G A is equilateral,
and therefore the angle B G A is the third part of two right angles
XXXXII, Book 1.). ~ In like manner it is proved that the triangle

G F is equilateral, and the angle A G F equal to one third part
of two right angles; but the angles B G A and A G F together
with F G E are equal to two right angles (XIII, Book I.), there-
fore F G E is one third part of two right angles, and therefore the
three angles B G A,AGF, and F éE are equal, and also the
angles vertically opposite to them EGD, DGC, and CGB;
hence the six angles at the centre G are equal, and therefore the
arcs on which they stand are equal, and the lines subtendin
those arcs (XXIX, Book I11.) ; therefore the hexagon A B C D E
is equilateral, and also, since each of its angles is double the angle
of an equilateral triangle, it is equiangular. ’

D

(489) It maybe proved in general that every equilateral figure inscribed
in a circle must be equiangular, for its angles are contained in equal
arcs, and therefore stand on equal arcs.
(440) ‘The side of the regular hexagon is equal to the radius of its cir-
cumscribing circle, and its area is six times that of an equilateral triangle
constructed on the radius of this circle.

If any three alternate angles A C E of the hexagon be joined by
right lines, they will form the inscribed equilateral triangle.

ProrosiTion XVI. ProBLEM.

(441) In a given circle (C A D) to inscribe an equi-
lateral and equiangular quindecagon.
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Let C D be the side of an equilateral triangle inscribed in the
circle CAD, and C A the side of an equilateral

pentagon also inscribed in the circle C A D; bisect »
the arc AD; the right line joining A B is the side of '
the inscribed quindecagon. For if the whole circum- #
ference be divided into fifteen parts, the arc CD," c
since it is the third part of the whole circumference, contains five
of these parts ; in like manner the arc C A contains three of them
therefore the arc A D contains two, and therefore the arc A B ié
the fifteenth part of the whole circumference, and A B is the side
of the inscribed equilateral quindecagon.

The angles of the figure will be equal, because they will stand
on equal arcs. .



BOOK V.

DEFINITIONS,

(442) 1. A less- magnitude is said to be a part of a greater

' itude when the less measures the greater;
that is, when the less is contained a certain
number of times exactly in the greater.

The word *part,’ as applied in this definition, sigunifies an ali
part or submul‘t)iple. i & abiquot

One quantity is said to measure another when, by continual subtrac-
tion of the former from the latter, a remainder is at length obtained
equal to the former. In such a case it is plain that the former quantity
multiplied by a certain integer number will become equal to the latter.
Of two magnitudes thus related, the greater is said to be a multiple of
the lesser, and the lesser is said to be a submultiple or aliquot part
of the greater. Hence the meaning of the following definition is
apparent.

(443) 11. A greater magnitude is said to be a multiple of a
less, when the greater is measured by Sle less,
that is, when the greater contains the less a cer~
tain number of times exactly.

By the greater containing the less * a certain number of times exactly,
is meant, that the less is a submultiple of the greater, as already
explained.

(444) A greater quantity is said to contain a lesser, as often as the
lesser is capable of being successively subtracted from the greater. If
the greater be not a multiple of the lesser, there will be a final remainder
less than the lesser quantity. The number of times the lesser is con-
tained in the greater is expressed by that integer by which the lesser
must be multiplied, in order to obtain the higliest multiple of it which
is contained in the greater. :

The student should be cautious not to confound the expressions
¢ measures’ and * is contained in.’ The number 8 is ¢ contained three
times in 10,” but does not measure 10, because there is a remainder
1 less than 8. Again, 3 is contained also three times in 11, but it does
not measure it. On the other hand it ¢ measures’ 9, being contained
in it three times exactly without any remainder. ‘
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(445) It is evident that one quantity cannot be said to be conte
or to measure another, unless they be quantities of the same kind.
for example, it would be manifestly absurd to say, that a li
contained a certain number of times in a surface, linear and sug
magnitude admitting of no comparison. No increase could n
line equal to a surface, because no increase could give it b
which is essential to a surface. In like manner the magnituc
surface admits of no comparison with that of a solid, becai
increase can give the one thickness which is essential to the othe

A line may be compared with a line, a surface with a surfac
solid with a solid, as to magnitude, but none of these species
compared with each other. This, however, does not apply to th
species of magnitude. Different species of lines may be comp:
to magnitude, because they all agree in having length only. T
can readily conceive a right line equal in length to a circular arc.
same applies to the different species of surfaces.

Two magnitudes A, B are said to be equimultiples of two othe
when @ and b measure A and B respectively the same num
times. Thus the length one foof and the number 36 are equim
of the length one inch and the number 8; for an inch measure
twelve times, and 3 measures 36 also twelve times.

(446) III. - Ratio is a mutual relation of two magnitt
the same kind to one another, with resp
guantity.

This definition has been by some commentators considered
obscure and useless, and on the other hand greatly extolled by
It is hoped, however, that the preceding observations will rende
telligible. Ratio is, in fact, the relation between two magnitud
respect to magnitude only, that is, excluding every other property
they may have. Thus a circular arc and a straight line may a
to magnitude, although they may differ in every other respect.
their ratio is considered, the figures, position, &c. are totally neg
and nothing but their abstract magnitudes or lengths are cons
In the same manner we may conceive a circular arc double or
straight line.

The two magnitudes between which ratio subsists are statec
¢ of the same kind,’ because if they were * of different kinds,’ they
not admit of any comparison as to magnitude, as has been ;
explained.

Two magnitudes are said to be equimultiples of two others
they are measured by those others the same number of times.

From this definition of ratio, nothing in mathematics ha
deduced. Simson thinks that it is an interpolation of some wi
editor. We think, however, with Playfair, that finding it ne
to use the word  ratio,” Euclid thought that it was essential
order and method for which geometry is so conspicuous, to g
the proper place, a formal definition of the word. Its meaning s
more clearly from the fifth definition. This conjecture seems
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countenanced by the definitions of a straight line and a plane which
stand in precisely the same predicament, no property of the line or
plane being deduced from these definitions.

We may here remark generally, that although the definitions a.nd
Ppropositions of the fifth book are expressed as if they applied only to
magnitude, they are equally applicable to any other species of quantity.
The student will find no difficulty in applying themn to number, which
is that species of quantity from which the clearest notions of propor-
tion may be derived.

\4#47) IV. Magnitudes are said to have a ratio to one another,
when the less can be multiplied so as to exceed
the other.

In order to have a ratio they must be * of the same kind,’ and being
80, one admits of being increased by multiplication so as to exceed
the other.

[The student is advised to commence the propositions of the fifth
book, omitting this and the succeeding definitions, and only to read
them as he shall find them referred to from the propositions.]

(448) V. If there be four magnitudes, and any equimultiples
whatsoever of the first and third be taken, and
also any equimultiples whatsoever of the second
and fourth be assumed ; if, according as the mul-
tiple of the first is greater, equal to, or less than
the multiple of the second elle multiple of the
third is also greater, equal to, or less than the mul-
tiple of the fourth; then the first is said to have
to the second the same ratio as the third has to
the fourth.

The two magmtudes between which a ratio is conceived to subslst.
are called the ¢ terms’ of the ratio. That which is taken first in ex-
pressing the ratio is called the ¢ antecedent,’ and the other is called the
‘ consequent. To express the ratio both these terms are used, and
the sign : is commonly placed between them. Thus if A be the ante-
cedent, and B the consequent, the ratio is expressed by A : B. The

ratio of A to B is also expressed thus é

It is evident from all that has been observed, that a ratio depends
on the relative and not on the absolute magnitudes of its terms, and
that therefore, although the terms be changed, it is possible that the
ratio may remain the same. In other words, the same ratio may
subsist between different pairs of magnitudes. ‘The object of the pre-
ceding definition is to establish a criterion by which two ratios may be
deterinined to be equal, and the selection of a proper criterion for
this equality has given rise to much discussion among geometers.
Without entering into the metaphysics of this subject, we shall
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endeavour to nnfold to the student the nature of ratio, by comms
with particular cases which do not present the difficulties whi
sought to be removed by the general definition.

If there be two ratios %and %, the question is under what ci

etances they will be equal ?

If B be a multiple of A, it is plain that the ratios cannot be
unless b be an equal multiple of a. That is, if A be contained i
certain number of times exactly, then @ must be contained in
same number of times exactly. Thus ratios are the same if thei:
sequents be equimultiples of their antecedents. .o

In the same manner it will easily appear that they are also the
if their antecedents be equimultiples of their consequents.

These conditions may also be expressed thus: If the antecede
two ratios be equimultiples or equisubmultiples of their consequen
ratios are equal.

If, however, neither term of the ratio be a multiple of the other
test of equality of ratios will not be applicable. In that case
suppose that some one magnitude M is found, which is at the
time a multiple of both terms of the ratio A : B, and letm beam
tude which is the same multiple of @ as M is of A, so that A and
contained the same number of times in M and m respectively wi
remainders. In that case if M and m be equimultiples of B and .
ratios A : B and @ : b are equal, but otherwise not. - Hence we
ceive that ¢ if any equimultiples whatever of the antecedents o
ratios be also equimultiples of their consequents the ratios are e
It will be easily seen that this criterion is more general tha
former, and includes it. We presume that, with very little attentio
student will perceive that, in these cases, the relative magnitudes
terms of the two ratios must be necessarily the same.

.If all ratios could be brought under the conditions just menti
there would have been no difficulty in the selection of a criteric
their equality. It however happens frequently that no magnitud
he found which is at thesame time a multiple of both terms of the
ratio. In this case the criterion which we have just mentione
comes quite inapplicable; and it is this which creates the gr
difficulty in the elementary theory of proportion. There are i
case no equimultiples of the antecedents which are also equimul
of the consequents. Euclid has, however, instituted a criterion
analogous to that which we have explained in the other cases.
M andm be equimultiples of A and a. " Let the greatest multi
B which is contained in M, and the greatest multiple of b wh
contained in m, be found, and let us suppose that these are equ
tiples of B and &. In this case it is evident that all equimultiple:
and b are either both greater or both less than M and m. Now
be the case, whatever equimultiples of A and @, M and m may b
ratios A : B and a : b are equal, and not otherwise.

A ratio is said to be of magor or minor inequalily according 1
antecedent is greater or less than the consequent, and whea the
equal it is a ratio of equality.
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Euclid’s oriterion for the equality of two ratios may then be expreesed
thus: Two ratios are equal when the ratios of every pair of equi-
multiples of their antecedents to every pair of equimulliples of their
consequents are ralios of the same species of inequality. Thus if A
and @ be multiplied by the same number, the results must be either
both greater, equal to, or less than the results obtained by multiplying
B and b by any number.

The present ‘Bishop of Feras, (Dr. Elrington,) in his edition of
Euclid’s Elements, published for the use of the students in the Univer-
sity of Dublin, has preferred to determine the equality of ratios by
the equisubmultiples of the antecedents. His criterion is, that two
ratios are equal when every pair of equisibmiltiples whatever of their
antecedents are conlained the same number of limes in their respective

consequents. '

It shonld be observed, that the definition of Euclid would be more
correct if instead of the word ‘any’ the word ¢ every’ were substitated.
For as the text now stands it might be understood to be sufficient to
establish the equality of the ratios if any one pair of equimultiples of
the antecedents were found to fulfil the proposed condition, whereas
this might happen with unequal ratios. It is necessary that the con-
dition expressed in the definition should not only be fulfilled by one
pair of equinultiples of the antecedents, but by every pair of equi-
multiples of them.

(449) VI. Magnitudes which have the same ratio are called
proportionals, ¢N. B. When four magnitudes
are proportionals, it is usually expressed by say-
}ng,r:hhe first is to the second as the third to the
ourth,’

The equality of two ratios is expressed by the sign :! or = inter-
posed between them thus, A:B::a :borA :B=ga:b, or more
hortly, A = 2

shoruy, B -— b.

(450) VII. When of the equimultiples of four magnitudes (taken
as in the fifth definition), the multiple of the first
is greater than that of the second, but the multiple
of the third is not greater than the muitiple of the
fourth ; then the first is said to have to tll::,s secot:d
a greater ratio than the third magnitude to the
fourth ; and, on the contrary, the third is said to
have to the fourth a less ratio than the first has to
the second.

(451) VIIL. < Analogy or proportion s the similitude of ratios.”

For the word * similitude’ here, ¢ equality* would be substituted
with advantage.
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(452) IX. Proportion consists in three terms at least. -

. This is not a definition but an inference ; for since proportion is the
equality of ratios, and equality implies at least two things, it follows,
that in every proportion there must be at least two ratios. Each of
these ratios must have two terms, and even if one of the two terms be
the same in both, still there will be three terms in all.

(453) X. When three magnitudes are proportionals, the first
is said to have to the third the duplicate ratio
of that which it has-to the second.

(454) The proportion in this case is said to be continued. Any num-
ber of magnitudes are said to be in continued proportion when the ratios
of every successive pair of them are equal. Thus A, B,C,D are in
AB C
B'C D
continued proportion is thus expressed, A : B: C: D.

When a series of quantities is in continued proportion, the first and
last are called extremes, and the intermediate terms are called means.

Thus a mean proportional between two magnitudes is a third magni-
tude, such that, if it were placed between the other two, a series of three
continued proportionals would be formed.

Two mean proportionals between two magnitudes are two magni-
tudes which, ifinterposed between the other two, would form a series of
four continued proportionals, and so on. .

When three magnitudes are in continued proportion, the third is
called a third proportional to the other two.

(455) XI. When four magnitudes are continual proportiounals,
the first is said to have to the fourth the triplicate
ratio of that which it has to the second, and so
on, quadruplicate, &c. increasing the denomina-
tion al:till by unity, in any number of propor-
tionals,

continued proportion if the ratios , and = are equal; and this

The ratio% is duplicate of ;—:, when it is equal to the ratio of a to a
third proportional to @ and b.
The ratio % is triplicate of %, when it is equal to the ratio of a to

a fourth continued proportional to a and b.
(456) The terms subduplicate and subtriplicate are sometimes used
in geometry.

a

* The ratio % is subduplicate of B when it is equal to the ratio of &

to a mean proportional between a and b.
The ratio% is said to be subriplicate of 5, when it s equal to

the ratio of a to the first of two mean proportionals between @ and 5
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Of Compound Ratio.

(457) XII. When there is any number of magnitudes of the
same kind, the first is said to have to the last of
them the ratio compounded of the ratio which
the first has to the second, and of the ratio which
the second has to the third, and of the ratio which
the third has to the fourth, and so on to the
last magnitude.

For example, if A, B, C, D be four magnitudes of
the same kind, the first A is said to have to the
last D the ratio compounded of the ratio of A to
B, and of the ratio of B to C, and of the ratio of
C to D; or, the ratio of A to D is said to be

. compi))unded of the ratios of A to B, B to C, and
CtoD. :

And if A has to B the same ratio which E has to
F; and B to C the same ratio that G hasto H ;
and C to D the same that K has to L; then, by .
this definition, A is said to have to D the ratio

- compounded of ratios which are the same with
the ratios of E to F, G to H, and K to L. And
the same thing is to be understood when it is
more briefly expressed by saying, A has to D the
ratio compounded of the ratios of E to F, G to
H, and K to L.

In like manner, the same things being supposed, if
M has to N the same ratio which A has to D;
then, for shortness’ sake, M is said to have to N
the ratio compounded of the ratios of E to F, G
to H, and K to L.

The term compound ratio, like all other technical terms, is used for
brevity, and to avoid circumlocution. A difficulty, however, arises with
students respecting the use of this term, because it seems to imply
something more than, or rather something different from what, it really
is intended to express,

. A, E G
If we say that the ratio D compounded of the ratios T

and —i-, what is meant is this: if B and C be such magnitudes that
A_E B G C K

—B-=T" andé- =ﬁ,that in this case -6.-_"- I

(458) It is plain that the duplicate ratio is a ratio compounded of fwo
‘equal ratios, and the triplicate ratio one compounded of three equal
ratios. '
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(459) XIII. In proportionals, the antecedent terms are called
homologous to ome another, as also the conse-
quents to one another.

¢« Geometers make use of the following technical
words, to signify certain ways of changing either
the order or magnitude of proportionals, so that
they continue still to be proportionals.’

{460) XIV. Permutando, or alternando, by permutation or al-
ternation. This word is used when there are
four proportionals, and it is inferred that the
first has the same ratio to the third which the
second has to the fourth; or that the first is to
the third as the second to the fourth: as is shown
in XVI, Book V.

Permutation or alternation consists in the transposition of the

A_a
i iona! — i -_——,
means in four proportionals. Thus from F= 3" infer == 3
(461) XV. Iunvertendo, by inversion; when there are four pro-
} portionals, and it is inferred that the second is to
the first as the fourth to the third. Proposition
B. Book V.

Inversion consists in the transposition of the antecedents and con
: A _a ... B b
gequex#s. '1.‘hus from B = 5 Ve mferA = pt

That ratio which is formed by the transposition of the terms of
another ratio, is called the reciprocal of that other ratio. Thus inver-
.gion may be said to consist in changing the two ratios of a proportion
into their reciprocals.
(462) It will appear hereafter, that the four terms of a proportion may
‘be submitted to any change whatever in their order, provided that if one
of the means be changed into an extreme, the other be also placed as the
other extreme, and that if one of the extremes be placed as a mean, the
other extreme be placed as the other mean. In other words, itis
necessary either that the same terms remain as means and extremes,
or that the means should be made extremes, and the extremes, means.
Any change whatever in the places of the terms may be made, pro-
vided these conditions be observed, but not otherwise. This will be
proved hereafter. It appears therefore that alternation and inversion
are only two of a number of changes to which four proportionals may
be submitted.

(463) XVI. Componendo, by composition ; when there are four
proportionals, and it is inferred that the first

, . together with the second is to the second, as the
third together with the fourth is to the fourth.
XVIII, Book V.,
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ition consists in substituting for the antecedents the sums of

themselves and the consequents. 'Thus from A : B = a; b we infer
A+4B:B=a+b:b orfiom b= Lue infer 24P 248,

_The sign +, or plus, between two or move quantities, implies ad-

(464) XVII. Dividendo, by division ; when there are four pro-

: . portionals, and it is inferred that the excess of
the first above the second is to the second, as
the excess of the third above the fourth is to the
fourth. XVII, Book V. .

Division cousists in substituting for the antecedents the differences

between themselves and the consequents, Thus from %- = —Z—- we
.. A—B_a—b
infer B =

The sign —, or minus, between two quantities, implies the subtraction
of the latter from the former.

(465) XVIII. Convertendo, by conversion ; when there are four
proportionals, and it is inferred that the first is
to its excess above the second as the third to
its excess above the fourth. Proposition E.

Book V.
Conversion consists in substituting the differences of the antecedents
and consequents for the consequents. Thus from %: -%- we infer
A a

A=B ~a-b
(466) It will appear that we may, in like manner, substitute the
sums of the antecedents and consequents for the consequents.

(467) XIX. Ex equali (sc. distantid), or ex zquo, from equa-
lity “of distance: when there is any number of
magnitudes more than two, and as many others,
such that they are proportionals when taken two
and two of each rank, and it is inferred that the
first is to the last of the first rank of magnitudes

_as the first is to the last of the others: ¢ Of this
there are the two following kinds, which arise
from the different order in which the magnitudes

. are taken, two and two.’
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(468) XX. Ex aa?uali, from equality. This term is used

' simply by itself, when the first magnitude is to
the second of the first rank as the first to the
second of the other rank; and as the sécond is
to the third of the first rank, so is the second to
the third of the other; and so on in order: and
the inference is as mentioned in the preceding
definition; whence this is called ordinate pro-
portion. It is demonstrated in the twenty-second
proposition, Book V.

Thus if there be two series of four maguitudes,
A B C D,
a b c d,

we infer that

(469) XXI. Ex squali in proportione perturbatd seu inordinata,
. from equality in perturbate or disorderly propor-
tion.* This term is used when the first magni-

tude is to the second of the first rank as the last

but one is to the last of the second rank; and as

the second is to the third of the first rank, so is

the last but two to the last but one of the second

rank; and as the third is to the fourth of the

first rank, so is the third from the last to the last

but two of the second rank, and so on in a cross

order: and the inference is as in the eighteenth
definition. It is demonstrated mn the twenty-

third proposition of Book V. ’

Thus if there be two series of fonr magnitudes as before, and we
have severally the following proportions,

A_c B_b C_a

B da’C ¢'D- %
A a
infer that aA_e
we ler al D d

Both this and the former inference come under one general prin-
ciple, scil. that ratios which are compounded of equal ratios are equal.

One ratio is said to be sesquiplicate of another when it is com-
pounded of that other ratio and its subduplicate.

* Archimedis de sphaeré et cylindro, Prop. 4, lib.2.
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AXIOMS.

(470) I EquimurrirLes of the same, or of equal magnitudes,
are equal to one another.

(471) 1II. Those magnitudes, of which the same or equal magni-
tudes are equimultiples, are equal to one another.

Or what is the same, equisubmultiples of the same, or equal magni-
tudes, are equal.

(472) III. A multiple of a greater magnitude is greater than the
same multiple of a less.

(473) IV. That magnitude, of which a multiple is greater than
the same multiple of another, is greater than that
other magnitude.

ProrositioN 1. THEOREM.

(474) If any number of magnitudes be equimultiples
of as many others, each of each : what multiple
soever any one of the first is of its part, the
same multiple shall all the first magnitudes
taken together be of all the others taken to-
gether.

Let any number of magnitudes AB, C D be equimultiples of
as many others E, F, each of each: whatsoever multiple A B is
of E, tKe same multiple shall A B and C D together be of E and
F together.

Because A B is the same multiple of E that CD is of F, as
many magnitudes as there are in AB equal to E, so many
are there in C D equal to F. Divide AB into magni- |
tudes equal to E, viz. AG,GB; and CD into CH, HD, ¢ g
equal each of them to F: therefore the number of the g
magnitudes CH, HD, shall be equal to the number of ¢
the others AG, GB: and because A G is equal to E, and I
CH to F, therefore A G and C H together are equal to Hy F
(Ax. IL. Book 1.) E and F together: for the same reason,
because GB is equal to E, and HD to F, GBand HD
together are equal to E and F together: wherefore as many
magnitudes as there are in A B equal to E, s0 many are there in
Asg’nc D together equal to E and F together: therefore, what-

L
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soever multiple AB is of E, the same multiple is A B and CD
togﬁtlher of E and F together

erefore, if any magnitudes, how many soever, be equimulti-
ples of as many, each of each; whatsoever multiple any one of
them is of its part, the same multiple shall all the first magni-
tudes be of all the others: ¢ For the same demonstration holds
in any number of magnitudes, which was here applied to two.’

The reasoning in this book is employed about properties of magni-
tude in general, and therefore cannot be easily referred to or illustrated
by diagrams. This renders the' demonstrations in some degree con-
fused and perplexed. Also the arithmetical relations which exist, or
are instituted, between the quantities under consideration are ex-
pressed in ordinary language with so much prolixness, that the parts
of a very simple demonstration become so separated one from ano-
ther, that the student feels extreme difficully in perceiving the steps
of the reasoning. This difficulty is, however, if we may use the ex-
pression, purely verbal. If the ideas could be exhibited without the
intervention of language, all difficulty would disappear. We shall,
however, be able to render the demonstrations shorter and more easily
intelligible by using, as in algebra, letters to express the quantities or
magnitudes, and the usual symbols to express arithmetical operations.
;!.‘lllle demonstration of the first proposition may then be expressed as

ollows :— :

Let A, B, and C be magnitudes which are equimultiples of A/, B, C'.
Suppose, for example, that the former are respectively three times the
latter. We have the following equalities : —

. A=A+ A+ A,
B=B+4 B + B,
C=C+0C +C.
Adding these equals, we find that A + B 4 C is three times A’ +
B’ 4+ C/, thatis, A + B + C is the same multiple of A’ + B’ + C’ as
A, B, and C are respectively of A/, B/, and C'. The same would evi-
dently be true if A, B, and C were supposed to be any other equimul-
tiples of A’, B', and C'.

ProrositionN II. TrEOREM.

(475) If the first magnitude be the same multiple of
the second that the third is of the fourth, and
the fifth the same multiple of the second that
the sixth is of the fourth ; then shall the first
together with the fifth be the same multiple
of the second, that the third together with the
sixth is of the fourth.



BOOK THE FIFTH. 147

Let A B the first be the same multiple of C the second, that
D E the third is of F the fourth; and B G the fifth D
the same multiple of C the second, that E H the £
sixth is of F the fourth: then shall A G, the first
together with the fifth, be the same multiple of C -
the second, that D H, the third together with the ;]| | |
sixth, is of F the fourth. HIF
Because A B is the same multiple of C that DE is of F;
there are as many magnitudes in A B equal to C, as there are in
DE equal to F: in like manner, as many as there are in B G
equal to C, so many are there in E H equal to F: therefore as
many as there are in the whole A G equal to C, so many are
there in the whole D H equal to F: t‘ll:erefore AG is the
same multiple of C that D H is of F; that is, A G, the first and
fifth together, is the same multiple of the second C, that D H,
the third and sixth together, is of the fourth F. If, therefore,
the first be the same multiple, &c.

Otherwise thus :

Let the six quantities be A, B, C, D, E, F, and suppose, for example,
that A=38B and E = 2 B, it follows by adding these equals that
A 4+ E=5B. Again,supposethat C=3D and F = 2D it follows
by adding these equals that C + F =5 D. Hence it follows that
A + E is the same multiple of B that C + F isof D. And the same
reasoning will apply if any other equimultiples be assumed.

Cor.—¢ From this it is plain that if any D.
number of magnitudes AB, B G, G H, be mul- A EJ
tiples of another C; and as many D E, E K, B !

L, be the same multiples of F, each of each: 1 gd

then the whole of the first, viz. A H, is the same ‘
multiple of C, that the whole of the last, viz. D L, tl
H

is of F.’ L

|
F

Prorosition 111. TueoreM.

(476) If the first be the same multiple of the second,
which the third is of the fourth; and if of the
first and third there be taken equimultiples ;
these shall be equimultiples, the one of the

second, and the other of the fourth.
L2
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Let A the first be the same multiple of B the sécond, that C
the third is of D the fourth; and of A, C let equimultiples E F,
G H be taken : then EF shall be the same multiple of B, that
G H is of D.

Because E F is the same multiple of A that G H is of C, there
are as many magnitudes in EF equal to A as g
there are in G H equal to C: let E F be di- H
vided into the magnitudes E K, K F, each
equal to A; and GH into GL, L H, each K
equal to C: therefore the number of the mag- "
nitudes E K, K F, shall be equal to the num- {
ber of the others G L, LH: and because A is | A
the same multiple of B that C is of D, and BGC
that EK is equal to A, and GL equal to C; therefore EK
is the same multiple of B that GLis of D: for the same
reason, K F is the same multiple of B that LH is of D: and
so, if there be more parts in EF, G H, equal to A, C: there-
fore, because the first E K 1s the same multiple of the second
B, which the third GL is of the fourth D, and that the fifth
KF is the same multiple of the second B, which the sixth L H
is of the fourth D; EF, the first together with the fifth, is the
same multiple (II, Book V.) of the second B, which G H, the
third together with the sixth, is of the fourth D. If, therefore,
the first, &ec.

Otherwsse thus :

Let A, B, C,D be the four quantities, and suppose, for example, that
A=8B and C=8D. Then2A=6Band 2C = 6D; that is
the equimultiples 2 A and 2 C of the first and third are also multiples
of the second and fourth. 'The same reasoning is applicable in all cases.

ProrositTion 1V. TuEOREM.

(477) If the first of four magnitudes has the same ratio
to the second which the third has to the fourth ;
then any equimultiples whatever of the first
and third shall have the same ratio to any
equimultiples of the second and fourth, viz.
¢ the equimultiple of the first shall have the
same ratio to that of the second, which the
equimultiple of the third has to that of the
fourth.’
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Let A the first have to B the second the same ratio which
the third C has to the fourth D; and of A and C
let there be taken any equimultiples whatever E,
F; and of B and D any equimultiples whatever
G, H: then E shall have the same ratio to G
which F has to H.

Take of E and F any equimultiples whatever K,
L,and of G, H, any equimultiples whatever, M, N :
then because E is the same multiple of A that F
isof C; and of E and F have been taken equi-
multiples K, L; therefore K is the same multiple
of A (III) that L is of C: for the same reason,
M is the same multiple of B that N is of D. And
because (hyp.),as A is to B,s0 is C toD, and of A
and C have been taken certain equimultiples K, L, and of B and
D have been taken certain equimultig}es M, N; therefore if K
be greater than M, L is greater than N; and if equal, equal; if
less, less (Def. V.): but K, L are any equimuitiples (const.)
whatever of E, F, and M, N, any whatever of G, H; therefore
as E is to G, so is (Def. V.) F toH.

Otherwise thus :

Let A:B=C:D, then 2A:3B=2C:3D. For all equimul-
tiples of 2 A and 2 C are also equimultiples of A and C (JII), and for
the same reason all equimultiples of 8 B and 3 D are also equimul-
tiples of Band D. But (Def. V.) A and C are either both greater,
equal to, or less than B and D, and therefore any equimultiples of A
and C are both greater, equal to, or less than B and D, and also greater,
equal to, orless than any equimultiples of B and D (Ax. III.) Hence
2A:3B=2C:3D (Def. V.): and the same reasoning is generally
applicable.

Cor.—Likewise, if the first has the same ratio to the second,
which the third has to the fourth, then also any equimultiples
whatever of the first and third shall have the same ratio to the
second and fourth: and in like manner, the first and the third
shall have the same ratio to any equimultiples whatever of the
second and fourth.

Let A the first have to B the second the same ratio which the
third C has to the fourth D, and of A and C let E and F be any
equimultiples whatever; then E shall be to B as F to D.

Take of E, F any equimultiples whatever K, I, and of B, D
any equimultiples whatever G, l-i) : then it may be demonstrated,
as before, that K is the same multiple of A that L is of C: and
because (hyp.) A is to B as Cis to D, and of A and C certain
equimultiples have been taken, viz. K and L; and of B and D
certain equimultiples G, H ; therefore if K be greater than G, L
is greater than H; and if equal, equal ; if less less (Def. V.);

= pt
= =
_Q
x 0
z =
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but K, L are any (const.) equimultiples whatever of E, F, and
G, H any whatever of B, D; therefore as E is to B (Def. V.),
so is Fto D. And in the same way the other case is demon-

strated.
Otherwise thus :

Let A:B=C:D, then 2 A:B=2C:D, because all equimul-
tiples of 2 A and 2 C are also equimultiples of A and C (III), and are
therefore both either greater, equal to, or less than B and D (Def. V.)
In the same manner it may be proved thatA : 2B = C :2 D: and the
same reasoning is generally applicable.

ProrosiTioN V. THEOREM.

(478) If one magnitude be the same multiple of another,
which a magnitude taken from the first is of a
magnitude taken from the other; the remainder
is the same multiple of the remainder, that
the whole is of the whole.

Let the magnitude A B be the same multiple of C D, that AE
taken from the first is of CF taken from the other: the
remainder E B shall be the same multiple of the remainder
F D, that the whole A B is of the whole CD. A

Take A G the same multiple of FD thatA E is of CF:
therefore A E is (I) the same multiple of CF that EG c
is of CD: but A E, by the hypothesis, is the same mul- E FI
tiple of C F that ABis of CD; therefors E G is the i
same multiple of CD that A B is of CD; wherefore EG B D
is equal (Ax. 1) to AB: take from each of them the common
magnitude A E ; and the remainder A G is equal to the remainder
EB. Wherefore, since A E is the same multiple of C F (const.
that A G is of FD, and that A G is equal to E B ; therefore A
is the same multiple of CF that EB is of FD: but A E is the
same multiple ofCFéh .) that AB is of C D; therefore EB
is the same multiple o I'yf) that AB is of C D.

Otherwise thus :
Let A, B,C, D be the quantities, and suppose that A and B are
three times C and D respectively. We have then
A=B+B+B,
C=D+D+D.
Subtracting the latter from the former we find
A—C=3(B-D),
or that A—C is three times B—D, that is, the same multiple of B— D
as A and C are of B and D respectively. The same reasoning is
applicable in all cases.
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- ProposiTion VI. TuroRrREM.

(479) Iftwomagnitudes be equimultiples of two others,
and if equimultiples of these be taken from the
first two; the remainders are either equal to
these others, or equimultiples of them.

Let the two magnitudes AB, CD, be equimultiples of the
two E, F, and let AG, CH taken from the first two be equimul-
tiples of the same E, F: the remainders G B, H D shall be either
equal to E, F, or equimultiples of them.

First, let G B be equal to E: H D shall be equal to F. Make
C K equal to F : and because A G is the same mul- K
tiple of E (hyp.) that CH is of F, and that GBis ,
equal to E, and CK to F; therefore AB is the
same multiple of E that K H is of F: but AB (hyp.)
is the same multiple of E that C D is of F; therefore G1{u
K H is the same multiple of F that CD is of F: | |
wherefore K H is equal (Ax. 1.) to CD: takeaway B D EF
the common magnitude C H, then the remainder K C is equal to
the remainder H D: but K C is equal (const.) to F: therefore
H D is equal to F.

Next let G B be a multiple of E; H D shall be the same mul-
tiple of F. Make CK the same multiple of F that
GB is of E: and because A G is the same multiple , x
of E (hyp.) that CH is of F; and G B the same
multiple of E that C K is of F; therefore A B is the
same multiple of E (II) that K Hisof F: but AB ¢f,|
is the same multiple of E (hyp.) that C D is of F; L ll
therefore K H is the same multiple of F that CDis B
of F; wherefore K H is equal (Ax. 1.) to C D: take
away C H from both ; therefore the remainder K C is equal to
the remainder H D ; and because G B is the same multiple of E
(const.) that K C is of F, and that K C is equal to HD ; there
fore H D is the same multiple of F that G B is of E.

Otherwise thus :

Let A and B be the first two magnitudes, and C and D the others.
Suppose that A= 5 Cand B = 5 D. If the equimultiples of C and
D, which are subtracted from A and B, be 4 C and 4 D, the remainders
are evidently the magnitudes C and D themselves. If the equimul-
tiples of C and D, thus subtracted, be any which are less than 4 C and
4 D,as 2 C and 2 D, the remainders are 8 C and 8 D, which are
equimultiples.

By using m and n to express any integer numbers, m being sup-
posed to be greater than 7, this demonstration may be made general.

C-
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Let A= m C and B = m D; since 2 is less than m, the equimul-
tiples n C and n D are less than A and B. Let them be subtracted
from the preceding equals and we have
A-nC=mC—-nC =((m—n)C,
B—nD=mD—-aD= (m—n)D.
If m exceed n by one, it is plain that these remainders are equal to
C and D themselves, and if not, they are equimultiples obtained by
multiplying C and D by (m — n.)

The next four Propositions are introduced by Simson.

ProrosiTiOoN A. THEOREM.

(480) If the first of four magnitudes have the same ratio to the
second which the third has to the fourth ; then, if the
first be greater than the second, the third is also
greater than the fourth; and if equal, equal; if less,
less.

Take any equimultiples of each of them, as the doubles of each:
then, by Def. V. of this book, if the double of the first be greater than
the double of the second, the double of the third is greater than the
double of the fourth: but if the first be greater than the second, the
double of the first is greater than the double of the second ; wherefore
also the double of the third is greater than the double of the fourth,
therefore the third is greater than the fourth: in like manner, if the
first be equal to the second, or less than it, the third can be proved to
be equal to the fourth, or less than it.

ProrosiTiON B. THEOREM.

(481) If four magnitudes are proportionals, they are propor-
tionals also when taken inversely.

LetA : B =C: D; then also, inversely, B: A=D : C.
Take of B and D any equimultiples whatever E and F';
and of A and C any equimultiples whatever G and H. First,
let E be greater than G,then G isless than E: and because
(hyp.) Aisto B as Cis toD, and of A and C, the first
and third, G and H are equimultiples ; and of B and D,
the second and fourth, E and F are equimultiples ; and H
that G is less than E, therefore H is (Def. V.) less than F;
that is, F is greater than H ; if, thercfore, E be greater
than G, F is greater than H: in like manner, if E be
equal to G, F may be shown to be equal to H; and if less, less; but
E, F, are any equimultiples (const.) whatever of B and D, and G, H
any whatever of A and C; therefore (Def. V.) as B is to A, so is D
to C.

—_—Qr—
==

B
D
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Otherwise thus :

Let m A and m C be any equimultiples of A and C, and n B, n D
any equimultiples of B and D. Since A: B=C:D,mA and m C
are either both greater, equal to, or less thanz B and 2 D. Ifm A
and m C be greater than » B and zn D, then 2 B and n D are both less
than m A and m C. Ifm A and m C be both less than n B and» D,
then 7B and =2 D will be both greater than m A and m C. Hence
any equimultiples of B and D are both greater, equal to, or less than
A and D, therefore B: A=D : C.

ProprosiTion C. THEOREBM.

(482) If the first be the same multiple or submultiple of the
second, that the third is of the fourth ; the first is to
the second as the third is to the fourth.

Let the first A be the same multiple of the second B that the third
Cis ofthe fourthD; A: B=C: D.

Take of A and C any equimultiples whatever E and F;
and of B and D any equimultiples whatever G and H :
then, because A is the same (hyp.) multiple of B that C l! [l
is of D; and that E is the same (const.) multiple of A é F4 g.’ H
that Fis of C ; therefore E is the same multiple of B (III)
that F is of D ; that is, E and F are equimultiples of B I |
and D: but ( and H are equimultiples (const.) of B and
D; therefore, if E be a greater multiple of B than G is of
B, Fis a greater multiple of D than H is of D; that is,
if E be greater than G, F is greater than H : in like man-
ner, if E be equal to @, or less than it, F may be shown
to be equal to H, or less than it: but E, F are any equimultiples what-
ever (const.), of A, C; and G, H, any equimultiples whatever of B,
D; therefore (Def. V.)A : B=C:D.

Next, let the first A be the same submultiple of the second B
that the third C is of the fourth D : A shall be to B as C
isto D.

For since A is the same submultiple of B that C is I l
of D, therefore B is the same multiple of A that D is I
of C: wherefore, by the preceding case, B: A=D:C; A B CD
and therefore inversely, A: B=C:D.

Prorosition D. THEOREM.

(483) If the first be to the second as the third to the fourth, and
if the first be a multiple or submultiple of the second ;
the third is the same multiple or submultiple of the
fourth.

LetA: B=C:D; and first let A be a multiple of B: C shall
be the same multiple of D.
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Tuke E equal to A, and whatever multiple A or E is
of B, make F the same multiple of D : then, because
(hyp.) A : B=C : D; and of B the second, and D the
fourth, equimultiples have been taken, E and F'; therefore
A:E=C:F; but A is equal (const.) to E, therefore
C is equal (A) to F'; and F is the same (const.) multiple
of D that A is of B; therefore C is the same multiple
of D that A is of B.

Next, let A be a submultiple of B ; C shall be the same
submultiple of D.

Because (hyp.) A : B = C : D; then inversely, B : A
==D : C; but A is a submultiple (hyp.) of B, that is, B is
a multiple of A ; therefore, by the preceding case, D is the
same multiple of C ; that is, C is the same submulitiple of I l
D that A is of B. A D

>

" w—
I

T

ProrostTion VII. TueoreM.

(484) Equal magnitudes have the same ratio to the
same magnitude: and the same has the same
ratio to equal magnitudes.

Let A and B be equal magnitudes, and C any other. A and
B shall each of them have the same ratio to C: and C shall have
the same ratio to each of the magnitudes A and B.
Take of A and B any equimultiples whatever D and E, and of
C any multiple whatever‘i:‘: then, because D is the
same (const.) multiple of A thatE is of B, and that A |
is equal (hyp.) to %: therefore D is (Ax. I.) equal
to E: therefore if D be greater than F, E is greater g g l
I C

than F; and if equal, equal; if less, less; but D, F
E are any equimultiples of A, B (const.), and F is any
multiple of C; therefore (Def. V.) A:C=B:C.

Likewise C: A =C: B. For, having made the
same construction, D may in like manner be shown to be equal
to E: therefore if F be greater than D, it is likewise greatere:}uan
E; and if equal, equal; if less, less: but F is any multiple what-
ever of C,and D, E are any equimultiples whatever of A, B;
therefore (Def. V.)C: A =C: %

Prorosition VIII. THEOREM.

(485) Of two unequal magnitudes the greater has a
greater ratio to any other magnitude than the
less has: and the same magnitude has a
greater ratio to the less of two other magni-
tudes than it has to the greater.
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Let A B, B C be two unequal magnitudes, of which A B is
the greater, and let D be any other magnitude. AB L.
shall have a ter ratio to D than B C has to D: _ = &%
amjlx % shall have a greater ratio to B C than it has l:
to . i

If the magnitude which is not the greater of the two | A
A C,CB be not less than D, take E F, FG, the |
doubles of AC, CB, as in Fig. 1. But if that which (ls‘ ll‘i

is not the greater of the two AC, CB be less than
D (as in Fig. 2 and 3), this magnitude can be
multiplied, so as to become greater than D, whether
it be A C or C B. Let it be multiplied until it become
ter than D, and let the other be multiplied as often; and let
F be the multiple thus taken of AC, and F G the same mul-
tiple of CB: therefore E F and F G are each of them greater
than D : and in every one of the cases, take H the double of D,
K its triple, and so on, till the multiple of D be that which first
becomes greater than F G : let L be that multiple of D which is
first greater than F G, and K the multiple of D which is next
less than L.
Then, because L is the multiple of D which is the first that
becomes greater than F G, the next pre-
ceding multiple Kis not greater than F G; Fig. 2. Fig. 3
that is, F G is not less than K: and since E- E
EF is the same multiple of AC (const.) ¢| A
that FG is of CB; therefore F G is the Dl

RIS .}
—0

same multiple of C B (L) that EG is | F| A
of AB: that is, EGand FG are equ- [ xkup ||
multiples of A B and C B: and since it | ! [l
was shown that F G is not less than K, I L K

D

and by the construction E F is greater than I
D; therefore the whole E G is greater than

K and D together: but K together with D

is equal (const.) to L; therefore E G is

ter than L: but F G is not greater (const.) than L: and

2 G, F G were proved to be equimultiples of AB, B C; and L

is a (const.) multiple of D ; therefore (Def. VII.) A B has to D

a greater ratio than B C has to D.

Also D shall have to B C a greater ratio than it has to AB.
For having made the same construction, it may be shown, in like
manner, that L isgreater than F G, but that it is not greater than
EG: and L is a (const.) multli?le of D; and FG, E G were
proved to be equimultiples of C B, A B; therefore D has to CB
a greater ratio (Def. \);l) than it has to AB.
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Otherwise thus :

Let A + B and A be the two unequal magnitudes, and let C be any
other. The ratio A 4+ B : C is greater than A : C. Take equimul-
tiples of A and B which are both greater than C, and let these bem A
and m B ; also take the least of those multiples of C which are greater
than m A + m B, and let this be nC. Hence it follows that (n—1)
Cis lessthanm A + m B, or than m (A + B); or what is the same,
m (A + B) is greater than (n—1) Cor n C—C. But since n C is
greater than m A + m B, and also C is less than m B, » C—C must
be greater than m A, or m A is less than » C— C or than (r—1) C.
Hencem (A + B), which is a multiple of A 4 B, is greater than
(n—1) C, which is a multiple of C, while the same multiple m A of A
is not greater than (n—1) C. Therefore A + B : C is greater than
A: C. (Def VIL)

Also since (n — 1) C is greater than m A, but not greater than
m (A + B), C : A is greater than C : A 4 B.

Prorosition IX. THEOREM.

(486) Magnitudes which have the same ratio to the
same magnitude are equal to one another:
and those to which the same magnitude has
the same ratio are equal to one another.

Let A, B have each of them the same ratio to C: A is equal
to B.

For, if they are not equal, one of them must be greuter than
the other: let A be the greater: then, by what was shown in the
preceding proposition, there are some equimultiples of A and B,
and some multiple of C, such that the multiple of A is greater
than the multiple of C, but the multiple of B is not greater than
that of C. Let these multiples be taken ; and let D, E be the
equimultiples of A, B, and F the multiple of C, such that D ma
be greater than F, but E not greater than F: then, because A :
=B : C, and of A, B are taken equimultiples, D, E, and of C is
taken a multiple F; and that D is greater than F; therefore E
is also greater (Def. V.) than F: but E is not (const.) greater
than F; which is impossible: therefore A and B are not unequal ;
that is, they are equal.

Next, let C have the same ratio to each of the magnitudes A
and B: A shall be equal to B.

For if they are not equal, one of them must be greater than
the other:; {et A be the greater: therefore, as was shown in
Prop. VIII. there is some multiple F of C, and some equimul-
tiples E and D of B and A, such that F is greater than E, but
not greater than D : and because C : B = C: A, and that F the
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multiple of the first is greater than E the multiple of the second
Def. V.) ; therefore F the multiple of the third is greater than
D the multiple of the fourth: but F is not (const.) greater than
D ; which is impossible.

Otherwise thus :

IfA:C=B:C, then A = B. Forifnot, let A be greater than B,
and let such equimultiples m A, mB of A and B be assumed, that
while m A is greater than n C, m B is not greater than n C (VIII).
Since A : C = B : C, all equimultiples of A and B must be at the same
time greater, equal to, or less than n C; but m A and m B are equi-
multiples, one greater and the other less, which is absurd.

Again, if C:A=C:B; A= B. For by inversion, A:C =
B : C; and therefore by the first case A = B.

Prorosrtion X. TuEOREM.

(487) That magnitude which has a greater ratio than
another has to the same magnitude, is the
greater of the two: and that magnitude to
which the same has a greater ratio than it
has to another magnitude, is the lesser of the
two.

Let A : C be greater than B : C. A is greater than B.

For, because A : C is greater than B : C, there are (Def. VII.
some equimultiples of ,E and B, and some multiple of C, such .
that the multiple of A is greater than the multiple of C, but the
multiple of B is not greater than it: let them be taken ; and let
D, E be the equimultiples of A, B, and F the multiple of C, such
that D is greater than F; but E is not greater than F, therefore
D is greater than E: and because D and E are equimultiples of
A angrl:??,l and D is greater than E, therefore A is greater than B.

Next, let C : B be greater than C : A. B is less than A.

For (Def. VII.) there is some multiple F of C, and some equi-
multiples E and D of B and A, such that F is greater than E,
but not greater than D : therefore E is less than Igre and because
E and D are equimultiples of B and A, and that E is less than D,
therefore B is less than A.

ProrosiTion XI. THEOREM.

(488) Ratios that are equal to the same ratio are equal
to one another.
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Let A:B=C:D; and E:F=C:D: then A:B=E: F.

Take of A, C, E any equimultiples whatever G, H, K ; and
of B, D, F any equimultiples whatever L, M, N. Therefore,
since A: B=€: (]l.), and G, H are taken equimultiples of A, C,
and L, M, of B, D; if G be greater than L, H is greater than
M; and if equal, equal; and if less, less. (Def. V.) ~Again, be-
cause E : F = C: D, and H, K are taken equimultiples of C, E;
and M, N, of D, F; if H be greater than M, K is greater than
N; and if equal, equal: and if less, less: but if G be greater
than L, it has been shown that H is greater than M ; and if
tla?ual, equal; and if less, less: therefore if G be greater than L,

is greater than N; and if equal, equal; and if less, less: and
G, K are any equimultiples whatever of A, E; and L, N any
whatever of B, 13: therefore (Def. V) A: B =E:F.

This proposition is to ratios what Axiom I. Book I. is to mag-
nitudes.

ProrosiTion XII. THEOREM.

(489) If any number of magnitudes be proportionals,
as one of the antecedents is to its consequent,
so are all the antecedents taken together to
all the consequents.

Let any number of magnitudes A, B, C, D, E, F, be propor-
tionals; thatis, A: B=C:D=E:F. ThenA:B=A4C
+E:B4+D4+F.

Take of A, C, E any equimultiples whatever G, H, K ; and of
B, D, F any equimultiples whatever L, M, N: then, because
A:B=C:D=E:F; aud that G, H, K are equimultiples of
A, C,E,and L, M, N equimultiples of B, D, F; if G be greater
than L, H is greater than M, and K ter than N ; and if equal,
equal ; and if less, less (Def. V.): wherefore if G be greater than
L, then G + H + K are greater than L4+ M 4 N; and if
equal, equal ; and if less, less: but G,and G + H 4 K are any
equimultiples of A, and A 4 C 4 E; because if there be any
number of magnitudes equimultiples of as many, each of each,
whatever multiple one of them is of its part, the same multiple is
the whole of the whole (I): for the same reason L, and L + M
+ N are any equimultiples of B, and B 4+ D 4 F: therefore
A:B=A4+C+E:B+D4F
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Proposition XIII. THEOREM.

(490) If the first have to the second the same ratio
which the third has to the fourth, but the
third to the fourth a greater ratio than'the
fifth has to the sixth ; the first also has to the
second a greater ratio than the fifth has to the
sixth.

Let A the first have the same ratio to B the second which C
the third has to D the fourth, but C the third a greater ratio
to D the fourth, than E the fifth has to F the sixti: also the
first A shall have to the second B a greater ratio than the fifth
E has to the sixth F.

Because C has a greater ratio to D than E to F, there are
some equimultiples of C and E, and some of D and F, such that
the multiple of C is greater than the multiple of D, but the mul-
tiple of E is not greater than the multiple of F (Def. VIL.): let
these be taken, and let G, H be equimultiples of C, E, and K, L
equimultiples of D, F, such that G may be greater than K, but H
not greater than L: and whatever multiple G is of C, take M
the same multiple of A ; and whatever multiple K is of D, take
N the same multiple of B : then, because A is to B (hyp.) as
Cto D,and of A and C,M and G are equimnltiples; and of B
and D, N and K are equimultiples ; if M be greater than N, G
is greater than K; and if equal, equal ; and if less, less (Def.
V.): but G is greater (const.) than K ; therefore M is greater
than N: but H is not (const.) greater than L: and M, H are
equimultiples of A, E; and N, L equimultiples of B, F; there-
fore A has a greater ratio to B than E has to F (Def. VIL).

Otherwise thus:

Let A, B,C, D,E, F be six magnitudes, and let A: B=C: D,
but C : D be greater than E ; F, then A : B is greater than E : F,
Since C : D is greater than E : F, equimultiples m C and m E of C
and E may be assumed such that one is greater and the other less
than equimultiplesn D and n F of D and F. Now since A: B =
C : D, if m C be greater thann D, m A will also be greater than n B.
Hence m A is greater than n B, and m E less than n F. Therefore
A : B is greater than E ; F (Def. VII.)

This proposition is equivalent to stating that if any ratio be greater
than another, every ratio which is equal to the former will also be
greater than the latter.

It is evident also that if one ratio be greater than another, every
ratio which is greater than the former is ulso greater than the latter.
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Cor.—And if the first have a greater ratio to the second than
the third has to the fourth, but the third the same ratio to the
fourth which the fifth has to the sixth ; it may be demonstrated,
in like manner, that the first has a greater ratio to the second
than the fifth has to the sixth.

ProrosiTion XIV. THEOREM.

(491) If the first have the same ratio to the second which
the third has to the fourth ; then, if the first
be greater than the third, the second shall be
greater than the fourth ; and if equal, equal ;
and if less, less.

Jet A:B=C:D; if A be greater than C, B is greater
than D.

Because A is ter than C, and B is any other magnitude,
A:Bis greatergtrl?:n C:B (VIII) but A: ﬁ C: Dagr;ly D
therefore C : D is also greater than C : B (XIII): but of two
magnitudes, that to which the same has the greater ratio is the
lesser (X): therefore D is less than B; that is, B is greater
than D.

Secondly, if A be equal to C, B is equal to D. For A: B =
C:Dor=A:D; therefore B is equal to D (IX

Thirdly, if A be less than C, B is less than D P[or C is greater
than A ; and because C is to D as A is to B, therefore D is greater
than B by the first case; that is, B is less than D.

ProrosiTion XV. Tuzonnu.

(492) Magnitudes have the same ratio to one another
which their equimultiples have.

Let A B be the same multiple of C that D E is of F: then
C:F=AB:DE.

Because A B is the same multiple of C that D E is of F, there
are as many m 1tudes in A B equal to C as there are A
in D E equal to F : let A B be divided into m ltudes, D
each equal to C, viz. A G, GHHB,and EmtoG K
magnitudes, each equal to F,vizz. DK, KL, LE: u
then the number of ﬁle first A G, G H, H B is equal |
to the number of the last D K, K L, LE: and because B F
AG GH, HBareallequalandthatDK KL,LE are also
equal to one another; therefore (VI) AG:DK=GH:KL

R
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=H B : LE: but as one of the antecedents (o its consequent,

(XII) so are all the antecedents together to all the consequents

together, wherefore, as AG: DK =AB:DE: but AG is

equal to C, and DK to F; therefore C: F=AB:DE.
Otherwise thus:

Let A, B be two magnitudes. A:B=A:B. Hence A:B =
A+A:B+B(XII),or A:B=2A:2B. Hence(XII) A: B
= A +4+2A:B+2BorA:B=38A:3B, and s0 on for all
equimultiples of A and B.

Prorosition XVI. THEOREM.

(493) If four magnitudes of the same kind be propor-
tionals, they are also proportionals when taken
alternately.

Let A, B, C, D be four magnitudes of the same kind, and let
A:B=C:D: they are also proportionals when taken alter-
nately; thatis, A: C=B:D.

Take of A and B any equimultiples whatever E and F; and
of C and D take any equimultiples whatever G and H: and be-
cause E is the same multiple of A that F is of B, and that
magnitudes have the same ratio to one another (XV) which
their equimultiples have; therefore A: B=E:F: butA: B
= C:'i) glyp ; wherefore C: D=E:F (XI): again, be-
cause G, H are equimultiples of C, D, therefore C: D =G : H
XV): but it was proved that C: D = E : F; therefore E: F
= G : H (XI). But when four magnitudes are proportionals
{XIV), if the first be greater than the third, the second is greater
than the fourth; and if equal, equal; if less, less: therefore if
E be greater than G, F likewise is greater than H ; and if equal,

ual ; if less, less: and E, F are any (const.) equimultiples
::Latever of A, B; and G, H any whatever of C, D: there-
fore (Def. V.)A:C=B:D.

Otherwise thus :

LetA: B =C:D, and let m A andm B be any equimultiples of
A and B, and let 2 C and n D be any equimultiples of C and D ;
mA:mB=A:B (XV), and therefore mA : mB=C : D (XI.
and hyp.) AlsonC:nD = C: D (XV), and therefore (XI)m A .
mB = 2C:nD. HencemB is greater, equal to, or less than 2 D
according as m A is greater, equal to, or less than n C (XIV). But
m A and m B are any equimultiples of A and B,and 2 C and n D are
any equimultiples of C and D. Hence, &c. (Def. V.)

In this case it is necessary that the four magnitudes be of the same
species, for otherwise, by alternation, ratios might be instituted between
heterogeneous quantities (445).

M
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ProrosiTion XVIIL, THEOREM.

(494) If magnitudes, taken jointly, be proportionals,
they are also proportionals when taken se-
parately : that is, if two magnitudes together
have to one of them the same ratio which
two others have to one of these, the remaining
one of the first two has to the other the same
ratio which the remaining one of the last two
has to the other of these.

Let AB,BE, C D, DF be the magnitudes taken jointly which
are proportionals: that is, AB:BE=CD:D Fl: they shall
also be proportionals taken separately, viz. AE:EB=CF:
FD

Take of AE, E B, CF, FD any equimultiples whatever G H,
HK, LM, M N; and again, of E B,% D take any
equimultiples whatever K X, N P: and because G H
is the same multiple of AE that HK is of E B,
therefore G H is the same multiple (I) of AE that K- N
G K is of AB: butG H is the same multiple of AE | 5
that L M isof CF; therefore G K is the same mul- ™| DM
tiple of A B that LM is of CF. Again, because ] F|~
L'M is the same multiple of CF that M N isof FD;
therefore LM is the same multiple (I) of CF that ¢ 4 ©C
LN is of CD: but L M was shown to be the same multiple of
CF that GK is of A B; therefore G K is the same multiple of
AB that LN is of CD; thatis, GK, LN are equimultiples of
A B,CD. Next, because H K is the same multiple of EB
that M N is of FD ; and that K X is also the same multiple of
E B that NP isof F D ; therefore HX is the same multiple (]I)I)
of EB that MPis of FD. And because AB:BE=CD:
D F (hyp.), and that of ABand CD, G K and L N are equi-
multiples, and of EB and FD, H X and M P are equimul-
tiples ; therefore (Def. V.) if G K be greater than H X, then
L N is greater than M P ; and if equal, equal; and if less, less:
but if GH be greater than K X, then, by adding the common
art H K to both, G K is greater than H X ; wherefore also LN
1s greater than M P; and by taking away M N from both, LM
is greater than N P: therefore if G H be greater than K X, LM
is greater than N P. In like manner it may be demonstrated,
that if G H be equal to KX, LM is equal to N P; and if less,
less: but G H, LM are any equimultiples whatever of A E, C F
(const.),and KX, NP are any whatever of E B, FD: therefore
(Def. V.) as AE:EB=CF:FD.
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Otherwise thus :

IfA+B:B=C+4+ D:D,thenA:B=C:D. Take any mul-
tiplesm A,n B of Aand B. Firstlet m A be greater than n B. Add
m B to both,andm A + mB or m (A + B) will be greater then
mB+nBor (m +n)B. Butsince A+ B:B=C + D:D,it
follows that if m (A + B) be greater than (m + n) B, that m (C+D)
will also be greater than (m + n) D, or that m C + m D will be
greater than m D 4+ nD. Take m D from both, and m C will be
greater than z# D ; that is, if m A be greater than n B, m C will also
be greater than n D.

In the same manner it may be proved, that if mA =B, mC =
n D, and that if m A be less than n B, m C will be less than 2 D.
Hence (Def. V.) A : B = C : D by division, (Def. XVIIL.)

ProrosiTion XVIII. THEOREM.

495) If magnitudes, taken separately, be proportion-
als, they are also proportionals when taken
jointly : that is, if the first be to the second
as the third to the fourth, the first and second
together are to the second as the third and
fourth together to the fourth.

Let AE,EB, CF, FD be proportionals; that is, if A E :
L£B=CF:FD: thenalso AB: BE=CD:DF.

Take of AB, BE, C D, DF any equimultiples whatever G H,
HK, LM, MN; and again, of P(}, DF, take any equimul-
tiples whatever KO, N P: and because K O, N P are equimul-
tiples of BE, DF, and that K H, N M are likewise equimultiples
of BE, DF; therefore if K O, the multiple of B E, be greater
than K H, which is a multiple of the same BE, then N P, the
multiple of D F, is also greater than N M, the multiple of the
same D F; and if KO be equal to KH, NP is equal to NM;
and if less, less.

First, let K O be not ter than K H ; therefore N P is not

greater than N M: and because GH, H K are H
equimultiples of A B, BE, and that A B is greater o|. M
than B Elj therefore G H is greater (Ax. II1.) than Pl
HXK; but K O is not greater than K H ; therefore k|- -G
G H is greater than K%? In like manner it may B

be shown that L M is greater than NP. There- el 2
fore if K O be not greater than K H, then G H, the i "
multiple of A B, is always greater than K O, the 6| Al cl L

multiple of B E ; and likewise L M, the multiple of C D, is greater
than N P, the multiple of D F.
M2
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Next, let KO be greater than K H; therefore, as has been
snown, N P is greater than N M: and because the o
whole G H is the same multiple of the whole AB |

that H K is of B E, therefore the remainder G K ;
is the same multiple of the remainder A E (V) that | N
G H is of A B ; which is the same that LM isof | B D
CD. In like manner, because L M is the same | E- §
multiple of CD that M N is of DF, therefore the | | [ |
remainder L N is the same multiple of the remainder

C F (V) that the whole LM is of the whole CD: but it was
shown that L M is the same multiple of C D that G K is of AE;
therefore G K is the same multiple of AE that L N is of C F;
that 13, G K, LN are equimultiplesof A E, C F. And because
K O, N P are equimultiples of B E, D F, therefore if from K O,
N P there be taken K H, N M, which are likewise equimultiples
of B E, D F, the remainders H O, M P are either equal to BE,
D F, or equimultiples of them (VI). First,let HO, M P be
equal to BE, D E‘: then because (hyp.) AE: EB=CF:
FD, and that G K, L N are equimultiples of AE, C F;
therefore GK: EB=LN: FD: but I'fO is equal to E B,

and M P to FD; wherefore GK: HO=LN:MP: there-
fore if G K be greater than H O, L N is greater than (Def. V.)
M P; and if equal,equal ; and if less, less.

Butlet H O, M P be equimultiples of E B, FD: then (hyp)
becauscs AE: EB = CF: F D,and thatof AE, o
CF are taken equimultiples G K, L N; and of
EB, FD, the equimultiples HO, M P; if GK 4. P
be greater than H O, L N is greater than M P ; and MI
if equal, equal ; and if less, less (Def. V.); which gl B N
was likewise shown in the preceding case. But if D, |
G H be greater than K O, taking K H from both, Ef "f
G K is greater than H O ; wherefore also L N is G' A' ¢! L

er than M P; and consequently adding NM to both, L M

15 greater than N P : therefore if G H be greater than KO, LM
is greater than N P. In like manner it may be shown, that if
Gﬂebe equal to KO, L M is equal to NP; and if less, less.
And in the case in which KO is not greater than K H, it has
been shown that G H is always greater than K O, and likewise
LM greater than NP: but GH,LM are any equimultiples
whatever of A B, C D (const.), and KO, N P are any whatever
of BE, DF; therefore (Def. V.) AB:BE=CD:DF.

Otherwise thus :

IfA : B = C: D, then by composition A4+ B:B=C+ D:D.
Forif C4+ D :D benotequalto A + B: B, let C + d : d be equ
to A + B : B, d being a magnitude not equal to D. Since A + B
=C+d:d,by(XVII), A:B=C:d; but (hyp) A:B=C:
therefore (XI) C: D = C: d, and therefore (IX) D and d
equal, contrary to hyp.

Ui

*

g
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Prorosition XIX. THEOREM.

(496) If a whole magnitude be to a whole as a mag-
nitude taken from the first is to a magnitude
taken from the other; the remainder is to
the remainder as the whole to the whole.

Let the whole AB be to the whole CD as AE am ltnde
taken from A B is to CF a magnitude taken from C
remainder E B shall be to the remainder F D as the whole A B
to the whole C D.

Because AB : CD = AE :CF; therefore alternately ( XVI)
AB:AE=CD:CF: and because if magnitudes
taken omt.ly be proportionals, they are roportionals | c
(XVI z:when taken separately; therefore lg E:EA= g

C; and alternatel BE DF=EA: FC; -
butAE CF=AB: C }) therefore also the
remainder B E is to the remmnder F (XI) as the whole B -D
A B to the whole C D.

Otherwise thus :

IfA:B= C:D, Cand D being less than A and B, then A—C -
B-D=A: B For by alternation A : C = B : D, and by division
A—C:C = B-—D: D, and again by alternation A—C: B — D =
C:D=A:B.

(497) Cor.—If the whole be to the whole, as a magnitude taken
from the first is to a magnitude taken from the other; the remainder
shall likewise be to the remainder, as the magnitude taken from
the first to that taken from the other. The demonstration is con-
tained in the preceding.

Or,since A—C: B—D = A:B, andalso C: D = A : B, there-
fore A—C: B—-D =C:D.

The following proposition is added by Simson.

ProrosiTioN E. THEOREM

(498) If four maguitudes be proportionals, they are also propor-
tionals by conversion : that is, the first is to its excess
above the second as the third to its excess above the
fourth,

LetA:B=C:D,thenA: A—B =C :C—D. For by division
A—B:B = C—-D:D, and by alternation A—B:C—D=B:D,
But since A : B = C : D, by alternation A : C = B : D, Therefcre
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(XI) A:C=A-B:C-—D, and by alternation A: A — B =
C:C-D.
In a similar way it may be proved that A:A + B=C:C + D

Prorosition XX. THEOREM.

(499) If there be three magnitudes, and other three,
’ which, taken two and two, have the same
ratio; then if the first be greater than the.
third, the fourth is greater than the sixth;

and if equal, equal ; and if less, less.

Let A B, C,
A” B” C’)
be two series of three magnitudes, which taken two and two have
the same ratio, viz.
A:B=A'":B, B:C=B:C.

First: let A be greater than C; A’ is also greater than C'.

Because A is greater than C, and B is any other magnitude,
and that the greater has to the same magnitude a greater (VIII)
ratio than the less has to it; therefore A: B is qreater than
C:Bj; but (hyp.) A': B'=A:B; therefore (XIII) A’': B’
is greater than C: B; and because B : C = B' : C', by inversion
C:B=C':B’; and it was shown that A': B’ is greater than
C: B; therefore A’ : B’ is greater than C': B’; but the magni-
tude which has a greater ratio than another to the same mag-
nitude, is the greater (X) of the two; therefore A’ is greater
than C'.

Secondly, letA = C; then A’ =C'. Because A=C,A: B
= C:B (VII); but (hyp) A: B=A": B,andC: B = C': B’;
wherefore A’ : B' = C' : B’ (XI); and therefore A’ = C'.

Thirdly, let A be less than C; A’is also less than C'. For
C is&reater than A, and as was shown in the first case C : B =
C': B', and also B: A = B': A’; thereforeC’ is greater than A’
by the first case, or A’ is less than C'.

Prorosition XXI. THEOREM.

(500 If there be three magnitudes, and other three,
which have the same ratio taken two and
two, but in a cross order; then if the first
magnitude be greater than the third, the fourth
is greater than the sixth ; and if equal, equal ;
and if less, less.
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Let A, B, C,
A, B, C,
be two series of three magnitudes which have the same ratio
taken two and two, but in a cross order, viz.
A:B=B':C, B:C=A":B.

First, let A be greater than C; then A’ is also greater than C'.
For since A is greater than C and B is any other magnitude, A : B
is greater §Vlll) than C:B; but (hyp.) B': C' = A : B;
therefore (XIII) B': C' is greater than C: B; and because
(hyp.) B: C = A’: B’ by inversion,C: B=B': A’; and it was
shown that B': C' is greater than C: B; therefore B’ : C' is
greater than B’ : A’: but the magnitude to which the same has
a greater ratio than it has to another, is the lesser (X) of the
two: therefore C' is less than A’; thatis, A’ is greater than C'.

Secondly, let A = C; then also A’= C. Because A = C,
A:B=C:B(VIl): butA: B=B':C' (hyp.): andC: B =
B’:A’);( wherefore B': C' = B’ : A’ (XI); and therefore A’ =
C, (IX).

Thirdly,let A be less than C; then also A’ is less than C'.
For C is greater than A; and as was shown, C: B =B': A/, and
also B: A =C':B'; therefore C' is greater than A’ (by the
first case) ; that is A’ is less than C'.

Prorosition XXII. ThHEOREM.

(501) If there be any number of magnitudes, and as .
many others, which taken two and two in

order have the same ratio; the first has to the
last of the first magnitudes the same ratio

which the first has to the last of the others.
N.B. This is usually expressed by the words

“ ex equali,” or, “ ex equo.”

First, let A, B, C,
AI, B', CI,
be two series of three magnitudes, which taken two and two have
the same ratio, as expressed in Prop. XX.

Take any equimultiples a, a’ whatever of A and A’, and also
any equimultiples , 3" whatever of B, B'; and lastly, any equi-
multiples ¢, ¢’ whatever of C, C'. Then because A: B =A': B/,
and that g, a' are equimultiples of A, A’,and b, b’ equimultiples of
B, B/, therefore a: b = a' : b'; and for the same reason b : ¢ =
b :¢ (IV); and because there are three magnitudes a, b, ¢, and
other three a' b, ¢ which two and two have the same ratio
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(XX); therefore @' is greater, equal to, or less than ¢’, according
as a is greater, equal to, or less than c; but a, @’ are any equi-
multiples whatever of A, A, and ¢, ¢’ any equimultiples whateves
of C, C', therefore A : C = A’ : C’' (Def. V.)
Next let A, B C D,
AI’ B, Cl, D',

be two series of four magnitudes, which taken two and two have
the same ratio, viz.

A:B=A":B,

B:C=PB":C,
C:D=C:D,
thenA : D = A’: D'. Because taking the first three in each
series, it follows from the first case that A: C = A’ : C'. Then
there are two series of three magnitudes, viz.
A C D,
A, C, D,
which taken two and two are in the same ratio, and therefore by
the first case A: D=A": D"
It is evident that this reasoning may be extended to series con-
sisting of any number of magnitudes.

Prorosition XXIII. THEOREM.

(502) If there be any number of magnitudes, and as
many others, which taken two and two in a
cross order have the same ratio: the first has
to the last of the first magnitudes the same
ratio which the first has to the last of the
others, N. B. This is usually expressed by the
words “ ex &quali in proportione perturbatd ;”
or “ ex @quo perturbato.”

First let A, B, C,

AI’ B', C',
;:(ext;vo series of three magnitudes related as explained in Prop.
Take any equimultiples whatever a, b and a’ of A, B and A’:
also any equimultiples whatever ¢, b/, ¢’ of C, B’, C'; and be-
cause a, b are equimultiples of A, B, and that magnitudes have
the same ratio (XV) which their equimultiples have ; therefore
A:B=a:b, and mn like manner B': C' =¥ : ¢; but (hyp.)
A:B=PB:C; therefore a:b=25":¢ (XI); and because
(hyp.) B: C = A’ : B’and b and o’ are equimultiples of B and
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A, and also ¢, b’ of C, B'; therefore b:¢c=a': b’ (IV); and it
has been shown that a : b = b’ : ¢; therefore, because there are
three magnitudes a, b, ¢, and other three a', ¥, ¢, which have
the same ratio taken two and two in a cross order, a' is ter,
equal to, or less than ¢/, according as a is greater, equal to, or
less than ¢ (XXI); but a, a’ are any equimultiples whatever of
A, A/, and ¢ ¢ any whatever of C, C’; therefore A: C = A’': C’
(Def. V.).

Secondly, let A, B, C, D,

A, B,C,D,

be two series of four magnitudes, which taken two and two in a
cross order have the same ratio, viz.

A:B=C:D,
B:C=B:C,
C:D=A":B,

then also A: D = A’': D'. For the first three in the first series
and the last three in the second, are two series of three magni-
tudes which are in the same ratio taken two and two in a cross
order. Hence A : C=B’: D' by the first case. Wherefore
again by the first case A: D = A’: D, and s0 on, whatever be
the number of magnitudes.

Prorosition XXI1V, THEOREM.

(503) If the first have to the second the same ratio
which the third has to the fourth; and the
fifth to the second, the same ratio which the
sixth has to the fourth; the first and fifth
together have to the second, the same ratio
which the third and sixth together have to the
fourth.

Let A B the first have to C the second the same ratio
which D E the third has to F the fourth; and let BG
the fifth have to C the second the same ratio which H
E H the sixth has to F the fourth: A G, the first and B
fifth together, has to C the second, the same ratio E
which D H, the third and sixth together, has to F the
fourth. L I
Because BG : C =E H : F; by inversion,C:B G F
=F:EH: and because AB:C=DE:F (hyp.); and C:
BG = F:EH; er equali (XXII), AB:BG=DE:EH:
and because these magnitudes are proportionals, they are likewise
proportionals when taken (XVIII) jointly; therefore A G: G B
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=DH:HE: but (hyp) GB:C= HE:F; therefore es
equali (XXI1I), AG:C=DH:F.

(504) Cor. 1.—If the same hypothesis be made as in the pro-
position, the difference between the first and fifth shall be to the
second as the difference between the third and sixth to the
fourth. The demonstration of this is the same with that of the
proposition, if division be used instead of comvosition.

(505) Cor. 2.—The proposition holds true of two ranks of mag-
nitudes, whatever be their number, of which each of the first rank
has to the second magnitude the same ratio that the corresponding
one of the second raﬁ has to a fourth magnitude ; as is manifest.

This proposition may be thus expressed, * If two series of four pro-
portionals have the same consequents, another series may be formed
with the same consequents, and taking the sums of the antecedents
as antecedents.’

Let the two seriesbe A :B = C :D,

A:B =C:D,
then it follows that A + A’: B = C 4 C': D.
Since A’:B =C":D,
(invn.) B:A'=D:C,
(kyp) A:B=C:D,
(ez.2q) A:A'=C:C,
(comp. ﬁ/-l- A:A'=C+(C:C,
(hyp.) :B=C:D,
(ex.2q) A+ A':B=C+C':D.
(506()2' In a similar way it may be proved that A — A’ : B =
C-C':D. .
(507) Also, it may be proved thatif A: B= C:D,then A + B :
A-B=C+D:C-D.

For,
(comp) A+B:B=C +D:D,
(div) A-B:B=C-D:D,
(inn) B:A-B=D:C-D,
(z.#¢) A+B:A-B=-.C+D :C=D
ProrosiTion XXV. TrREOREM.

(508) If four magnitudes of the same kind be pro-
portionals, the greatest and least of them
together are greater than the other two to-
gether.

Let the four magnitudes AB, CD, E, F be proportionals, viz.
AB:CD=E: Fg?and let A B be the greatest of them, and
consequently F the least (XIV%. A B together with F shall be
greater than C D together with E.
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Take AG equal to E,and CH equal to F: then because
AB:CD=E:F, and that AG is equal to E, B
and CH equal to F, therefore AB:CD=AG: g
CH (VII, XI): and because AB the whole is to o '
the whole CD as A G is to CH, likewise the re-
mainder G B is to the remainder HD as the whole l '
AB is to the whole (XIX)CD: but ABisgreater A C E
(hyp.) than CD; therefore G B is greater than HD: and be-
cause AG is equal to E, and CH to F; A G and F together are
equal to C H and E together: therefore if to the unequal magni-
tudes G B, H D, of which G B is the greater, there be added
equal magnitudes, viz. to G B the two AG and F, and C H and
Eto HD; AB and F together are greater than C D and E.
The following propositions are added by Simson

ProrosiTioN F. THEOREM.

(509) Ratios which are compounded of the same ratios are
equal to one another.

Let A:B= A':B’; and B: C = B’: C’: the ratio which is com-
pounded of the ratios of A : B, and B : C, which by the
definition of compound ratio is the ratio of A : C, shall [2-B:C
be the same with the ratio of A’: C/, which, by the same defi- ———
nition, is compounded of the ratios of A’: B/, and B’ to C'.

Because there are three magnitudes, A, B, C, and three others A
B’, C!, which, taken two and two, in order, have the same ratio; er
@quali A : C = A’ : ¢’ (XXII).

Next,let A: B=B': C, and B:C = A’: B': therefore exr equali
in proportione perturbatd (XXIII), A : C = A’: C'; that is,
the ratio of A : C, which is compounded of the ratios of I,A,g,‘;v|
A : B, and B : C, is the same with the ratio of A’: C', which ———
is compouaded of the ratios of A’: B/,and B’: C'. And in like manner
the proposition may be demonstrated, whatever be the number of
ratios in either case.

ProrosiTION G. THEORENM.

(510) If several ratios be equal to several other ratios, each
to each; the ratio which is compounded of ratios which
are equal to the first ratios, each to each, is equal to the
ratio compounded of ratios which are equal to other
ratios, each to each.

In the two series of magnitudes

A, B, C D,
A’, B’, C’r D’l
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letA°-B=A'":B’and C: D = ¢/ : D’. Alsoin the two series
K, L, M,
K, L/, M,
let K:L=A:Band L: M=C:D; also K': L'=A’: B,
and I/ : M' = C' :D’. Then the ratio K : M is (by the definition of
compounded ratio) compounded of the ratios of K : L and L : M,
which are equal to theratios A:B and C:D. Again, the ratio
K’: M’ is compounded of the ratios K': L/ and I/ : M’ which are
equal to A’ : B/ and C' : D/. Ttis then to be proved that K . M =
K : M.

Because K:L=A:Band A:B=A’:B,andA’:B'= K’: L,
therefore (XI) K:L = K':L'. Again, because L: M = C: D,
and C:D=C':D/, and C': D' = L/ : M/, therefore %I) L:M=
L’: M. Hence in the series K, L, M and K, L/, M/, (er. #g.)
K:M=K':M.

The student is advised to omit the remainder of this book.

ProrosiTioN H. THBOREM.

(511) If a ratio which is compounded of several ratios be equal
to a ratio which is compounded of several other ratios;
and if one of the first ratios, or the ratio which is com-
pounded of several of them, be equal to one of the last
ratios, or to the ratio which is compounded of several of
them ; then the remaining ratio of the first, or, if there
be ‘more than one, the ratio compounded of the re-
maining ratios, are equal to the remaining ratio of the
last, or, if there be more than one, to the ratio com-
pounded of these remaining ratios.

Let the first ratios be those A: B, B:C,C:D,D:E,and E: F;

and let the other ratios be G: H, H: K, K: L, and L : M : also,
let the ratio A : F, which is compounded of (definition of com-
pound ratio) the first ratios, be equal to G : M, which —_—
is compounded of the other ratios; and besides, let the |GHK.LM,
ratio A : D, which is compounded of the ratios A : B,
B:C,C: D, be equal to G : K, which is compounded of the ratios
G:H, and H: K: then the ratio compounded of the remaining first
ratios, to wit, D : E, and E : F, which compounded ratio is equal to
D : F, shall be equal to K : M, which is compounded of the remaining
ratios K : L, and L : M of the other ratios. ’

Because, by the hypothesis, A : D =G : K, by inversion D : A =
lI§_: g; “Ilg (layp.) A:F=G:M; therefore, (XXII), ex @quali,
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ProrosiTioN K. THEOREM.

(512) If there be any number of ratios, and any number of
other ratios such that the ratio which is compounded
of ratios which are equal to the first ratios, each to
each, is equal to the ratio which is compounded of
ratios which are equal, each to each, to the last ratios;
and if one of the first ratios, or the ratio which is com-
pounded of ratios which are equal to several of the
first ratios, each to each, be equal to one of the last
ratios, or to the ratio which is compounded of ratios
which are equal, each to each, to several of the last
ratios ; then the remaining ratio of the first, or, if there
be more than one, the ratio which is compounded of
ratios which are equal each to each to the remaining
ratio of the first, are equal to the remaining ratio
of the last, or, if there be more than one, to the ratio
which is compounded of ratios which are equal each to
each to these remaining ratios.

Let the ratios A : B, C : D, E : F, be the first ratios ; and the ratios
G:H,K:L,M:N,O:P,Q:R, be the other ratios: andlet A : B
=8:T;andC:D=T:V; and E: F=V:X: therefore, by the
definition of compound ratio, the ratio 8 : X

Y
A,B; C,D; E, F. S, T, V, X.
G, H; K,L; M,N; O,P; QR. Y,Z4a,bd,cd.
e/, m, n, 0, p.

14
is compounded of the ratios 8 : T, T : V,and V : X, which are equal
to the ratios A: B, C:D, E:F,each toeach. Also, G:H =Y:Z;
and K:L=Z:¢a; M:N=a:5; O:P=%:C; and Q: R =
¢ : d: therefore, by the same definition, the ratio Y : d is compounded
of the ratios Y:Z,Z : ¢,a: b, b : ¢, and c : d, which are equal each
to each, to the ratios G: H, K: L, M: N, O: P, and Q : R: there-
fore (hyp.) S: X =Y :d. Also, let the ratio A : B, that is, the
ratio S : T, which is one of the first ratios, be equal to the ratio
e : g, which is compounded of the ratios e: f, and f: g, which (hyp.)
are equal to the ratios G : H, and K : L, two of the other ratios; and
let the ratio A& : I be that which is compounded of the ratios & : &,
and % : I, which are equal to the remaining first ratios, viz. C : D, and
E : F; also, let the ratio m : p be that which is compounded of the
ratios m : m, n:o0, and o:p, which are equal each to each, to the
remaining other ratios, vizz. M: N, O : P, and Q : R: then the ratio
h : 1 shall be equal to the ratiom : p; ork : l=m : p.
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Ak L
A,B; C,D; EF. S, T, V, X.
G,H; K,L; M,N; O,P; QR. Y,Za,b0cd.
&5y m, 8, 0, Pp.

Because e : f=G:H=Y:Z; and f:g=K:L=2Z:aqa
therefore, (XXII) ex @quali, e:g= Y :a: and by the hypothesis,
A:B=S8:T=c¢c:g; wherefore (XI) S: T=Y:«a; and, by in-
version, T:8=a:Y: but S: X =Y :d; therefore, ex equali,
T:X =a:d; also (hyp.) because k: 5k = C:D =T:V; and
k:l=E:F=YV:X; therefore, er equali, h : 1 = T : X: in like
manner it may be demonstrated that m : p = @ : d; and it has been
shown that T: X = a:d; therefore XI) h:l=m:p. Q.E.D.

The propositions G and K are usually, for the sake of brevity, ex-
pressed in the same terms with propositions F and H: and therefore
it was proper to show the true meaning of them when they are so
expressed, especially since they are very frequently made use of by
geometers.
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DEFINITIONS.

(513) 1. Similar rectilinear figures are those whose angles are
severally equal each to each, and whose sides
including equal angles are severally proportional.

(514) II. A straight line is said to be cut in extreme and
mean ratio when the whole line is to one segment
as that segment is to the remaining one.

This definition is thus expressed by Euclid: ¢ The whole line is to
the greater segment as the greater segment is to the lesser.” But it
is objectionable to assume in one part of a definition a property which
may be deduced from the remainder of it. In this case, one of the
segments is a mean proportional between the whole line and the other,
and since the whole line is greater than the mean segment, so this
mean segment must be greater than the other.

(515) 1II. The altitude of a figure is the pel;iendicular drawn
from its vertex to its base, or the production of
its base. '

The altitude can scarcely be considered to have any distinct meaning,
except as applied to a triangle, or a parallelogram, and the latter has
no vertex properly speaking. The altitude of a parallelogram is the
perpendicular drawn from its base to the opposite side.
baslt is evident that any side of a figure may be considered as the

e,

Prorosition L

(516) Triangles and parallelograms having the same
altitude are one to another as their bases.

Let the triangles be AB C, A E D, having a common vertex A,
and their bases B C and E D on the same A

right line. Produce B E both ways, and take
successively any number of parts B G, G H
equalto BC; and EF, Flequal to DE; 3 3 < 533}
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and draw lines AG, AH,AF, Al from the common vertex A
to their extremities.

Since the bases CB, B G, G H, are equal, the triangles on these
bases are also equal (XXXVIIEL, Book I.), therefore the triangle
A HC and its base HC are equimultiples of the triangle AB C
and its base BC. In like manner it may be proved that the
triangle D A I and its base D I are equimultiples of the triangle
DAE and itsbase DE. It is evident that the triangle HA C
is greater, equal to, or less than D AT, according as its base HC
is greater, equal to, or less than the base D1. Hence it appears
that since equimultiples of the first base and first triangle are at
the same time greater, equal to, or less than equimultiples of
the second base and second triangle, the triangles are as their
bases.

Parallelograms having the same altitude are the doubles of
triangles on their bases and having the same altitude, and are
therefore proportional to them. But the trian%es are as their
bases (Part 1°.), and therefore their doubles (XV, Book V.), the
parallelograms, are as their bases.

(517) Triangles and parallelograms having equal altitudes are as
their bases.

For let the bases be placed on the same right line, and the triangles
on the same side of it. The line joining their vertices will be then
parallel to the base (XXXIII, Book I.), and the same demonstration
may be applied as above. g

The parallelograms are as their bases, being the doubles of
triangles.

(518) Triangles and (their doubles) parallelograms having equal
bases are as their altitudes.

For they are equal to right angled triangles or parallelograms,
having bases and altitudes respectively equal ; and in these latter the
altitude may be taken as the base, and vice versi. Hence the proof
is reduced to (517).

(619) Triangles and parallelograms in general are in a ratio com-
pounded of their bases and altitudes,

Let T and T be two triangles or parallelograms, and let the base
and altitude of the first be b, @ and of the second &',a¢. Let M be a
triangle or parallelogram with the altitude a of the first, and base ¥
of the second. By (517) we have

T:M: b:V,
and by (518) M: TV :: a:d'.
o« Bt

Hence T:T :: {: : Z,},

That is, the triangles or parallelograms are in a ratio compounded
of the ratios of their bases and altitudes.

¢ We express a compounded ratio thus by enclosing the component ratios within &
parenthesis,
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(520) The rectangle under two lines is a mean proportional between
their squares.

Let A and B be the lines. The square of A is to the rectangle
A x B as A : B, since they have the same altitude A ; and again
A x B is to the square of B as A : B, since they have the same
base B.

(521) If two triangles or parallelograms be as their bases, they have
equal altitudes, and if they be as their altitudes, they have equal bases.
These easily follow ex absurdo.

ProrosiTion II. THEOREM.

(522) I°. Ifaright line (DE) be drawn parallel to
any side (A C) of the triangle (A BC),
it divides the other sides, or those sides
produced, into proportional segments.

2°. And if a right line (D E) divide the sides
of a triangle, or those sides produced,
into proportional segments, it is parallel
to the remaining side (A C).

Part 1°.—Let D E be parallel to AC,and AD is to DB as

CEistoEB. ® o
For draw A E and D C, and B ? B
since the triangles EA D and g
E CD are upon the same base P A ¢ Lo
E D, and between the same pa- Cp =

rallels ED and C A, they are equal (XXXVTI, Book I.), there-
fore AE D has the same ratio to D E B which C D E has to the
same EDB; but AED isto DEBasAD to DB (1), and
CDE isto EDBas CEto E B (I), therefore ADisto DB
as CEisto E B,

Part 2°—Let A D be to DB as CE to EB, and the right line
D E is parallel to A C.

Let the same construction remain, and A D is to D B as the
triangle A E D to the triangle DE B (I), and as CE to E B, 50 is
the tnangle CDE to the triangle EDB (I); but ADisto DB
as CE to E B (hyp.), therefore AE Dis to DE B asCD E to the
same ED B (XI, Book V.), therefore AED is equal to C D E
(IX, Book V.); but they are upon the same base D E, and at
tl;le iain)e side of it, and therefore ,l))oE is parallel to A C (XXXIX,

ook L.).

The enunciation of this proposition is inaccurate in several respects.
In the first part the manner in which the parallel cuts the sides is not

N
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distinctly described, and the second part is, strictly speaking, false, in-
asmuch as a line may cut two sides proportionally, and yet not be
purallel to the third side.

To perceive these defects and the manner of correcting them, it is
only necessary to consider in how many ways a finite right line may
be divided in a given ratio. Let the linebe A B, and let AD: DB
be the given ratio, D will be one point of section such as required.
Let C be the point of bisection, and take 4 , xc¢ p »n y
CE =CD, BE=AD,and AE = Ty 3
BD,s BE:E A is the given ratio, and E is another point of
section such as is required. Thus there are two points of internal
section in a given ratio. Inthe same wayif AF : BFandAG : BG
be each the given ratio, F and G are two points of external section,
which cut the line A B in the given ratio. It therefore appears that
there are four points at which a line may be cut in a given ratio.
Now it would be necessary, in order to render the first part of this
proposition distinct, and the second part frue, to state in the enun-
ciation in which of these ways each side is cut.

The enunciation would be correct if thus changed: ¢1° If a line
be drawn parallel to any side of a triangle, it divides the other sides,
or those sides produced, so that their segments between the parallel
and the third side shall have the same ratio to their segments between
the parallel and the vertex of the opposite angle; and 2°. if a line cut
the two sides in this manner it will be parallel to the third side.’

Dr. Elrington proposes to add to the present enunciation the words
¢ 80 that the homologous segments are at the same side’ of the parallel
or cutting line. But this, although less objectionable than Euclid’s, is
still imperfect, since it is only a distinction when the parallel cuts the
sides infernally. When it cuts them ezternally, all the segments lie at
the same side of the cutting line, and therefore no distinction is thus
introduced.

The enunciation of this important proposition would, however, be
still further improved if given thus: If two indefinite intersecting right
lines be cut by two parallel right lines three points of division are
obtained on each line, scil. the point where they intersect each other, and
their points of intersection with the parallels; the parts intercepted
between any two of these points and the third on one line are in the
same ratio with the parts intercepted by the corresponding points on
the other line, and if the points of section of the lines fnl.|§ this con-
dition, the lines joining them respectively will be parallel.

The three diagrams accompanying this proposition result from the
three different ways in which the parallel may cut the sides: 1°. it
may cut them internally: 2°. it may cut them produced through the
base: 8° it may cut them produced through the vertex.

In every case the two triangles which are proved equal are those
which have the parallel (Part 1°.) or cutting line (Part 2°.) as their base,
and their verticesat the extremities of the base of the given triangle.
The common triangle with which these are compared is that which
has the parallel (Part 1°.) or the cutting line (Part 2°.) as base, and
its vertex at the vertex of the given triangle. .

See note on transversals, Appendix, ITL
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(528) If several parallels D E, F G, HI be drawn to the base of a tri:
angle, every pair of corresponding segments in each side n
will be proportional. Flgr éirawED L, FK parallel to B C. 1@1
In the parallelograms , F' E, the opposite sides are VAYTIRY
equal, - FM=EG, DL= EC. By the triangles 25\
FBG, AFK we have A LX ¢
BH:HF=BI:IQG,
FD:DA=FM:MK=GE :EC, &c.

Prorosition I1I. THEOREM.

(524) 1°. A right line (A D) bisecting the angle of
a triangle (B A C) divides the opposite
side into segments (B D, D C) propor-
tional to the conterminous sides (B A,
AC).

2°. And if a right line (A D) drawn from any
angle of a triangle divide the opposite
side (B C) into segments (BD, D C)
proportional to the conterminous sides
(B A, AC), it bisects the angle.

Part 1°.—Draw through C a right line C E parallel to AD
until it meet the side B A produced to E.

Because the lines AD and E C are parallel, the angle BAD is
equal to the internal angle at the same side
A E C (XXIX, Book 1.), therefore the angle A "
DACisequal to AEC; but DAC is equal to
the alternate angle A C E, therefore AC E and
AEC are equa%, and therefore the opposite ®
sides A E and A C are equal (VI, Book Ii;; but since AD is

arallel to EC,E A is to AB as CDis to DB therefore since
EA and A C are equal, AC istoAB as CDisto DB.

Part 2°.—Let the same construction remain, and BAisto AE
asBDtoDC (I); but BD is to D Cas B A to A C (hyp.)
therefore BA is to AE as B A to AC (X1, Book V.), and there-
fore A E and A C are equal &IX, Book V.), and the angle AE C
isequalto ACE (V,Bookl.); but since AD and E C are
parallel, the angle D AC is equal to the alternate angle A CE,
and the angle % A D equal to the internal angle at the same
side AE C (XXIX, Book 1.); therefore, since AEC and ACE
are equal, BAD and DA C are also equal, and therefore the
right line A D bisects the angle BAC,

N 2
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(525) From this proposition it follows that if the same line bisect
the base and vertical angle, the triangle is isosceles.

(526) This proposition is applicable also to the bisector of the external
angle of the triangle.. Let the side B A be produced
to F, and draw A D bisecting the angle CAF, and P
through C draw CE parallel to AD. The angles ®

ACE and AEC are proved equal to CAD and L

D AF, as in the proposition, and are therefore equal, L g
and therefore AC=AE. In the triangle BEC,

AD is a parallel to E C cutting the sides produced (II),'"BA : AE
=BD:DC,-BA:AC=BD:DC. Also,ifBA:AC=
BD :DC, AD will bisect the angle CAF. For by the parallels
asbefore BA: AE=BD:DC, - AE=AC,"ACE=AEC;
but these angles are respectively equal to CAD and D AF.

If the triangle be isosceles the bisector of the external angle is pa-

rallel to the base. Even in this case the proportionality of the external
segments to the sides is preserved, for the point of external section
becomes, as it were, infinitely distant, and the infinite segments whose
difference is the base are equal, since their difference bears an infinitely
small ratio to the segments themselves.
(527) The segments of the base made by the external bisector are pro-
portional to those made by the internal bisector, since each is propor-
tional to the sides of the triangle. Hence the bisectors of the internal
and external angles cut the base internally and externally in the same
ratio. ‘

*.* (528) If the base of a triangle and the ratio of its sides be given,
the points where the internal and external bisectors meet the base may
be found by cutting the base internally and externally in the ratio of the
sides. The solution of this problem is effected by Prop. IX., and de-
gends only on Prop. II.

»* (529) Since the two bisectors are at right angles (83), it fol-
lows that the vertex of the triangle must be on the circumference of a
circle whose diameter is the part of the base intercepted between the
bisectors. Hence (389) if the base and ratio of the sides be given,
this circumference is the locus of the vertex.

*+* (580) Der.—Three magnitudes are said to be in Aarmonical
progression, when the first is to the third as the difference between
the first and second to the difference between the second and third.
*+* (581) Der.—A right line A B is said to be cut harmonically
at two points C D, when AC, AD, AB are in o »
harmonical progression. A B
*+* (582) IfAC, AD, and A B be in harmonical progression, B D
BC, and B A will also be in harmonical progression. For by (hyp.)
we have AC: AB=CD:D B, and by alternation AC : CD =
AB:BD, and by inversion BD: BA=CD :CA,i.e. BD,BC,
and B A are in harmonical progression.

*.* (533) If the internal and external bisectors be n

drawn, the line A E is cut harmonically at D C, for by ﬁ\
(B27) EC: EA=CD:DA. A R




BOOK THE SIXTH. 181

*.* (534) If two indefinite right lines A B, CD intersect, and that
two other indefinite right lines EF and G H
bisect the angles under these, any right line
MN terminated in two of the four indefinite °\
right lines, and intersected by the other

two, will be cut harmonically. This is Y
evident from what has been already proved » »
(533). See note on Transversals. App.IIL

*.* (535) It follows from this and the first

proposition that the bisector of an angle of a triangle divides it into two
triangles proportional to the sides which include the bisected angle.
*+* (536) Also we may infer that perpendiculars drawn to the sides
from the point which divides the base either internally or externally in
the ratio of the sides, will be equal, and vice versd (521).

Prorosition IV. THEOREM.

(537) In equiangular triangles (B AC and C D E) the
sides about the equal angles are proportional,
and the sides which are opposite to the equal
angles are homologous.

Let sides B C and C E, which are opposite to equal angles
BAC and C DE, be placed so that they may form 3
one straight line, the triangles being at the same A
side, and the equal angles BC A and C E D not 3
being conterminous; since the angles ABC and
B CA are together less than two right angles
(XVII, Book I.), and CE D is equal to BCA,ABC and CED
are less than two right angles, and therefore the lines B A and
E D must meet if produced (Ax. XII. Book 1.); let them meet in
F; because the an)g(les B C A and CE D are equal (hyp.),C A is
parallel to E F (XXVIII, Book 1.), and because the angles AB C
and D CE are equal, C D is parallel to B F (XXVIII, Book 1.),
therefore A F D C is a parallelogram, and the side A C equal to
F D, and A Falso e ua‘I’ to CD (XXXIV, Book L.).

In the triangle B lg E the line A C s parallel to F E, therefore
BAisto AF,orto CD equal to AF,as BC to CE(II); and
by alternation, ABisto BC as CD to CE; and since C D is
BaralleltoBF, BCis to CEasFD,orAC equal to FD, to

E (II); and by alternation, BC is to CA as C E to E D, there-
fore, since ABisto BCasDCto CE,undBCtoACasCE
to E D, ez @quali (XXII, Book V.),ABisto ACas DC to DE,
therefore the sides about the equal angles are proportional, and
those which are opposite to the equal angles are homologous.
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(588) It is evident that the sides opposite to equal angles are propor-
tional, for since AB : AC=D C : DE, by alternation we have A B :
DC=AC:DE.

In describing the method of placing the triangles in this demonstra-
tion, it would have been better to have said that the triangles should
be so placed, that, while the sides opposite to one pair of equal angles
were in the same right line, the other equal angles should be placed
80 as to be externally opposite to each other, and hence the parallelism
of the sides opposite to these angles would be immediately perceptible.
As the demonstration at present stands, the particular case of equi-
lateral triangles is absolutely excluded. Although the proportionality
of the sides in this case is evident, yet in ‘strictness it ought either to
be included in the demonstration, or if not it should be expressly and
separately mentioned.

(539) If diverging lines B A, B O, B C cut parallel lines A C, D E, the
corresponding segments of thé parallels will be propor- B
tional. For the triangles B D I and B A O are similar,

therefore BI: BO=DI:AO. In like manner 2 =
BI:BO=IE:O0C, - DI:AO=IE:O0C,or

by alternation DI ;: IE=A O : OC. A0 @

Thus it appears that parallels not only cut diverging lines propor-
tionally, as proved (II), but are cut propartionally by them.

(540) In a triangle the bisector o_/P the base drawn from the verter
bisects every parallel lo the base.

(541) A parallel to the base of a triangle cuts off a similar triangle.
(542) In equiangular triangles the perpendiculars on the sides opposite
equal angles are proportional to those sides.

For these perpendiculars form with the other sides opposite equal

angles equiangularrightangled triangles, and (IV) are therefore pro-
portional to the sides.
(543) If two triangles have one angle in eack equal, the perpendiculars
on one pair of sides about the equal angles are as the other pair of sides.
(544) If two triangles have one angle in each equal, their areas are as
the rectangles under the sides about those equal angles. For they are as
the rectangles under either of those sides and the perpendiculars; and
the perpendiculars are as the other sides.

Prorosition V, TareoreM.

(545) If two triangles (A BC, D E F) have their sides
proportional (BAto AC as ED to DF and
AC to CB as DF to F E) they are equian-
gular, and the equal angles are subtended by
the homologous sides.

At the extremities of any side D E of either triangle D EF,
let the angles E DG and DEG be constructed equal to the
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angles A and B at tke extremities

B
of the side A B, which is homolo- »
us to ED, and in the triangle «

EG the remainitg angle G is
equal to the angle C in the tri- 4 r
angle A B C (XXXII, Book I.).

ecause the triangles A B C and D E G are equiangular

(const.), BAisto ACasEDto DG (IV); but BAisto A C
asED to DF (hyp.), therefore ED1sto DG as ED to DF
(XI, Book V.), and therefore DG and DF are equal (IX,
Book V.); in the same manner it can be demonstrated that E G
and E F are equal, therefore the triangle E D G is equilateral to
EDF, and therefore equiangular to it (VIII, Book I.); but the
triangle ED Gis equlan%xlar to B A C (const.), and therefore
B A C is equiangular to E DF, and it is evident that the homo-
logous sides subtend the equal angles.

(546) By the fourth and fifth proposition it appears that of the two
requisites for similitude (Def. I.) if triangles have either, they will neces-
sarily have the other. That figures may be similar two things are
necessary: 1°. the equality of the angles: 2°. the proportionality of
the sides. By the fourth, if triangles have the first requisite they will
have the second, and by the fifth, if they have the second they will
necessarily have the first. Triangles are in this respect unique. In
all other figures, either of the requisites for similitude may subsist
without the other. Thus two quadrilateral figures may have their
sides proportional without having their angles equal, or vice versd. A
rectangle may have sides equal to those of an oblique parallelogram,
angd two rectangles may have sides unequal.

The property of similar triangles established in the last two propo-
sitions, and those of the right angled triangle established in the forty-
seventh and forty-eighth of the first book, are by far the most im-
portant principles in the elements of geometry. On these depend the
application of algebra to geometry, and they implicitly include the
solution of all problems respecting rectilinear figures; for all such figures
may be resolved into triangles, and a triangle may be resolved into
two right angled triangles by the perpendicular.

ProrosiTion VI. THEOREM.

(547) If two triangles (A BC, D EF) have one angle
in each equal (A equal to D), and the sides
about the equal angles proportional (B A to
A C as E D to D F), the triangles are equian-
gular, and have those angles equal which the
homologous sides subtend.
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At the extremities of either of the sides about the equal angles
D E in the triangle D E F, let the

B
angles EDG and GED bhe con- -
structed equal to the angles A and o
B at the extremities of the side A B &
which is homologous to E D; and A F
in the triangle DEG the remaining angle G is equal to the
remaining angle C in the triangle A B C (XXXII, Book L).
Since the triangle A B C is equiangular to D E G const.), B A
isto ACas EDto DG (IV), but BAistoAC assED to D F
(hyp.), therefore ED is to D Gas ED to D F (XI, Book V.), and
therefore D G and D F are equal (IX, Book V.); the angles EDG
and E D F are also equal, because each of them is equal to the
angle A (const.), and the side E D is common to both ; therefore
the triangle EDF is e uianéular to ED G (IV, Book L.); but
B AC is equiangular to ED G (const.), therefore B A C is equi-
angular to E D F, and it is evident that the homologous sides
subtend the equal angles.

*«* (548) From this proposition it follows, that if through any poinis
b, ¢, d, &c. of a right line M N parallels . o

bB, ¢C, dD, &c. be drawn and are B_©
proportional to the distances A b, A ¢, ___

Ad, &c. from any point Aon thatright * 4 3¢ 4 ™

line, their extremities B, C, D, &c. will be on the same right line passing
through the point A. '

For since Ab:5B = Ac:¢C, and the angles AbB and A ¢C
are equal, the triangles A b B and A ¢ C are similar, -+ the angles
BAb and C A ¢ are equal; and since the sides A 3 and A c¢ cein-
cide, and the other sides AB and A C lie at the same side of them,
they must also coincide. And the same will apply to the points
D, &e.

It is on this principle that the equation of a right line in analytic
geometry depends,

ProrosiTion VII.

(549) 1If two triangles (ABC, DE F) have one angle
in each equal (B equal to E), the sides about
two other angles proportional (BA to A C as
ED to DF), and each of the remaining angles
(C and F) either less or not less than a right

angle, the triangles are equiangular, and those

angles are equal about which the sides are
proportional.
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Because the angles BACand EDF are ’ x
int A with the right line A B make the angle AA:" »
gli’;P). and EDF and BAG are also equal (const.), therefore
isto AC asE D to DF (hyp.), therefore B Ais to AGas BAis
and each of them acute (XVII, Book .) ; since A G C is acute,
absurd.
than B A C; they are therefore equal, and since the angles AB C
angles proportional (IV).
proposition as follows,
angles (B, E) oppotite one pair of homologous sides (A C, D'F) equal,
The angles A, D included by the proportional sides must be either
angles C and F must be also equal.

equal, for if it be possible let one of them
B AC be greater than the other, and at the A
) 4
A G equal to the less anile EDF.
In the triangles DEF,ABG the angles E and B are equal
D is equal to B G A (XXXII, Book I.), therefore the triangles
are equiangular, and BA isto A Gas ED to D F(IV); but B A
to AC (XI, Book V.), and theiefore AG is equal to AC (IX,
Book V.), therefore the angle A C G is equalto AG C (V, Book 1.)
A G B must be obtuse, and also E F D which is equal to A G B,
but since AC G is acute E FD must also be acute, which is
The angle B A C, therefore, is not greater than E D F; and in the
same manner it can be demonstrated that EDF is not greater
and D EF are also equal (hyp.), the triangles are equiangular
(XXXII, Book L), and therefore have the sides about the equal
The demonstration of this proposition is needlessly prolix in
Simson’s edition. We would propose, however, to remodel this entire
(550) If two triangles (A B C, D EF) have two sides in the one pro-
portional to two sides in the other (BA: AC = ED : DF), and the
the angles (C, F) which are opposite the other pair of homologous sides
(A B, D E) will be either equal or supplemental.
equal or unequal.
1°. Let them be equal; since the angles B, E are equal (hyp.) the
B
2°. Let them be unequal ; let A be the greater, and -
let the construction described in the proposition be s » 4
made. It follows as in the proposition that the
¢

angle AGB=F and that AGC=ACG. But
AGB and A GC are supplemental, therefore A C B and F are like-
wise supplemental.

Hence it follows that if besides the proportionality of two sides,
and the equality of the angles opposite to oue pair of homologous
sides, any circumstance be given which proves that the angles oppo-
site the other pair of homologous sides are not supple.mental, they
must be equal, and the triangles must be similar. The circumstances
which can determine this have been already mentioned in (IQS) et seq.

If either of the angles C or F be known to be right, they will be both
equal and supplemental, and the triangles will be similar.
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(551) The several criterions for determining the similitude of two tri-
angles, established in this and the preceding propositions, may be enu-
merated as follows :

1°. The equality of the angles (IV).

2°, The proportionality of the sides (V).

8°. The equality of two angles and the proportionality of the con-
taining sides (VI).

4°, The proportionality of two sides in each, the equality of the angles
opposite one pair of homologous sides, and any circumstance which
determines either that the angles opposite the other pair of homologous
sides are not supplemental or that one of them is right.

Prorosition VIII. TuroreM.

(552) In a right angled triangle (A B C), if a perpen-
dicular (B F) be drawn from the right -angle
upon the opposite side, it divides the triangle
into parts which are similar to the whole and
to one another.

In the triangles AF B, AB C the angle AF B is equal to the
angle AB C (hyp.), and the angle A is common to
both, therefore the remaining angle A BF is equal 2
to the remaining one C (XXXIL Book L), and the AAC
triangles are equiangular, therefore the sides about F
the equal angles are proportional (IV) and the triangles are
similar.

In the same manner it can be demonstrated that the triangle
BF C is similar to the triangle AB C.

Since the angle ABF is equal to the angle C, and the angles
AFB and BFC are also equal, the remaining angles A and
FB C are equal, and the triangles ABFand B CF are equi-
angular, therefore the sides about the equal angles are propor-
tional (IV), and therefore the triangles are similar.

(5653) From the similitude of the whole triangle and the partial ones,
we may infer that each side is a mean proportional between the
hypotenuse and conterminous segment. Because A BC and AFB
being similar, we have AC: AB= AB:AF (IV). And in like
manner AC:BC=BC:CF.

(554) In like manner it follows that the hypotenuse is to either side
as the other side is to the perpendicular, r AC:AB =BC:BF.
(555) Also from the similitude of the partial triangles it follows
that the perpendicular is a mean .proportional between the segments
ar AF: FB:FC.

*2* (556) Inatriangle, if the perpendicular form with the sides similar
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right angled triangles, the angles which it makes with the sides must
be either equal or complemental.
*.* (557) Ifthey be equal, and therefore it bisects the vertical angle,
the partial triangles must not only be similar but equal, and the
whole triangle must be isosceles.
*.* (558) If they be not equal, and the perpendicular fall within the
base, they must be equal to the alternate base angles respectively, and
the vertical angle will then be equal to the sum of the base angles,
and will therefore be right, and the angles under the perpendicular
and the sides will be complemental.
*s' (559) If the perpendicular fall without the base, and the triangles
contained by it and the sides be similar, the angles under B
the perpendicular and sides must be complemental, for
CBD=BAD and ABD =BCD, "~ CBD and
A B D are complemental. ¢ 4D
*.* (560) If the perpendicular from the vertex of a triangle on the
base be a mean proportional between the segments, the right angled
triangles contained by it and the sides must be similar. This easily
follows by Prop. VI. Hence if in this case the perpendicular fall
within the base the vertical angle is right.
*,* (561) Ifoneside of a triangle be a mean proportional between
the base and conterminous segment, the right angled triangle included
by that segment and the perpendicular will be similar to the whole,
providing that the perpendicular fall within the base; for in this case
the angle included by the side and base is common to the two triangles,
which are therefore similar (VI). But if the perpendicular fall with-
out the base, the angles included by the proportional sides will not
be common, but will be supplemental. The converse of (553) is
therefore only true when the perpendicular falls within the base.
*.* (562) Ifeach side be a mean proportional between the base and
conterminous segment, the perpendicular must fall within the base, for if
it fell without it, the greater side would be greater than both the con-
terminous segment and the base, and therefore could not be a mean
between them. Hence in this case the component triangles are
similar, and the whole triangle is right angled.
*.* (563) If the baseof a triangle, the two sides, and the perpendi-
cular be four proportionals, the triangle must be right angled, for in the
whole triangle and one of the component triangles there are two sides
proportional, the angles opposite to one pair of homologous sides
equal, and of the angles opposite to the other pair of homologous sides
one is a right angle, therefore (VII) (550) the whole triangle is similar
to the partial triangle.
*.* (564) The eighth proposition,and the consequences which we have
deduced from it, are only particular cases of a more general principle.
Let A B C be any triangle, and draw BD and B E, making the
angles BD A and BE C each equal to B
the angle ABC. The triangle DBE B
will then be isosceles, and the triangles
B D A and BE C will be similar to each
other and similar to the whole. Whenthe A& » ¢ A D E C
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angle A B C is obtuse, the angles BDA and BE C are the external
angles at the base of the isosceles, and when A B C is acute, they are
internal. As the obtuse angle A B C decreases and approaches to a
right angle the base D E of the isosceles triangle diminishes, and the
sides B D, B E approach each other and actually coincide when the
angle A B C is right. In the general proposition, this isosceles triangle
D B E is what the perpendicular is when the given triangle AB C
is right angled. Accordingly we find that the sides of this triangle,
and the triangles under them and the sides of the given triangle,
possess many of the properties already proved in the case of a right
angled triangle. 'The student will find no difficulty in establishing the
following, and in perceiving their analogy to what has been already

proved :—
AC:AB:AD,
AC:CB:CE,
AC: AB=BC:BE,
AD:BD:CE,(BD =BE).
It may be an useful exercise for the student to examine whether
the converses of these are true, orof what modifications they may be

susceptible.

Since AD:BD = AB:BGC, it follows that the segments A D
and E C are in the duplicate ratio of the sides AB and B C.
*.* (565) Hence in a right angled triangle the segments of the
bypotenuse by the perpendicular are in the duplicate ratio of the sides.

Prorosition 1X. ProBLEM.

(566) From a given finite right line (A B) to cut off
any part required.

From either extremity A of the given line draw A D making
any angle with A B; in 1t take any point C and make
A D the same multiple of A C that A Bis of the re-
quired part; join B D, and draw through C a rightline
C 1, parallel to BD; A I is the part required.

ForAl is to AB as ACto AD (lI), therefore 4
whatever multiple A D is of AC, A B is the same multiple of A I.

The word ¢ part’ here means aliquot part or submultiple. This is
equivalent to the problem to divide a right line into any number of
equal parts.

It is evident that (X, Book L.) is a particular case of this problem.

ProrosiTion X. ProBLEM.

(567) To divide a given right line (A B) similarly to
a given divided line (F G).
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From either extremity A of the given line A B draw A C
making any angle with it; take AD, DI,

~C
and I ual to the parts of the dividled = 4
line F P?(}’R, and R G (II, Book 1.); -1 e
join LB, and draw through I and D o/g” A
lines I K and D O parallel to L B. re £

a

Since in the triangle BAL, the lines K I and OD are pa-

rallel to BL, BK is to KOasLIto I D (II),or as GR to

RI;)(%onst.), and KOistoOAasIDtoDA(Il), oras RP
to

(const.), and therefore the given line A B is divided
similarly to FG.

A right line is said to be cut similarly to another when its several
segments are proportional to those of the other.
(568) By this proposition a line may be cut internally or externally in

agiven ratio. Let A B be the given line, o

and let the given ratio be thatof m:n. i

Draw AC at any angle with A B, and I
take uponit AD and DF equal tom and * * » m

n
n, and draw BF and D E parallel to BF; F will be the point of
section required. Since a segment A E might be taken from the ex-
tremity B, there are evidently two points at which the line A B can be
cut internally as required, and these points are equally distant from
the extremities or from the middle point. If the ratio be of equality,
this problem becomes the tenth of the first book. In this case the

two points of section coincide, and the problem has but one solution.
If it be required to cut A B externally in the ratio m : n, take

AD=nand DE = m, draw BE and c

parallel to it draw D F. The point F D

will cut the line as required. For AF: = I
BF=AD:DE=n:m. Itis evi- &~ B x m n

dent that a point taken in the production of the line beyund A, at the
same distance from A as F is from B, will also cut the line as required.
*.* (569) It is evident that a line cannot be cut externally in a ratio of
equality, since the line itself is always the difference of the segments.
It is, however, sometimes cousidered that the point of equal external
section is a point in the produced part at an infinite distance. The
meaning of this will be perceived, if the lesser term of the ratio m or
D E be supposed to approach to equality withn or DA. In that
case, the point E continually approaching A, the line E B will con-
tinually approach to coincidence with AB, and the parallel to BE
from D will continually approach to parallelism with A B, and there-
fore the point F will continually recede from B. When m and n are
equal, the point E actually coincides with A, and the line E B with
A B, and therefore the line parallel to E B through D is parallel to
A B, and its intersection with A B is removed to an infinite distance.

In strictness, however, this expression of ¢ section by a point at an
infinite distance,” should be only understood as expressing the limit
of the varying construction, as the given ratio m : n approaches inde-
finitely near to a ratio of equality.
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ProrosiTion XI. ProBLENM.

(570) To find a third proportional to two given right
lines (A B and F G).

At either extremity of the given line AB draw A E making
any angle with it; take A C equal to the other
given line F G, and join BC; in AB produced
take BD equal to F G, and through D draw
D E parallel to BC; CE is the third propor-
tional to AB and F G.

For in the triangle D A E, B C is parallel to
DE, therefore AB is to BD as AC to CE (II); but BD and
A C are equal to F G (const.), therefore ABisto FG as FG is
to CE.

*.* (671) Ifit be required to continue the progression, a repetition of
the same construction will solve the problem. Let .
A B and B C be the given antecedent and consequent, s C d
and také Ab = B Cand draw the parallels B b, C c. L1
Take CD = bc, and draw the parallel Dd. Inlike * ®€> ®
manner take D E = c d, and draw the parallel E ¢, and so on. Itis
evident that
AB:BC:CD:DE, &c.

*4* (572) There are various other constructions by which this probtem
may be solved. The following are very obvious.

Let AB, B C at right angles be the antecedent and R
consequent ; join A, C, and draw C D perpendicular to
AC. Then AB:B C:BD (555). A 3 p

Let A B be the antecedent, and B C a line perpendicular to it.
If the antecedent be less than the consequent,
inflect A C on B C equal to the consequent, and
produce AB and A C indefinitely beyond the
points B and C. Draw C D perpendicular to
AC, and we have AB: A C:A D (553), so
that A D is the third proportional. If, how- 4 ¢32 ¥
ever, the consequent be less than the antecedent, let it be A B, and
let A C be the antecedent. In this case draw B d perpendicular to
A C,and A d is the third proportional (553). In each case the series
may be continued. From D draw D E perpendicular to A D, and
from E, E F perpendicular to A E, &c. and we have (558).

AB:AC:AD:AE:AF,&ec

Also from d draw d e perpendicular to A D, and from e, e S perpen--

dicular to A E, &c. and we have

AC:AB:Ad:Aec:Af &
*+* (573) A ratio may be continued in a series, also by the follow-
ing construction.
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Let A B be one of the terms of the ratio, and draw the lines AM
and B N perpendicular to it, -
and take AM = ABand BN
equal to the other term of the
ratio, and draw M N. The ratio —
not being supposed to be a ¢ h A B C DE
ratio of equality M N will not be parallel to A B, and therefore these
lines will meet at Z, if produced on the side of the lesser term B N of
the ratio. First let AM be the antecedent and B N the consequent.
Draw the line M B, and from N draw N C parallel to M B, and from
C draw C O parallel to BN. Again from O draw OD parallel to
M B, and from D draw D P parallel to BN, and so on. Then we
have AB:BC:CD:DE, &ec.

For (IV) AZ:AM=BZ:BN,
Conv. AZ:BZ:CZ, '
- AM:BN:CO,
AB:BC:CD.

Hence C D is the third proportional, and by continuing the process
D E will be the next term of the series, and so on. It appears there-
fore that if each perpendicular A M be equal to the intercept AB of
the base between it and the next perpendicular, those perpendiculars
will be in geometrical progression.

Next, let B N be the antecedent and A M the consequent. Draw
B M, and parallel to it draw A m to meet Z M produced at m. Draw
mb parallel to MA, In like manner draw b and nc parallel to
BMand M A, and so on. We have then

CB:BA:Ab:bec, &c.
This is evident from what has been already stated.
*.* (574) If a series of magnitudes A, B, C, D, be in continued pro-
portion, their successive differences a, b, c, d, are also in continued pro-
portion and in the same ratio. For since

A:B:C,

Conv. A:a=B:b,

Alt. A:B=a:b.

In like manner we find B:C=b:ec
v a:b:c;

and by continuing the same process we have

a:b:c:d: &
*.* (575) If a series in continued proportion be an increasing one,
there i3 no limit o the increase of its terms.

As before, let the seriesbe A:B:C: D ... .. and let @ be the
excess of B above A, b the excess of C above B, and so on. Now by
continuing the series there is no magnitude so great that we may not
obtain a greater. Let M be any magnitude however great. Find how
often the magnitude a is contained in M, and continne the proposed
series through a greater number of terms. The last term will then
exceed A by the sum of the series @, b, ¢, d, &c. continued to as many
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terms as the number of times that a is contained in M. But since the
series @, b, ¢, . . . .is increasing (574), each succeeding term in it
is greater than a, and therefore their sum increased by A must be
greater than M.

* % (576) If aseries in continued proportion be a decreasing one,
there is no limat to the diminution of ils terms.

Let the series be A:B:C: . ....... it may be continued
until a term is found less than any assigned magnitude m, however
small. Forlet ! be such a magnitude that m : I = B: A, and let the
ratio m : I be continued in a series (573). Since m <*! (for B < A)
this series increases, and therefore it may be continued until a term a is
found greater than A (575). This being done, let the seriesA : B : C:
. . . be continued through the same number of terms, and its last
term M will be less than the assigned magnitude m. For in the

two series A:B:C:D....:L:M,

ag:b:c:d ....::l:m,
each pair of successive terms are in the same ratio, therefore exr ®quo
ordinaté A:M=a:m,

Alt. A:a=M:m;

but A is less than a, and therefore M is less than m.
* % (577) If aseries of magnitudes decreasing in continued proportion
be continued or imagined to be continued to an infinite number of terms,
the sum of all the terms or the sum of the series will be a finite and
determinate magnitwde.

Resuming the construction in (578), let the decreasing series be
AB:BC:CD:DE:&c Its m

sum, if the number of terms be . S,

unlimited, is A Z. Itisnotgreater LA

than A Z, for each perpendicular,

E Q, is less than the magnitude 4 B 0o Dp E TV ]

E Z, from which it is to be taken in order to obtain the point from
which the next perpendicular is to be erected. By the proportion
av) AM:AZ=EQ:EZ,

it follows that since AM < AZ, " EQ<EZ.

Neither can the sum when the series is unlimited in its number of
terms be less than A Z, for if it were let it be equal to A Y. Now
since the perpendiculars AM, BN, C O, &c. are in decreasing con-
tinued proportion, the lines A Z, B Z, C Z, &c., which are proportional
to them (IV), are also in decreasing continued proportion. 'This
series may then be continued through a determinate number.of terms,
so that a term may be found which is less than Y Z. This being done,
the sum of the corresponding perpendiculars must be greater than
A Y, but these are the terms of the proposed series. Hence it appears
that the sum of a limited number of terms of the proposed series is
greater than the sum A Y of an unlimited number, a part greater than
the whole, which is absurd. Therefore A Z is not greater than

* The sign < signifies less than, and >> signifies ¢ greater than.®
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lt‘he surr. of the series when the number of terms is increased without
imue.
If the magnitudes in the proposed series be notlines, yet lines being
taken proportional to them the same conclusions may be obtained.
The sum may immediately be obtained from the first two terms A B
and B C. For draw N L parallel to A Z, Then
ML:LN=MA:AZ
But L N = M A = AB, therefore
AB—-BC:AB:AZ

The sum of the series is therefore a third proportional to the dif-
ference of the first and second terms and the first term.

*_* (578) Hence, and from subsequent propositions, it follows that
of the three quantities, the first and second terms and the sum of the
series, if any two be given the remaining one may be found.

The case where the first and second terms are given has been just
noticed. If the sum of the series (A Z) and the first term (A B) be
given, a third proportional to them will be (A B — B C) the difference
between the first two terms, which being taken from the first term
leaves a remainder equal to the second.

If the sum (A Z) and the difference (A B —B C) be given, a mean
proportional (XIII) between them will be the first term, from which

and the difference the second may be inferred.

Let the sum (A Z) and the second term B C be given to find the
first. We have (573)

AB:AZ=BC:BZ.

therefore (XVI) AB X BZ=AZ xBC,.: AZ s divided at B,
so that the rectangle under its parts is equal to AZ x BC. Let it
be so divided (297), and either segment A B will be the first term of
the series.

It is easy to see that whichever segment of AZ be taken as the
first term, the sum of the series and the second x
term will be the same. For if A N be drawn
and produced to meet a perpendicular through
Z at X, we shall have BZ = Z X. For
AB:BN=AZ:ZX But also by “—_
what has just been proved AB:AZ =
BN:BZ,and alt. AB:BN=AZ:BZ
**BZ=2ZX. HenceZ A is the sum of * s
the series whose first term is B Z and second term B N.

Thus it appears that, when the sum of the series and second term
are the data, the problem has two solutions.

ProrosiTion XII. ProBLEM.

(579) To find a fourth proportional to three given
lines (F, E, and G).

o
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Draw two lines AD and Al making any angle in A D, take
AB and BD equal to F and E, and in A I take [

A C equal to G, join BC, and through D draw

D1 parallel to BC; CIis the fourth proportional I

to F, E, and G. * =
For in the triangle DAT, B C is parallel to

D1; therefore ABisto BD as AC to CI (II); <

but thegiven lines F, E, and G are equal to AB, BD, and AC

(const.), therefore Fis to E as G is to C1.

This problem may be solved by various other constructions ; ez. gr.
Let E and G be placed in the same straight line, and

u
from thgir common extremity C, in any direction, draw »

a line equal to F. Describe a circle through the extre- ?

mities of the three lines E, F, G, and produce F to meet \

its circumference at H; C H is the fourth proportional

sought. This easily follows from the similitude of the

(580) To find a mean proportional between two given

triangles.
ProprosiTion XIII. ProBLEM.

right lines (E and F).
Draw any right line A C, take in it AB and B C equal to E, F
and bisect AC in D; from the centre D with the X

radius D A describe a semicircle A I C, and through

B draw B I perpendicular to A C and meeting the 556
circumference in I: BT is the mean proportional

between E and F.

Draw Al and IC. Since in the triangle A1 C the angle I is
right (XXXI, Book IIl.), and I B is perpendicular from it upon
the opposite side, I B is a mean proportional between A B and
B C (555), and therefore between the given lines E and F, which
are equal to AB and B C (const.).

(581) There are various other constructions by which this problem
may be solved.

Let AB and B C be the extremes. Describe any D
circle through A and C, and let E be its centre, and c
draw B E and DB perpendicular to BE; D B is the "
sought mean. For DB =B F (1I1, Book IIl.), and
the triangles D B A and C B F are similar, *.* &c.

Again, let A B and B C be the extremes, and on A B o
describe a semicirclee. Draw C D perpendicular to Z&
A B, and draw D B, which is the mean sought. AT o =

Also, it may be solved thus: let A B and B C be the extremes, and
describe any segment on A B, and draw C D, making D C B equal to
au angle in the segment; D B is the mean (564).
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Or, if & segment be described on A C, and a tangent B D be drawn
to it from B, this tangent is the mean.
(582) By this proposition and the eleventh it appears, that of three
lines in continued proportion, if any two be given, the remaining one
can be found.
*.* (583) Also, if any one and the sum of the other two be given,
the other two may be found severally.

1°. Let the mean and the sum of the extremes be given. On A C,
the sum of the extremes, describe a semicircle, and draw
the perpendicular C D equal to the given mean, and Vi =D
through D draw D E parallel to A C, meeting the semi- Z!
circle in E, and draw E B perpendicular to A B. Since *® B¢
the triangle A E C is right-angled, BE is a mean between AB and
B C (555), which are therefore the extremes. It is evident that each
of the points E will give the same extremes.

2°, If one extreme and the sum of the mean and the other extreme
be given; on A D, the sum of the three, describe ®
the segment of a circle containing an angle equal
to the external angle of an equilateral triangle, and &/ 1\
take A B equal to the given extreme ; draw B E,
making A B E equal to an angle in the segment, and E C, making ECD
equal to the same angle. BE C is an equilateral triangle, and BE or
BC is a mean proportional between A B and C D, so that we have
AB:BC:CD. Hence BC and C D are the mean and the other
extreme (564).
*.® (584) Also, if any one of three lines in continued proportion
and the difference of the other two be given, the other two may be
found.

1°. Let the mean and the difference of the extremes be given. On
the given difference A C describe any segment of

a circle AD C, and inflect a tangent between the ¢
circle and produced chord A CB, so that B D
shall be equal to the given mean (354). In this X

case it is clear that B D is a mean between A B
and B C, from the similitude of the triangles AD B and BD C.

2°, Let one extreme and the difference between the mean and the
other extreme be given. In the solution of this case we shall antici-
pate the sixteenth proposition. Since in continued proportion the dif-
ferences of the successive terms are as the terms themselves (574),
it follows that the rectangle under one extreme and the difference of
the mean and the other is equal to the rectangle under the mean and
the difference between it and the given extreme (XVI). Since, then,
the area of this rectangle and the sum or difference of its sides are

iven, the sides themselves may be found.

o 5585) By the thirteenth proposition, 8, T, 15, &c. means may be
found between two given lines. For having found one mean, means may
be found between it and each extreme, and thus we shall have three
means. Inserting again means between every pair of successive terms
of the series thus found, we shall have 7 means, and in the same
manner 15 means may be obtained, and so on. Any number of

o2
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means which is one less than a power of 2 may thus be found, ‘the

wers of 2 being 2, 4, 8, 16, 32, &c.

586) The problem to determine fwo mean proportionals between two

given' lines, which produced so much discussion among the ancient
mathematicians, has never been solved geometrically. The circum-
stance which has rendered the solution of this problem so desirable is,
that upon it depends the solution of a most important problem in
solid geometry, viz. ¢ to construct a solid of a given species and given
magnitude,” or ¢ to construct a solid similar to a given one, and
bearing to it a given ratio. It is an established principle of solid
geometry that similar solids are in the triplicate ratio of their homo-
logous rectilinear edges. Hence to find a solid similar to a given one
bearing a given ratio to it, it is neces: to find a line which shall
bear the given ratio to one of its edges, and if two mean proportionals
be found between this line and the edge of the given solid, LE: similar
solid, ;;th the first of these means as an edge, will be that which is
required.

gl‘he problem to vary the scale of solids in any required proportion
is so very obvious a geometrical inquiry, that it most probably first
attracted the attention of the ancient geometers to the investigation of
two mean proportionals. Nevertlieless, an ancient author ascribes the
origin of this problem to the following occurrence. A plague hap-
pening to rage in Greece, deputies were sent to consult the Delphic
Oracle as to the means of assuaging it. The Divinity answered that
if his altar, which was of a cubical form, were doubled, its shape being
retained, he would remove the evil. The ignorant deputies accord-
ingly doubled its edges, by which its capacity or solid dimensions were
in fact increased eight times. The plague still raging, the deputation
returned and received the same answer. The geometers were now
consulted, and the problem was brought to Plato, the first mathema-
tician of the age. Plato immediately perceived its difficulty and
declined it, referring the solution of it (according to Valerius Maximus)
to Euclid. And since that time the matter has remained undetermined.
The problem has been hence called ¢ the Delian Problem.’

This tale, however, bears strong marks of fiction. Among others is
the circumstance of an anachronism in referring Euclid to the time of
Plato, he having flourished half a century after him. It is much
more probable that the whole tale is a fabrication of an early writer or
mathematician of minor note, invented to give an adventitious import-
ance to the problem. ’

This question was, however, raised at a very early period, and
received the name of ‘the duplication of the cube’ from the fable we
have related. - Hippocrates of Chios first reduced it to the determi-
nation of two mean proporticnals. Failing in the geometrical solu-
tion of the problem, various mechanical means have been from time
to time suggested, some of which we shall now mention. By me-
chanical means we would be understood to mean some instrument
different from the rule or compass, which are the only ones allowed in

metry.

o (587) One of the earliest solutions of this problem is that of Plato.
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Let ABC be two straight rulers fixed ata ngbt angle, and let D E
be a ruler sliding along A B, but always per-
pendicular to it, so as to be capable of being
successively moved into the positions D E.
Let the given extremes FG and GH be
placed at right angles and produced inde-
finitely through the vertex G of the right
angle. Let the mstrument now be so placed .
that while the production of one extreme .
passes through the right angle B, the sliding
ruler D E niay be so moved that when it passes through the extremity
F of that extreme it will also pass through the point D where the pro-
duction of the other extreme H G meets the ruler B A, and at the same
time let the other ruler B C be made to pass through H. This being
done, the intercepts G B and G D are the two means. For since
HBD is a right angle (555), HG: GB : GD, and since BDF
is a right angle, BG: GD : GF.
®«" (588) Another ancient geometer (Philo of Byzantium) has
imagined the following solution.

Let the extremes A B, B C be placed at right angles, and the rect-
angle completed, and a circle described
round it. . Produce D A and D C inde- 2
finitely through A and C. Let a gra-
duated straight ruler be made to revolve
on the point B, extending on both sides
of that point, and let it be adjusted in
such a position that B F shall be equal
to GE. Then CE and AF will be the
required means.

For by similar triangles we have the

proportions
: AB:AF=ED:DF
CE:CB=ED:D
Also since GE = BF, .- BE x GE = GF x BF. But
(XXXVI, BookIII.) BEXGE=DE xCE,also GF x BF =
DFxFA, ‘' DExCE=DF x FA.
Since these rectangles are equal, their sides (XVI) are reciprocally
proportional, therefore
AF:CE=ED:DF.
From this and the former proportions we find
AB:AF:CE:CB.

*.* (589) Nicomedes, a Greek geometer, who lived about two cen-
turies before the Christian era, found that the determination of two
mean proportionals depends on the solution of the problem, ¢To draw
a right line passing through a given point and intersecting the sides
of a glVfin angle so that the part of it intercepted shall have a given

magnitude.

To solve this problem he invented an instrument called the Tram-
mel of Nicomedes.
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Let AB be a flat ruler in which there is a groove CD. Attached
to the middle E of this is another flat ruler
E F, perpendicular to it in which, at I, is a
fixed pin, which is inserted in the groove
of a third ruler G H, in which there is also 4
a fixed pin at K, which is inserted in the
groove CD. The instrument being thus
constructed, let a stem H P, of a length
equal to that part of the line which is
proposed to be intercepted by the sides of
the angle, be attached to it. This done,
let the fixed pin I be placed upon the given
point, and the groove C D on one side of
the given angle, and let the ruler H G be @
moved so that the pin K will move over one side of the angle, and let
it be so_moved until the point P shall come upon the other side of
the angle. The required line will then be evidently that which joins
the points P and I.

To apply this to the determination of two mean proportionals :—
Let @ and d be the extremes, and let a rect- -
angle be constructed whose sides are equal to Cd
theextremes AB=a,AC=d. OnAB con- o
struct an isosceles triangle B D A, the side ¢ »
of which BD is equal to half of AC. Pro- i
duce BA so that AE = B A, and connect % !{

D and E, and through B draw B I parallel 4 >

to DE. Through B produce AB, and through D draw D F by
the trammel, so that I¥ = B D, and draw F G intersecting A C pro-
duced in H. Then BE=1b),and CH =¢, band ¢ being the sought
means.

For since BI and DE are parallel, DI:IF::EB : BF, or
DI:jd:: 2 :BF. Butalso on accountof the similar triangles,
HC:a::d:BF, " HC=DI Since BDA is isosceles, the
square of D F is equal to the rectangle under AF and F B, together
with the square of BD. But also the square of D F is equal the
square of the sum of H C, and half of A C, or to the rectangle under
AH and H C, together with the square of half of A C. Taking away
this last from both, it follows that the rectangle under AH and H C is
equal to the rectangle under AF and F B. By this and the similar
triangles we have the proportions

AH:AF :: AC:BF,
AH:AF::BF:HC,
AH:AF ! HC:AB,
‘“AC:BF : HC:AB,
ora:b:c:d

*a" (590) There are various other mechanical solutions for this
celebrated problem. We shall, however, only mention the contrivance

of Descartes, by which any number of means may be found between
two given extremecs.
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Let A B Cbe two rulers, united at their extremities B by a pivot
on which they turn. In each of these d FHE
rulers is a groove in which several
rulers D d, E ¢, F f; &c. move 50 as to
be always perpendicular to the giooved
rulers respectively, and so that the
perpendicular D d nearest to B, upon
opening the rulers, pushes forward the
ruler E ¢, and E ¢ pushes forward F f,
and so on. e &1 7

Now if two means be required, let the first ruler D-d be moved
from B until BD is equal to the lesser extreme, and let B C be closed
upon B A and all the perpendicular rulers moved up to D. Let the
ruler D d be screwed to the position in which it is placed, and then
let the rulers CB A be opened. The ruler D d will push E e from B,
and E ¢ will in like manner push F f; and so on. Let the rulers be
opened until B G be equal to the greater extreme. Then BF and BE
are the two means, as is evident from (553).

If three means be required, the rulers are to be opened until BH
is equal to the greater extreme, and then BE, BF, and B G are the
means.

If four be required, BT is to be equal to the greater extreme, and
80 on.

In general, if an even number of means be required, the extremes
will be on different rulers, and if an odd number be required, they
will be on the same ruler.

®.* (591) We have before alluded to another problem which has
baffled the skill of geometers, scil. ¢ the trisection of an angle.” Indeed
the modern analysis shows that the solutions of both these problems
depend on the same principles, and that neither of them can be solved
by the circle and right line, but require the aid of an higher geometry.
It is scarcely necessary to observe that the investigations respecting
their geometrical solution are purely speculative, since they can be
solved practically and analytically with any degree of accuracy.

They were early discovered to depend on the same principle. Nico-
medes showed that both could be solved by the trammel. -

Let A B C be the angle to be trisected. From A draw A C perpen-
dicular to BC, and from A draw A D parallel " o
to B C. Inflect (by the trammel) B D so that V—
F Dshall be equal to twice BA. Then the angle ]
DB C is one third of AB C, and if ABD be c
bisected the angle A B C will be trisected.

For bisect FD at E, and join AE. Since F A D is a right angle
A E=ED = FE, therefore the angles E A D and A D E are equal,
and AEB is equal to twicc ADB; but ADB = D B C (XXIX,
Book 1.), and therefore AEB is twice DBC; butAE=ARB, .
AEB=ABE, - ABE is equal to double DBC, and ‘- FBC is
one third of A B C.
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ProrositiOoN XIV. TuEOREM.

592) 1. Equalparallelograms (A D and G C), which
have one angle in each equal, have the
sides about the equal angles reciprocally
proportional (A B to BC as BG to BD).

2. And parallelograms which have one angle
in each equal, and the sides about them
reciprocally proportional, are equal.

may make one right line, and that the equal
angles may be vertically opposite ; since AB D
and D B C are equal to two right angles
(X111, Book I.) and G B C is equal to ABD
(hyp.), GBC and DBC are equal to two
right angles, and therefore G B and D B form
one right line (XIV, Book 1.). Complete the
parallelogram D C. e E

Since the parallelograms A D and G C are equal (hyp.), A D
isto DC as GC to D C (VII, Book V.); but AD isto DC
asAB to BC (I), and GC is to DC as GB to BD (I),
therefore AB is to BCas GB to BD. ,

Part 2°.—Let the same construction remain; ADis to DC
as ABtoBC,and GCisto DCasGBtoBD; but ABisto
B Cas GB to BD (hyp.), therefore AD is to DC as GC to
D C (I), and therefore the parallelogram AD is equal to the
parallelogram G C (IX, Book V.).

Part 1°—Let the sides AB and BC be so placed that they

(598) The sides of two figures are said to be reciprocally propor-
tional when the extremes of the proportion are sides of one figure,
and the means are sides of the other.

On the other hand, they are said to be directly proportional when
two sides of each figure are a mean and an extreme,

Of the three properties contemplated in this proposition, scil. 1°. the
equality of the angles; 2° the reciprocity of the sides ; 3°. the equa-
lity of the areas : if any two of them be given, the third may always be
inferred. Of the three cases to which this inquiry resolves itself two
are determined in the proposition. = The third is, that ¢ if two paral-
lelograms have equal areas, and their sides reciprocally proportional,

they will be equiangular.’” For the proof of this, see observations on
Prop. XVI.
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ProprosiTioN XV, THEOREM.

(594) 1°. Equal triangles, which have one angle in
each equal (A B D equal to CBL), have
the sides about the equal angles recipro-
cally proporticnal (ABtoBC as LB to
BD).

2°. And two triangles (A BD and CB L) which
have one angle equal, and the sides
about the equal angles reciprocally pro-
portional, are equal.

Part 1°.—Let two of the sides AB and B C about the equal
angles be so placed that they may form one right ¢
line, and that the equal angles may be vertically
opposite ; then since AB D and D ﬁ C are equal &
to two right angles (XIII, Book I.), and LBC
is equal to AB D (hyp.), DBCand LBC are ® A
equal to two right angles, therefore D B and B L form one right
line (XIV, Book L.): join D C.

Since the triangles ABD and LBC are equal, ABD is to
DBC as LBC i1s to the same DBC (VII, Book V.); but
ABD is to DBC asABto BC (I),and LBCisto DB C as
L B to B D (l), therefore ABis to BC as LB is to B D.

Part 2°.—Let the same construction remain, and AB D is to
DBCasABtoBC,and LBCisto DBCas LB to DB (I);
put ABistoBCas LB to DB (hyg/.) ; therefore ABD is to
DBCas LB Cto DB C (XI, Book V.), and therefore AB D is
equal to L B C (IX, Book V.).

This proposition might have been inferred from the last, since the
triangles are the halves of equiangular parallelograms. This consi-
deration also shows that the same property extends to the case of
triangles in which the angles included by the reciprocal sides are sup-
plemental.

ProprosiTion XVI, THEOREM.

(595) If four right lines be proportional (A to B as C
to D), the rectangle under the extremes (A and
D) is equal to the rectangle under the means
(B and C).
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And if the rectangle under the extremes be
equal to the rectangle under the means, the
right lines are proportional.

Part 1°.—Draw A E and G C equal to D and C, and erect
A F and C K perpendicular to them . »
and equal to A and B; complete the ¢
rectangles E ¥ and GK. _ A

Because in the parallelograms E F : x
and GK the angles. A and C are
equal, and the si esalaléc:ut )th%mFre-
ciprocally proportional (hyp.), is °©
etfual toyG K (XIV).

Part 2°.—Let the same construction remain: because the
parallelograms E F and G K are equal (hyp.) and the angles A
and C are equal, AF is to CK as G C to AE, and therefore A
is to B as C to D (XIV).

This proposition (of which the succeeding is a particular case) is
one of the most important in the Elements, and in its fertility equals the
celebrated forty-seventh of the first book. The following principles,
which are very generally useful in geometry, give this proposition as a
necessary consequence.

(596) Der.—Two ratios are said to be reciprocals when the antecedent
is to the consequent in one as the consequent to the antecedent in the
other.

(597) A ratio compounded of reciprocal ratios is a ratio of equality.
Forlet A: Band a: b be the reciprocal ratios. Since A: B =

b:a,
‘cA:Bl_fA:B|__ ,.
a: b}-{B :A}- Az A,
which is a ratio of equality.

(By ﬁ ]1;3} is meant a ratio compounded of A : B and a : b.)
(598) If a ratio of equality be compounded of two ratios they must
be reci;

For if A : A be compounded of two ratios, one of which is a : b,
let the other bec: d, and let ¢ : d = b : x, then

a:b _ fa:d\_ .
c :d}_{b:z}— a:z
Bat (hyp.) a : z is a ratio of equality, *.* 2= a. Hence b : x is the

reciprocal of @ : b, and .- ¢ : d is the reciprocal of @ : b. °
(599) By (519) it was proved that triangles and parallelograms are in
a ratio compounded of their bases and altitudes. When they are equal,
therefore, their bases and altitudes are reciprocally proporticnal (598),
and if their bases and altitudes be reciprocally proportional they will
be equal (597).
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Hence the sides of equal rectangles are four proportionals, the means
being the sides of one and the extremes of the other, and vice versd the
rectangle under the means is equal to the rectangle under the ex-
tremes. Thus the sixteenth proposition follows immediately from the
first.

(600) Itis evident that the same is true of any equal equiangular
parallelograms, or of triangles having one angle equal or supplemental.
(601) Also if the sides of parallelograms or triangles be reciprocally

_proportional and their areas equal, the angles contained by the reci-
procal sides will be either equal or supplemental.

Let ACB and DEF be parallelograms or triangles, and let
AB:DE=EF:BC. Let the perpendi- b
culars AG and DH be drawn. By (599) A
AG:DH=EF:BC,'.- AB: DE = Zy
AG:DH,and byatt AB:AG=DE: et 4
D H. Hence (550) the triangles A B G and N
D E H are similar. If then the perpendicu-
lars fall within both bases B C and E F, the @
angles ABC and D EF are the angles in- ¢ eF % &
cluded by the reciprocal sides. Ifthey fall without both bases, these
angles are the supplements of the angles included by the reciprocal
sides, and if one fall within and the other without, one of these angles
is that included by the reciprocal sides, and the other is the supple-
ment of that included by the reciprocal sides in the other figure.
Hence in all cases the angles included by the reciprocal sides must be
either equal or supplemental.

If the figures be parallelograms, they must be equiangular.

ProrosiTioN XVII.  TuEeorzwM.

(602) 1°. If three right lines be proportional (A to B
as B to C) the rectangle under the ex-
tremes is equal to the square of the
mean.

2°.  And if the rectangle under the extremes be
equal to the square of the mean, the
three right lines are proportional.

Part 1°.—Assume a line D equal to B, and Aisto Bas D to
C (hyp.), therefore the rectangle under A and C is equal to the
rectangle under B and D ()fVI), and therefore eqnal to the
square of B.

Part 2°.—Assume a line D equal to B; the rectangle under A
and C is eqcua.l to the rectangle under D and B, therefore A is to
B as D to C (XVI), and therefore A is to B as B to C.
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This proposition is only that particular case of the last in which the
means are equal. We shall subjoin some of the most remarkable con-
sequences deducible from these and the preceding propositions.

By combining the inferences made from (VIII) with these, the fol-
lowing properties may be immediately deduced.

In a triangle let the sides be called A and B, the base H, and let
the perpendicular on H be P, and the segments of H conterminous
with A and B respectively @ and b.

(603) If the angle opposite H . be right the square of P = a x b.
Also the square of A = a x H, and the square of B= b x H, and
AxB=HxP. A

It also follows that in any triangle if the square of P = a x b, the
angles under P and the sides are complemental,in which case if P
fall within H, the angle opposite to H is right. Also, if P fall within
H, and the square of A = H X @, the angle opposite H is right. Also,
if H x P= A x B the angle opposite H is right..

If from the vertex B of a triangle A B C lines B E, B D be drawn,
making the angles B D A and B E C equal B
to the angle A B C, the square of BD = B
AD x EC, the square of AB=C A x
A D, and the squareof BC=AC x CE;
and vice versd, if these equalities subsist the # & P ¢ A D E C
lines B E and B D are inclined to the base at angles equal to AB C.

The sum of the squares of the sides AB and B C is equal to the
sum of the rectangles AC X ADand AC x CE. But since these
rectangles have a common side A C, they are together equal to the
rectangle under A C, and the sum of AD and CE (I, Book 11.). If
the angle A B C be obtuse, the square of A C exceeds this rectangle
by the rectangle AC x D E, and if A B C be acute, this rectangle
exceeds the square of A C by the rectangle AC x DE. Hence it
follows that in every case the difference between the sum of the
squares of the sides and the square of the base is the rectangle under
the base A C and the base DE of the isosceles triangle D B E.

" When A B C is a right angle D E vanishes, and the result becomes
the forty-seventh, Book I.

It thus appears that the forty-seventh proposition of the first book
can be deduced as a consequence from the property of similar triangles
established in (IV) and (V), thus the fundamental propositions of geo-
metry are reduced to that single property.

The student has already seen many instances of propositions already
established reappearing in the consequences deduced from subse-
quent principles. One of the most striking beauties of geometry, and
at the same time the most convincing proof of the certitude of its
reasonings, is this constant verification of its own processes. For
were it otherwise, were there the slightest want of exactitude in the
results, there would be an inevitable discordance and contradiction in
these nonsequences drawn from different sources, and they would not
converge, as they do, always to the same point, There are many ways
of error, but only one of truth.’
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If a line AB be cut harmonically at C, D, the rectangle AB x
CD under the whole line and middle part
1s equal to the rectangle AC x D B under Do
the extreme parts, for (530,531) AB: BD
=AC:CD.
*_* (604) If a circle be circumscribed about a triangle AB C, and from
the verter B two lines be drawn making

equal angles DB A and E B C with the 7N,
sides, and one B D be drawn to meet the base \ \
A C or its production, and the other BE » ey

to meet the circle; the rectangle B D x
Bgunder these lines is equal to the rectangle under the sides AB x
BC.

Draw C E. The angles ABD and C B E are equal (hyp.); also
the angles CE B and B AD (XXI, XXII, Book IIL.). Hence the
triangles BAD and CB E are similar; ** BA:BD=BE:BC
$IV), ' BAxBC=BD x BE (XVI).

»* (605) If BD and B E coiucide they will bisect the angle AB C,
and EBXxBD=ABxBC. BtEBxBD=ED
% D B together with the square of BD. But ED x B
DB=AD x D C (XXXV, Book III). Hence AB ,Z—T\
x B C= A D x D C together with the square of B D.
Hence if a line B D be drawn bisecting the vertical angle
of a triangle the rectangle under the sides is equal to the
square of that line, together with the rectangle under the
segments of the base,
*.* (606) If aline BD be drawn to the base of a triangle, so that its
square together with.the rectangle A D % D C under the segments shall
be equal to the rectangle AB x B C under the sides, that line B D will
bisect the angle A B C, except when the sides A B and B C are equal,
in which case every line drawn to the base (253) will have the proposed
property. .

For let the circle be circumscribed and C E be drawn. Then AD
X DC=BD x DE; add to both the square of BD, and A D x
D C together with the square of B D, or (hyp.) the rectangle A B x
B C is equal to BD x DE, together with the square of BD or
(III, Book II)YBE x BD. Since BE x BD =AB x BC, we
have (XVI) AB: BD=EB : BC; and since the angles BAD
and B E C are equal, the angles BCE and BD A are either equal
or supplemental (550).

1°. Let them be equal. The angles ABD and EB C are there-
fore also equal, and B D bisects A B C.

2°, Let them be supplemental. The arc B A E together with the
arcs B A and C E is equal to the whole circumference (877). )

Hence the arcs B A and B C are equal, and therefore their chords
are equal.

*.%¥ (607) IfBE and B D lie in the same straight line, B D will
bisect the external angle F B C of the triangle. For EBA = B D.
In this case, if the square of B D be added to the rectangle EB xB D,
the sum will be equal to the rectangle E D x D B, which is equal to

(]
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the rectangle A D x D C (XXXVI, Book IIT). Hence the rectangle
A D x DC= the rectangle AB x BC together
‘with the square of B D. Henoe if a line be drawn v
bisecting the external angle of a triangle, the rect-
angle under the sides together with the square of
that line is equal to the rectangle (A D x D C)
under the segments of the base.
*.* (608) Ifaline B D be drawn from the vertex of a triangle to
the produced base, so that the square of this line B D together with the
rectangle under the sides AB x B C be equal to the rectangle under
the segments of the base A D x D C, the line BD will bisect the
external angle of the triangle except when the sides A B and B C are
equal, in which case every line drawn to the produced base has this
property.

his may be proved nearly in the same manner as (606).
*.* (609) From (605,607) it follows, that if the bisectors BD, BE
of the internal and external angles be drawn, the rectangle under the
external segments of the base exceeds the rectangle under the sides by the
square of the external bisector, and the rectangle under the sides exceeds
the rectangle under the internal segments of the base by the square of
the internal bisector.

Hence if the two bisectors be equal, the three rectangles AE X E C,
AB xBC, AD x DC are in arithmetical pro-
gression. That this may take place it is necessary
that the angles B D E and B E D should be equal, ﬁ\
and therefore each half a right angle (83). A DCcTTTT R

Therefore the difference of the angles BDC and BD A is a right
angle, and therefore also the difference of the angles B C A and
B A Cis aright angle.

Hence when the difference of the base angles is a right angle the
three rectangles are in arithmetical progression.

*4* (610) In order that three similar figures be in continued propor-
tion, it is necessary (XXII) that their homologous sides be in continued
proportion. Hence if the rectangles AE x EC,AB x BC,and AD
% D C be in continued proportion, their sides E C, B C, and D C must
be in continued proportion. But since D B E is a right angle, if BC
be a mean proportional between D C and C E it must be perpendi-
cular to D E (560), *. BCA is a right angle. Hence, if the three
rectangles be in continued proportion or geometrical progression, one of
the base angles must be right. .
*4+% (611) If these three rectangles be in karmonical progression, the
first must be to the third as the difference between the first and second
to the difference between the second and third. Hence AEXCE:AD
% C D as the square of B E is to the square of BD. But since the
rectangles are similar figures, and also the squares, we have (XXII)
CE:CD=BE:BD; ‘.- (III) the angles EBC and CB D are
equal, and each is therefore half a right angle. But also C B D and
D B A are equal, and :.* C BA is a right angle.

Hence the three rectangles are in harmonical progression when the
vertical angle is right.
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®.* (612) It is evident that in every case the rectangle CE x AE
exceeds A D x D C by the square of D E,
*.* (613) If the line BD drawn to the base be the perpendicular, the
line B E will be a diameter. For the angle
BAE is equal to BD A, and therefore is B
right, and BE is (XXXI, Book IIL) a =N\, 7
diameter. Hence the rectangle under the \v B
sides AB X B C of a triangle is equal to I\ (33
the rectangle under the altitade B D, and R
the diameter B E of the circumscribed circle.
** (614) Itis evident that the converse of this is true; scil. : That if
a line be drawn from the vertex to the base such that the rectangle under
it and the diameter is equal to the rectangle under the sides, that line
will be the perpendicular. Also, if on the perpendicular as base a
rectangle be constructed equal to the rectangle under the sides, the alti-
tude of that rectangle will be cqual to the diameter of the circumscribed
circle.
*.¥ (615) Hence of the four lines, the two sides, the altitude and the
diameter of the circumscribed circle, if any three be given, the remaining
one can be found, Or if any two and the sum or difference of the other
two be given, the other two can be separately found.
*.* (616) The rectangles under two sides of any triangles inscribed
in the same or equal circles, are as the perpendiculars on the third
sides, for these rectangles are equal to the rectangles under the
pleﬂrpendiculars and equal diameters which (I) are as the perpendi-
culars.
&.* (617) Hence if a quadrilateral A B C D be inscribed in a circle,
the rectangles AB x B C, BC.x C D under contermi- B
nous sides are as the perpendiculars B F and C E on
the diagonals.
#_* (618) From this it is easy to infer that the rectangle o
under each pair of conterminous sides is proportional to
the conterminous segment of the diagonal. For the right-angled
triangles BGF and CGE are similar, and therefore BG:CG
= BF:CE. By applying the same principle to each pair of con.
terminous sides we obtain the following proportions :
ABxBC:BCxCD=BG:CG,
BCxCD:CDXCA=CG:DG,
CDxDA:DAXAB=DG:AQG,
DAXAB:ABxXxBC=AG:BG,
ABXxBC:ADXxDC=BG:GD,
BCxXxCD:BAxAD=CG:GA.

By the last two proportions combined we have AB x BC + A D
XDC:BCxCD+BAXAD=BD: AQC, that is, ¢ the sums
of the rectangles under the pairs of sides terminated in each diagonal
are as the respective diagonals.’

*.* (619) The converse of these properties may be easily established ;
scil.: If the rectangles under any two pairs of conterminous sides of a
quadrilateral be proportional to the conterminous segments of the diago-
nals, the quadrilateral may be circumscribed by a circle,
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For the scgments of the diagonals are proportional to the .
diculars fromgt:; common extr:rgnities of thl:a s?:l)el on the othe:l[')e dirg‘g";
nals. Thus BG:CG=BF:CE. Hence the rectangles are as
these perpendiculars, and therefore the diameters of the circles circum-
scribingrtgn: triangles A B C and B CD are equal, and therefore they
must be the ;;wme circl'e,2 the s wnder the of
** (620, sum o rectang opposite sides of a
quad%hlauliamibedinadmki:equaltotl&credmugkmdadw
diagonals.

If BD do not bisect the angle ABC draw BE, C
making the angle C B E equal to A BD. The triangle >
ABD is then similar to BEC,und ABE to DBC /

(604). Hence AD:DB=CE:CB, B a
B-AE=BD:DC.

Hence XVI) AD x CB=BD xCE, and ABx DC=BD
XAE,‘ ADXCB+ABx DC=BDxCE+BD xAE.
But the rectangles BD x CE and BD %X A E under B D and the
parts of A C are together to the rectangle under BD and A C
(I, Book II.).

X
an

Prorosition XVIII. ProBLEM.

(621) On a given right line (A B) to construct a recti-
linear figure similar to a given one (F GIKL)
and similarly placed.

Draw FI and F K ; make at the extremities of the line A B
the angles BAC and ABC equal to LFK x
andFiK;let the lines A C and B C meet £ D
in C, and the angle BCA isequal to LK F; 0@ £
in the same manner construct upon AC a 3
triangle equiangular with F K 1, and so on. rL

The angles ABC and F LK are equal (const.); B CD and
LK1 are also equal, because BC A is equal to LK Fand ACD
to F K1 (const.) ; and in the same manner it can be proved that
the angles in the figure AED CB are severally equal to the

les in the figure F GIK L, theretore the figures AED CB
and FGIK L are equiangular ; but since the triangles A B C and
FLK are equiangular (const.), AB is to BC as FL to LK
(IV), and also BC to CAas LK to KF (IV); also ACD
and F K1 are equiangular, therefore CA isto CD. as K F to
KI (IV), and therefore ex @quali BCis to CDas LK to K1,
and 1n the same manner it can be proved that the sides about
the other equal angles are proportional, and since the figures
AEDCB and FG TKL are equiangular, they are similar.
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(622) The figure AEDCB is said to be placed on A B simi-
larly to FGIKL on F L, when AB and FL are homologous sides
in the two figures

If two or more sides in two polygons be equal, those only are con-
sidered homologous which are placed between angles which are equal
each to each.

As many figures of the same species with different areas can be
- constructed on the same right line as a figure of the proposed species
has sides of different lengths.
(623) Der.—A figure is said to be given in species when its several
angles and the ratios of the sides about them are given.
(624) Der.—A figure is said to be given in magnitude when its
area, or any figure equal to it in area, is given.

ProrosiTion XIX. THEOREM.

(625) Similar triangles (A B C, FI L) are to each
other in the duplicate ratio of their homolo-
gous sides.

Take a third proportional K C to the homologous sides A C
and FL, and join BK. : 5

Since AC is to CB as FL to LI (hyp.), H
alt, AC is to FL as CB to LI; but AC is /)
to FLas FL to CK (const.), therefore CBis 4 x¢ # 1
to LI as FL to CK, and the angle C is equal to the angle L
&h p.), therefore the triangle K B C is equal to FI1 L (XV), and

EC has to both the same ratio; but ABCisto KBCas AC
to KC (I), therefore ABCisto FILas AC to KC, or in the
duplicate ratio of A C to F L (4538).
(626) Cor.—From this it is manifest, that if three straight lines
be proportionals, as the first is to the third so is any triangle
upon the first to a similar and similarly posited triangle upon
the second. ’

In the construction for the demonstration of this proposition when
a third proportional to two homologous sides has been found, a part
equal to it is to be taken upon whichever side was taken as antece-
dent of the ratio in finding the third proportional ; for otherwise the
sides of the constructed triangle B C K would not be reciprocally pro-
portional to those of thé consequent triangle. If in taking the third pro
portional the lesser of the two homologous sides be taken as antece-
dent, the third proportional K C will be greater than the antecedent
A C; in which case it will be necessary to produce A C through A,
and from the produced line to take C K equal to the third propor-
tional. It is worth notice that C K the third proportional may be
taken on’the production of A C through C. In this case the angles

P
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B CK and 1 L F will be supplemental, and the sides about them reci-
procally proportional.

This proposition might be easily inferred as a particular case of
the general principle deducible from the first proposition of this book,
that triangles are in the ratio compounded of their bases and alti-
tudes (519). When they are similar their altitudes are as their bases,
and this compound ratio is therefore the duplicate ratio of their
bases (458).

ProrosiTioNn XX. THEOREM.

(627) Similar polygons may be divided into similar
triangles equal in number and proportional
to the polygons; and the polygons are to
each other in the duplicate ratio of their ho-
mologous sides.

Part 1°.—For the angles G and E are equal; and the sides
about them proportional (]I;yp.), therefore ;  x
the triangles FGI and AED are similar °
(VI); sincetheanglesGIF and ED A are "@
equal, and also the angles GI Kand EDC s 1 A8
(hyp.), the remainders FIK and AD C are equal; and since
Flisto IG asAD to DE,and IGtoIK as DE to DC
{(hyp.), ex @quali F1is to 1K as AD to DC, and therefore as
the angles contained by them are equal, the triangle FIK is
similar to A D C (VI); and in the same manner it can be proved
that all the other triangles are similar. :

Part 2°.—As the triangle F G1 is similarto AE D, FG1 is
to AED in the duplicate ratio of F1to AD (XIX),also FIK
is to AD C in the duplicate ratio of F1to AD, therefore FG1 is
to AEDas FIK to AD C; and in the same manuer it can be
proved that FIK is to ADC as FKL to ACB, therefore as
one of the antecedents is to one of the consequents, so are all
the antecedents to all the consequents (XII, Book V.), or the
polygon F GIK L to the polygon AED CB. :

Part 3°.—As the polygon F G 1 K Lis to the polygon AED.C B
as the triangle FG 1 to the triengle AE D,.and FGIis to AED
in the duplicate ratio of the side FGto AE,FGIKL is to
A E D CB in the duplicate ratio of FG to AE.

(628) Cor. 1.—In like manner it may be proved that similar
four-sided figures, or of any number of sides, are one to another
in the duphcate ratio of their homologous sides: and it has
already been proved in triangles : therefore, universally, similar
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tectilinear figures are to one-another in the duplicate ratio of
their homologous sides.

(629) Cor. 2.—And if to A B, F G, two of the homologous sides,
a third proportional M be taken, A B has to M the duplicate ratio
of that which A B has to FG: but the polygon upon A B has to .
the polygon upon F G likewise the duplicate ratio of that which
A B has to F G, therefore as A B is to M so is the figure upon
A B to the figure upon F G : which was also proved in triangles:
therefore, universally, it is manifest that if three straight lines be
proportionals, as the first is to the third so is any rectilinear
figure upon the first to a similar and similarly placed rectilinear
figure upon the second.

(630) Squares, like all other similar figures, are in the duplicate ratio
of their sides. Hence it is usual to say, that similar figures * are as the
squares of their homologous sides;’ this being only another way of
expressing the duplicate ratio.

(631) The perimeters of similar rectilinear fignres are as their ho-
mologous sides. For the homologous sides being those of similar
triangles, are severally proportional each to each, and therefore the
sum of the antecedents or the perimeter of the one polygon is to
the sum of the consequents, or the perimeter of the other polygon as
one antecedent is to one consequent, that is, as any two homologous
sides.

(632) Since the homologous diagonals are as the homologous sides,
being sides of similar triangles, it follows that the perimeters of
similar rectilinear figures are as their homologous diagonals, and their
areas are in the duplicate ratio of these diagonals.

Circles may be considered as similar figures and have the same
properties, their diameters being esteemed diagonals. We shall then
establish the two following principles. :
*.* (683) The circumferences of circles are as their diameters or
radii, and their areas are in the duplicate ratio of their diameters or
radii.

It is evident that any two regular polygons having the same number
of sides are similar, and may be inscribed in circles.

The radii of the circles are homologous lines in the AN
polygons, and the perimeters of the polygons are as N
those radii, and their areas in the duplicate ratio of ,” '}| y
those radii. Through the vertices of the several angles |

of the inscribed polygons let tangents be drawn. These — ~ &
tangents will, if produced, form similar circumscribed ~
polygons. By bisecting each of the arcs whose chords are the sides
of the inscribed polygons, and drawing lines from the points of bisec-
tion to the angles of the polygons, inscribed polygons of double the
number of sides will be obtained, and corresponding circumscribed
polygons may be found in the same manner as already described.
This bisection of the arcs may be continued without any limit, so that
the arcs into which the circumferences are divided, as well as the sides

P2
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of the polygons, will be increased in number, and diminished in mag-
nitude without limit, every pair of polygons inscribed and circum-
scribed being always similar, and having their perimeters as the radii
and their areas as the squares of the radii.

As the arcs are diminished without limit, the angles under their
chords, and the tangents through the extremities of those chords, are
diminished without limit ; for these angles are equal to the angles in
the alternate segments which stand on the arcs, and which, as the
arcs are diminished without limit, will also be diminished without limit.
Hence the excess of the sum of the tangents above the chord is dimi-
nished without limit, as also the area of the triangle formed by the
chord and tangents. Hence by the continual bisection the excess of
the perimeter of the circumscribed polygon above the perimeter of the
inscribed polygon is diminished without limit, and the same may be
said of their areas. Since, then, the differences of the perimeters and
areas of the inscribed and circumscribed polygons. may be diminished
without limit, it follows still more evidently that the differences between
either of them and the perimeters and areas of the circles (which are
less than those of the circumscribed polygons and greater than those
of the inscribed) may be diminished without limit.

Let C and C’ be the circumferences and R and R’ the radii of the
circless Then R: R’ =C:C’; for if not, let R: R"=C: X, X
being a line greater or less than C/.

First, let X be less than C/. Let P, P/ be the perimeters of the
inscribed polygons; R: R” =P :P. Hence P: P’=C:X; and
by alternation P : C=P/: X. Hence, since P is less than C, P/
must be less than X. But X is (hyp.) less than C’, therefore C
cannot exceed P’ by a magnitude less than that by which C” exceeds
X, and therefore the difference between C’ and P’ cannot be dimi-
nished without limit, contrary to what has been proved.

If X be greater than C/, let P, P’ be the perimeters of the circum-
scribed polygons; and in the same manner we find P:C = P/: X, and
since P is greater than C, P/ must be greater than X ; but X is greater
than C’ (hyp.), and therefore the difference between P’ and C’ must
be always greater than the difference between X and C’, and cannot
thereefgre be diminished without limit, contrary to what has been
proved.

Since then X is neither greater nor less than C’, it must be equal to
C’, and therefore R: R' =C : C/.

If R and R’ be supposed to represent the squares of the radii, and
C and C' the areas of the circles, the same proof will establish the
second part of the proposition, that the areas of circles are as the
squares of their diameters.

The same reasoning which we have here applied to circles may also
be applied to semicircles or any similar segments of circles, or to
sectors of circles in which the central angles are equal. Hence similas
arcs are as their radii, and similar sectors or segments are as the du-
plicate ratio of the radii.

*«" (634) The circumference of every circle bears the same ratio to its
radius o1 diameter,
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For C:C' =R : R/, . by alternation C: R=C/: R’. Hence if
the ratio of the circamference of any one circle to its radius were
known, we should be able to find a straight line equal to the circum-
ference of a circle. 'This ratio, however, does not admit of being
exactly expressed either by whole numbers or fractions. The radius
and circumference are incommensurable lines. The results of analy-
tical investigation, however, enable us to express the ratio with as
much exactness as may be required for the most accurate practical
investigations. It is found that if the diameter of a circle were divided
into 100 equal parts, that 8314 of these parts would be less than the
circumference, and 315 greater. That if the diameter were divided
into 1000 equal parts, 3141 of these parts would be less, and 3142
greater than the circumference. Again, if the number of parts of the
diameter be 10000, those of the circumference will be greater than
31415, and less than 31416, and even a much greater accuracy if ne-
cessary might be obtained.

*_* (635) The area of a regular polygon is equal to the rectangle under
the radius of the inscribed circle and its semiperimeter.

For it may be resolved into equal isosceles triangles by lines from
the centre to the angles, and the area of each triangle is equal to the
rectangle under the radius and half the base, and therefore the area of
the whole polygon is equal to the rectangle under the radius and half
the sum of the bases or the semiperimeter.

*«* (636) The area of a circle is equal to the rectangle under ils radius
and semi. circumference.

For the area of a polygon circumscribed round it is equal to the
rectangle under the radius of the circle aud the semiperimeter of the
polygon. Baut by the continual bisection of the arcs, and the unlimited
increase of the number of sides of the polygon, the difference between
its perimeter and area and those of the circle may be diminished
without limit, and the demonstration may be completed er absurdo,
as in (633). )

Hence if a right line could be found equal to the circumference of
a circle, a rectangle or square could be constructed equal to a circle,
and the celebrated problem of * squaring the circle’ would thus be
solved. The area of a circle may, however, be obtained with any pro-
posed degree of accuracy, because the circumference may be com-
puted with any degree of approximation (634).

The following practical rule may be derived from (634) and (686).

¢ To find the area of a circle multiply the square of the radius by
31415, and divide the result by 10000’ This will give the area,
subject to an error of less than the 10000th part of the square of the
radius.

The problem to * square the circle,’ or what is the same, to find a
right line by geometrical construction equal to the circumference of
the circle, has never been solved. The solution of this problem would
be attended with no real advantage whatsoever, for the power of ap-
proximating numerically without limit to the circumference answers
every purpose, and in fact is much more useful in practice than any
geometrical construction could be. Accordingly we find at the present
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day no one wastes time on these disquisitions except those whose
knowledge of mathematical science is too limited to make them per-
ceive their futility.

The degree to which the approximation has been carried by actual
computation may be conceived, when we state that the circumference
of a circle whose diameter is unity has been expressed to 140 decimal
places, by which the circumference of any circle can be found to within
a nth part of the diameter, the number n being 1 followed by 140
ciphers. The following number expresses the circumference of a circle
wEose diameter is unity to 16 decimal places:

3:1415926583897932.
*.% (637) To construct a figure similar to a given one, and bearing a
given ratio to it.

Let A be any side of the given figure, and let B be a line which has
to A the given ratio. Find a mean proportional between A and B,
and on this mean construct the required figure (621).

If the given figure be a circle, A may be its diameter. And, in
general, in theorems and problems respecting similar figures when
applied to circles, the radii or the chords of similar segments take the
places of homologous sides.

Prorosition XXI. TrEOREM.

(638) Rectilinear figures (A and B) which are similar
to the same figure (C) are similar also to each
other.

Since the rectilinear figures A and C are similar, they are
equiangular, and have the sides about the equal angles propor-
tional ; and since the figures B and C are also similar, they are
equniangular, and have the sides about the equal angles propor-
tional ; therefore the rectilinear figures A and B are also equi-
angular, and have the sides about the equal angles proportional,
and are therefore similar. .

Prorosition XXII. Tunox;xn.

(639) If four right lines be proportional (A B to CD
as E F to G H), the similar rectilinear figures
similarly described on them are also propor-
tional.

And if four similar rectilinear figures, similarly
described on four right lines, be proportional,
the right lines are also proportional.
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Part 1°.—Take n third proportional X to A B and CD, and a
third proportional O to EF andGH; «x
since AB is to CD as EFto GH X
(hyp.), CD is to X as GH to O
(const.), therefore, ex equali, A B is
to Xas EFtoO; but AKB is to
CLD as ABto X (XX), and EM % g -
to GN as E F to O; therefore AK B
isto CLD as EM to G N.

Part 2°—Let the same construction remain: A K B is to
CLDasEMtoGN lep.), therefore ABisto X as EFto O
(const.), and therefore AB is toCD as E F to G H.

This proposition is equivalent to stating that if two ratios be equal,
their duplicates and subduplicates will also be equal.

Pitorosmon XXIII. Tueorem.

(640) Equiangular parallelograms (AD and CG) are
to each other in a ratio compounded of the
ratios of their sides.

Let two of the sides AB and B C about the equal angles be
placed so that they may form one right line; . 3
since the angles ABD and DB C are equal
to two right angles, and GB C is equal to - c
ABD (hyp.), GBC and DBC are equal
to two rigi;t angles, and therefore G B and
BD form one right line (XIV, Book L);
complete the parallelogram B F.

Since the parallelogram ADis to BFas o =
AB to BC (I),and BF to BEasB D to BG (I), AD has
to BE a ratio compounded of the ratios of AB to B C, and of
BDto BG.

This proposition may be immediately inferred from (I). For since
the angles are equal, the altitudes will be as the sides to which they
are not perpendicular.

ProrosiTion XXIV. THEOREM.

(641) In any parallelogram (A C) the parallelograms
(A F and F C) which are about the diagonal
are similar to the whole and to each other.

As the parallelograms AC and A F have a common angle
they are equiangular; but on account of the parallels E F and
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B C the triangles AE F and A B C are similar (IV), » = ¢
therefore AE is to EF as AB to BC; and the re- lﬂ
mamning sides are equal to AE, EF, AB, and BC, n
therefore the parallelograms AF and A C have the H.
sides about the equal angles proportional, and are 4
therefore similar.

In the same maunner it can be demonstrated that the parallelo-
grams AC and FC are similar: since, therefore, each of the

parallelograms A F and F C is similar to A C, they are similar to
each other.

There can be little doubt but that the places of this proposition and
the succeeding one have been by some mistake transposed.

Prorosition XXV, ProsLEM.

(642) To construct a rectilinear figure equal to a given
one (A) and similar to another (B).

On any side EF of the given figure B construct a rectangle
E L equal to B (XLV, Book I.), and on the Le x
side F L construct a rectangle F D equal to 2 e o
A %XLV, Book 1.); between the other sides E] ®
E F and F G of these rectangles find a mean
proportional CK (XIII); the figure de- L D
scribed upon it, similar to the given figure B, and similarly posited,
is equal to the other given figure A.

For the rectangle E L is to the rectangle FD as EF to FG
gl), or in the duplicate ratio of E F to C%( (const.), and there-
ore as the rectilinear figure B to the similar one upon CK
éXX); but EL is equal to B (const.), therefore the rectilinear

gure upon CK, similar to B, and similarly posited, is equal to
F D, and therefore equal to the given figure A.

(643) Thisis one of the most important and extensively useful problems
in the Elements, It may be thus announced—*To construct a figure
of a given species and a given magnitude.” On the side of the figure
(B) given in species a rectangle is to be constructed equal to it, and
on the conterminous side of this rectangle another is to be constructed
equal to the figure (A) given in magnitude. A mean proportional
between the sides of these, which lie in the same right line, will be
the side of the sought figure.

By this propcsition, while a magnitude is preserved as to quantity,
its shape may be changed. Thus an equilateral triangle may be re-
duced to a square, &c.

A figure of a given species may be found equal to the sum or dif-
ference of two magnitudes.
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Prorosition XXVI. TueoREM.

(644) If similar and similarly posited parallelograms
(AC and AF) have a common angle, they
are about the same diagonal.

For, if it be Xossible, let ALF be the diagonal of the parallelo-
gram AF, and draw through I the right line IL xE__»
parallel to A E. Since the parallelogramns A1 and
A F are about the same diagonal A1F, and have
acommon angle A, Al and A F are similar (I)!(X]V) ;
therefore BAistoALas EAto AG; but BAis to &% 43d
ADas EA to AG (hyp.), therefore BAis to AL as BA to
A D, and therefore A L is equal to A D, which is absurd. There-
fore AIF is not the diagonal of A F, and in the same manner it
can be demonstrated that no other line is except ACF.

The student is recommended to omit the next three propositions,
and the first solution of the thirtieth, these being at present of no use
in any part of mathematical science, and inelegant and complicated
both in the demonstrations and results. These propositions were
frequently, however, used by the ancient geometers.

ProrosiTion XXVII. THEOREM.

(645) If any right line (A B) be bisected (in C) and
cut unequally (in D), the parallelogram (F C)
which is applied to the half deficient by a
figure (G B) similar to itself is greater than
the parallelogram (E D) applied tc either of
the other parts deficient by a figure (K B)
similar to the former (G B).

First, let AD be the greater segment of A B, complete the
parallelogram K I, and draw G B.

Since G B and K B are similar (hyp.), G B is the diagonal of
both (XXVI), therefore CK is . 4 5 1 & «x 1
equal to K I (XLIII, Book I.{,‘n Ci e
and if D L be added to both, C / 11\ i
isequalto DI; but CL and CE Ay} )
are equal (hyp.), therefore CE* ¢€» B A4 D¢ B
and D1 are equal: add to both C K, and D E is equal to the

omon CLS, and therefore less than the parallelogram C I,
therefore less than F C, which is equal to C I.
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Now let AD be the less segment, complete the parallelogram
G I, and draw K B.

Since the parallelograms K B and G B are similar (hyp.), they
are ahout the same diagonal (XXVI?, therefore the parallelo-
grams DG and G I are equal (XLIII, Book 1.) ; but the riﬁht
lines F G and G L are equal (hyp.), and therefore the parallelo-
grams E G and G 1 are equaly&XXI, Book 1.); but EG is
greater than F K, therefore G 1 is greater than FK, and DG,
which is equal to G 1, is also greater than FK ; add to hoth F D,
and F C is greater than E D.

Prorosimion XXVIII. ProBLEM.

(646) To a given right line (A B) to apply a paral-
lelogram equal to a given rectilinear figure
(Z), and deficient by a figure similar to a
given parallelogram (X). But the rectilinear
figure must not be greater than the parallel-
ogram applied to half the given line, whose
defect is similar to the given parallelogram
(X).

Bisect AB in E, describe upon AE a parallelogram A G
similar to the given one X, and com- »

G_o ¥ oM

plete AP F B. -
AG is either equal to or greater i | =X
than the given rectilinear ﬁ%ure Z ) l—__"__]

Shyp.) If it is equal, the problem is 4 = & »
one.

If it be greater, construct a parallelogram K LM N equal to its
excess above Z and similar to X (XXV); since this parallelo-
gram is less than A G it is less than E F, which is equal to A G

const.); but it is similar to it, and therefore its sides K T and

M are less than the homologous sides E G and G F of the

lelogram E F. Take away from these G K and G O equal to

L and L M, and complete the parallelogram K GO I; this is
similar to E F since both are similar to X (const.), and it is also
similarz posited, therefore KGO 1 and E F are about the same
diagonal (XXVI); draw their diagonal G I B, produce O I to S
and K1 to M and N. Since the parallelogram E F is equal to
the sumof KLM Nand Z (constg, butK O is equalto KL M N,
the gnomon ENO is equal to Z; but EI and IF are equal
(XLIII, Book 1.), therefore if S N be added to both EN and
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S F are equal; but since AE and E B are equal, E N is equal to
ME (XXXVI, Book 1.), therefore M E and S F are equal, and
therefore if E I be added to both M S is equal to the gnomon
ENO; but ENO is equal to the given rectilinear figure 7,
therefore M S is equal to the given figure Z ; and its defect SN
is similar to X, since it is similar to the parallelogram E F: and
therefore the required problem is solved.

ProrosiTion XXI1X. ProBLEM.

(647) To a given right line (A B) to apply a paral-
lelogram equal to a given rectilinear figure
(Z), and exceeding by a figure (B X) similar
to a given parallelogram (X).

Bisect AB in E; upon E B construct a parallelogram similar
to the given parallelogram X, and L M _—
construct a parallelogram G H simi-  [x] N7
lar to the parallelogram E L, and ,—= 2{ | [,
equal to the sum of ELand Z | | i
g%XV). Since G H is greater than N OPX @

L, its sides GK and K H are greater than the homologous
sides of E L, which are FE and FL; on these sides produced
take FN and FM equal to G K and KH, and complete the
parallelogram N M; this is similar to G H, therefore similar
to EL, and it is similarly placed, and therefore they are about
the same diagonal; draw the diagonal F B X through A, draw
A C parallel to EN until it meet PN produced. Since NM
and G H are equal, and G H is equal to the sum of Z and E L,
N M is also equal the sum of Z and E L; take away from both
E L and the gnomon NOL is equal to Z; but since AE and
E B are equal, the parallelograms AN and E P are equal, and
also EP and BM are equal g(195), therefore AN is equal to
B M; add O N to both, and AX is equal to the gnomon NOL,
and therefore equal to the given rectilinear figure Z, and its ex-
.cess P O is similar to the parallelogram E L, and therefore similar
to the given figure X.

Prorosiiion XXX, ProsLEM.

(648) To cut a given finite right line (A B) in extreme
and mean ratio.
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Describe B C, the square of AB (XLVI, Book 1.); to AC
apply a parallelogram equal to B C and exceedih%by c v

a figure A D similar to B C (XXIX); since A D 1s

similar to B C it is a square; since BC and CD are
equal, if CE be taken away from both, BF and A D
are equal, and they are equiangular, therefore E F is 4 T
toEDasEAto EB (X(l-lV ; but EF and ED are

equal to AB and A E, therefore ABisto AE as AE
to E B.

Otherwise thus :

Divide A B in E so that the rectangle under A B and E B shall
be equal to the square of A E (XI, Book 11.), and AB is to AE
as AE to EB (XVII), therefore AB is cut in extreme and mean
ratio.

(649) If the lesser segment be taken upon the greater, the greater
will be cut in extreme and mean ratio (281) ; and by continuing this
process a series of lines will be found in continued proportion, in which
the common ratio is that of the segments of a line divided in extreme
and mean ratio.

The problem to divide a line in extreme and mean ratio is ouly a
particular case of the following more general one.
*.* (650) To divide a line so that the rectangle under the whole line
and one pari shall bear a given ratio (m : n) to the square of the other
vart.

Let any line E F be taken as diameter, and let a circle be describied.

Take a mean proportional / between m a

and #, and upon the tangent at E take . n—

E G, a fourth proportional to J, m, m—
and EF. Then draw G H through, R i .

the centre C, and cut A B at D so
that AD:DB=HI1:1G,and AB ;5
will be cut as required.

For E G: E F = m:, that is, in the subduplicate ratio of m : n, *-
the squares of E Gand E F are as m:n. But the square of E G is
equal to the rectangle HG x G I. Therefore H G x G I : the square
o? HI=m:n Hence HG is cut as required at I, and A B is simi-
larly crt at D. . : )
*.* (651) In the solution of this problem we have assumed that if
HI:IG=AD:DBtherectangle HG x GI : thesquareofH 1 =
A B x BD : the square of AD. This may be easily proved. Since
HI:IG=AD:DB,""HG:GI=A B:BD, ‘. the rectangles
HG x GIandAB x B D aresimilar. Also the squares of H I and
AD are similar. But HI:IG=AD:DB,'HI:AD= I.G':
DB. Therefore the similar squares on H I and A D are as the simi-
lar rectangles HG x GI,AB x BD on I Gand B D. In the same
manner the converse of this may be proved, scil. it HG x G I : the
square of HI = AB x BD: the square of AD, then HI: IG=
AD:DB.
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*.* (652) Hence if two lines be cut in extreme and mean ratio they
are cut similarly, and if a line be cut in extreme and mean ratio, any
line cut similarly will be also cut in extreme and mean ratio.
*.* (653) If the perpendicular B C in a right angled triangle divide
the hypotenuse A D in extreme and mean ratio, the lesser side C D is
equal to the alternale segment A B, and vice versd.

For (553) D A x B D = the square of D C, but (hyp.) ¢
it also equals the square of A B,*.- CD = A B.

Also if CD=AB, DA X BD = the square A B, £
*.* A D is cut in extreme and mean ratio at B.
*®.* (654) The three sides of such a right angled triangle are in con-
tinued proportion, and vice versd. For AD x A B = the square of
A C (553), but CD = AB (hyp.), " AD x CD = the square of
CA. AlsoifAD % CD = the square of A C,it also = A D x AB,
‘+CD =AB.
*.* (655) Hence on a given hypotenuse a right angled triangle may
be constructed whose sides are in continued proportion by dividing the
given hypotenuse in extreme and mean ratio, describing a semicircle
on it, and drawing a perpendicular to meet the semicircle, &c.

B D

ProrosiTion XXXI. THEOREM.

(656) If any similar rectilinear figures be similarly
described on the sides of a right angled
triangle (B A C), the figure described on the
side (B C) subtending the right angle is equal
to the sum of the figures on the other side.

From the right angle draw a perpendicular A D to the oppo-
site side; BC is to CA as CA to CD (558),
therefore the figure upon BC is to the similar
figure upon CA as BC to CD (XX), but the
figure upon B C is to the similar figure upon
BAasBCtoBD 3XX). Hence the sum of
the segmentsB D and C D is to the hypotenuse L[|
B C as the sum of the figures on the sides is to the figure on the
hypotenuse. But the sum of the segments is equal to the
hypotenuse, and therefore the sum of the figures on the sides is
equal to the figure on the hypotenuse,

This proposition might be more immediately deduced from the twenty-
second proposition of this book and the forty-seventh of the first. Any
similar figures on the hypotenuse and sides are as the squares of these
lines (XXII); but the sum of the squares of the sides is equal to the
square of the hypotenuse, and therefore the sum of any similar figures
on the sides is equal to the figure on the hypotenuse.
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Prorosition XXXII. THEOREM.

(657) If two triangles (A B C, CD E) have two sides
proportional (ABto BC as CD to DE), and
be so placed at an angle that the homologous
sides are parallel, the remaining sides (A C
and C E) form one right line.

Because AB and C D are lel, the alternate angles B and
B CD are equal (XXIX, Book 1.), and also =
since C B and E D are parallel, the an, l
D and BCD are equal (XXIX Book I.
therefore B and D are equal ; and since the
sides about these angles are proportional &
(hyp.), the triangles ABC and CDE are eqmangula.r (Vl),
therefore the angles A C B and CE D are equal; but BCD is
equal to CDE, and if DCE be added, ACD and DCE are
together equal to CE D, EDC, and D CE; therefore A CD
and D C E are equal to two right angles (XXXII Book 1.), and
therefore A C and C E form one right line (XIV, Book L.).

D

In the enunciation of this proposition, it should be stated that the

proportional sides of the triangles which are not homo- n E
logous should form the angle at which they are joined, N\
for otherwise the remaining sides might not lie in the No

same right line. The triangles might be placed as in

the annexed figure where AB : BC =CD : DE, and 4

the sides A B and C D, asalso B C and D E, are respectively parallel,
but the angles AB Cand CDE are supplemental, and A Cand C E
are obviously not in the same right line.

Prorosition XXXIII. THEOREM.

(658) In equal circles, angles, whether at the centres
(BGC,EHF) or circumferences (BA C,
E D F), have the same ratio which the arcs on
which they stand have to one another: so
also have the sectors (BG C, EHF.)

Take any number of arcs CK, K L, each equal to B C, and
any number whatever F M, M N, each equal to E F: and join
GK, GL, HM, HN. Because the arcs BC, CK, K L,
are all eqyual, the angles BGC, CGK, K G L are also all
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(XXVII, Book IIl.) equal: therefore what multiple A%
soever the arc BL is of the arc B C, the same mul- \ ‘Ag‘h
tiple is the angle B G L of the angle BG C: for the AVA
same reason, whatever multiple the arc EN is of  *7°
the arc EF, the same multiple is the angle EHN =
of the angle EHF: and if the arc B L be equal to x
the arc E N, the angle B G L is also equal (XXVII,
Book I11.) to the angle EH N; and if the arc BL
be greater than E N, likewise the angle B G L is greater than
EHN; and if less, less: therefore as the arc B Cis to the arc
EF, so (Def. V. Book V.)is the angle BGC to the angle
EHF: but as the angle BGC is to the angle EHF, so is
(XV, Book V.) the angle BAC to the angle EDF: for each
is double (XX, Book I11.) of each ; therefore as the arc B C is to
EF, so is the angle BGC to the angle E HF, and the angle
B A C to the angle E DF.

Also, as the arc B C to E F, so shall the sector B G C be to
the sector EHF. Join BC, CK, and in the arcs
BC, CK take any points X, O, and join B X, X C, :)I..
CO, OK: then, because in the triangles G B C, c
G CK the two sides BG, G C are equal to the tvo ®%6°
CG, GK,each to each, and that they contain equal
angles, the base B C is equal (IV, Book I.) to the base
C K, and the triangle Gch C to the triangle GCK;
and because the arc B C is equal to the arc CK, the =¥
remaining part of the circumference of the circle A B C is ‘equal
to the remaining Fart of the circumference of thesame circle:
therefore the angle BX C is equal (XXVII, Book IIL.) to the
angle COK; and the segment B X C is therefore similar to the
segment C O K : and they are upon equal straight lines, B C, CK,
and are equal (XXIV, Book II1.); therefore the segment B X C
is equal to the segment COK: and the triangle B G C was
roved to be equal to the triangle C G K; therefore the sector
G C is equal to the sector C G K : for the same reason, the
sector K G L is equal to each of the sectos BGC, CGK: in
the same manner, the sectors EHF,FHM, MHN may be
proved equal to one another: therefore, what multiple soever
the arc B L is of B C, the same multiple is the sector B G L of
the sector B GC: and for the same reason, whatever multiple
the arc EN is of EF, the same multiple is the sector E H Npof
the sector EHF: and if the arc BL be equal to EN, the
sector B G LL is equal to the sector EHN ; and if the arc BL
be greater than E N, the sector B G L is greater than the sector
E I% N; and if less, less: therefore as (Def. V. Book V.) the arc
gﬁ Ii“s to the arc EF, so is the sector B G C to the sector

é v
R
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By this proposition we are entitled to assume arcs referred to the
same radius as measures of angles, and vice versd.

* (659) Every arc is to a quadrant of the same circle as the cor-
responding central angle is to a right angle, and it is to the whole
circumference as the same angle to four right angles. :

(660) Similar arcs of different circles being those which are pro-
portional to their circumferences must subtend equal angles at the
centre and circumference.

(661) Also in different circles arcs which subtend equal angles at the
centre or circumference are similar.

Hence similar segments are contained by similar arcs, and vice versé.
(662) The arcs of unequal circles are in a ratio compounded of their
central angles and their radii.

Let A, A’ be the arcs, R, R’ the radii, and q, &' the angles. With
a radius equal to R describe an angle equal to @/, and let the subtend-
ing arc be m.

Since the arcs A and m have equal radii, °* A:m =a : &, and
since m and A’ have equal central angles they are as their radii (633),
«*m:A'=R:R. ButA:A’isaratio compounded of the ratios
A :mand m : A/, or of the equivalent ratios @ : @’ and R : R’

(663) Central angles are in a ratio compounded of the direct ratio of
their arcs, and the inverse ratio of their radii. 2
a.a.

For by (662) wehave A : A’ = {R CR
Let each of these equal ratios be compounded with the ratio R’ : R,

and we have
. a:d.
ARl
: R': R.
But R:R

R - R} is a ratio of equality (597),

. AS
ﬁ:}ﬁ}:a:a’.



THE

ELEMENTS OF SOLID GEOMETRY.

INTRODUCTION.

(1.) Tue first six books of Euclid’s Elements, to which we have
directed the attention of the student in the preceding part of this volume,
are confined to the investigation of the properties of rectilinear figures
and circles which are all described upon the same plane. It is evident
that it may be, and very frequently is, necessary to consider the mutual
relations and properties of right lines and circles which are in different
planes, and also the various circumstances which regulate the relative
position of planes themselves. Besides this, there are numerous other
surfaces on which, as well as on planes, right lines or circles, or both,
may be drawn. The properties of such surfaces, and the various lines
which may be described upon them, form an important part of geome-
- trical science. But even this gives a very imadequate notion of the
extent of the field which geometry presents to our contemplation.
The right line and circle are the most simple of all lines, and those
which perhaps most frequently become the subjects of examination ;
but they are far from including the whole even of that class of lines
which are described upon a plane, not to mention innumerable curves
which are drawn upon other surfaces, but the points of which are not
all in the same plane. The variety of surfaces is as infinite as that of
lines. They are divided into plane and curved surfaces. All plane
surfaces are perfectly alike in their properties, but curved surfaces
admit of endless variety.

Of this extensive field for geometrical investigation, long-established
usage has assigned a certain part to ¢ the elements of geometry.’ The
¢ elements of plane geometry’ are confined to the properties of right
lines and circles described upon the same plane, excluding ellipses,
hyperbolas, and numberless other lines, which in common with the
rim line and circle admit of being drawn upon a plane, and are thence
called ¢plane curves.’ These are generally assigned to the province
of the sublimer geometry, and their properties are investigated most
easily and effectually by analysis. This subject is treated of in consi-
derable detail in my treatise on ANALYTIC GEOMETRY.

Q
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The ¢ elements of solid geometry are confined to the investigation
of the circumstances which determine the mutual position of right
lines and circles which are not in the same plane, the properties ot
solid figures which are bounded by planes, and those of the surfaces
denominated spheres, cylinders, and cones, and the solids bounded by
these alone, or by these conjointly with planes. The unlimited variety
of curved surfaces which do not come under these denominations are
resigned to the province of the higher geometry, and like the ¢plane
curves’ already mentioned are brought under the dominion of analysis.
The student who desires to penetrate to the depths of this department
of the science, will find ampﬁae information and assistance in the beau-
tiful work of MoNGe, entitled Application d' Algebre é la Géométrie.

Conformably to what we have now stated, we shall devote the
present treatise to the investigation of the conditions which determine
the mutual position of right lines which are not in the same plane, ot
different planes with respect to each other and to right lines, the
properties of figures or spaces bounded by planes, and the principal
properties of spheres, cylinders, and cones.
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Of the Relative Position of Right Lines and Planes.

(2) Der.— A plane is a surface such that a right line cannot be
drawn through two points in it without having all its points in
the surface. .

There are other surfaces besides a plane in which it is possible to
assume two points such that if a right line be drawn through them,
and be indefinitely produced, it will lie entirely in the surface, but in a
plane surface it is impossible to assume two points with which this will
not happen. This is not true of any other surface.

(3) Cor.—Hence it follows, that one part of a right line cannot be
in a plane while another part of it is above or below it.

ProrposiTIiON 1.

(4) If two planes cut each other, their common intei-
section will be a right line.

For if any two points of their common intersection be assumed,
and a right line be drawn through them, this right line must lie
entirely in each of the planes (2), and must therefore be their
common intersection.

(5) DEer.—A plane is said to be drawn through a right line
when it is drawn through two points of that line. The whole
line will in this case be in the plane.

(6) It is evident that innumerable planes may be drawn through the
same right line, or what is the same, any number of planes may inter-
sect each other in the same right line. This will easily be perceived
if any plane, drawn through the right line, be conceived to revolve
round that right line. The different positions which it will assume in
different parts of its revolution will be those of different planes drawn
through the right line.

Q2
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Prorosrtion 1I.
(7) Two planes can have only one line of intersection.

For suppose that they had a second. Through any two points
on those lines of intersection let a right line be drawn. By (2)
every part of this line is in each of the pianes. Thereforeitisa
third line of intersection; and the same being true of right lines
drawn through every two points on the lines of intersection, it
follows that every right line which is drawn in one plane is also
in the other, and therefore the two planes are identical.

Hence two distinct planes cannot have more than one line of
intersection.

This proposition is analogous to that in virtue of which two right
lines can intersect only in one point.

ProrosiTion Il

(8) If a point be given, and also a right line not pass-
ing through the given point, a plane may be
drawn through them, and but one such plane
can be drawn.

Let a plane be drawn through the given right line, and, being
indefinitely produced, let it be conceived to revolve round that
right line. In its revolution it must sweep through all the
surrounding space, and must therefore pass through the given
point.

There is but one plane passing through the given right line which
also passes through the given point; for if we were to suppose a
second plane it would evidently have two intersections with the first,
viz. the given right line and another intersection passing through the
given point.

The student should recollect that planes are considered as indefi-
nitely produced.

(9) Cor.— Hence a right line and a point, provided the point be not
on the right line, are sufficient to determine a plane.

ProrositTion IV.

(10) A plane, and but one plane, can be drawn through
three points which are not on the same right
line.
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Let a right line be drawn through any two of the points, and a
plane, and but one plane, can be drawn through this line and the
third point (8).

(11) Cor.— Hence three points, not placed in the same right
line, are sufficient to determine a plane.

ProrosiTioN V.

(12) A plane, and but one plane, can be drawn through
two intersecting right lines.

For let a point be assumed on each of them different from
their point of intersection. A plane, and but one plane, can be
drawn through the two assumed points and the point of intersec-
tion (10), and the two intersecting lines will be in this plane (2).
(18) Cor.— Hence two right lines which intersect are sufficient
to determine a plane.

(14) Dep.—The plane which is drawn through two intersecting
lines is usually called ¢the plane of those lines,’ or ¢the plane of
the angle’ which those lines contain.

ProrosiTioN VI.

(15) A plane, and but one plane, can be drawn through
two parallel lines.

A plane may be drawn through them because by their definition
they are in the same plane; and but one plane can be drawn
through them, bécause but one plane can be drawn through
either of them, and any point assumed upon the other (8).

- ProrosiTion VII.

(16) If two right lines intersect, a third right line may
be drawn through their point of intersection
perpendicular to each of them.

Let AB and AC be the right lines intersecting at A. Take
equal parts AB, AC from A and draw BC. Bisect BC at D,
and draw a line D E perpendicular to B C, and making any
angle with AD, and let the acute angle be ADE. Through A
and in the plane of the lines ADE (18) draw A E perpendi-
cular to AD. The line AE will then be also perpendicular to
AB and AC. For draw EC and EB.
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Since B A C is an isosceles triangl)e, tm(}ldI AD bisects BC, AD
is perpendicular to BC (EL (75) ).* Hence __
ADC and ADB are right angled triangles.  \|\y_
Also EDC and ED B are right angles. Hence | | ]
the square of EC is equal to the sum of the ——X[J
squares of ED and DC. But also because of
the right angle E AD, the square of ED is
equal to the sum of the squares of EA and AD. Hence the
square of EC is equal to the sum of the squares of EA, AD,
and DC. But, because of the right an%le ADC, the square of
A C is equal to the sum of the squares of AD and DC. Hence
the square of EC is equal to the sum of the squares of EA and
AC, and therefore the angle EAC is right.

In the same manner it may be proved that the angle EA B is
right.

ProrosiTion VIIIL

(17) A right line which is perpendicular to two right
lines which intersect, is also perpendicular to
every line in their plane drawn through their
point of intersection.

For let AE be perpendicular to the lines AB and AC, and
let AD be any other line through A in the plane of the angle
BAC. Let any line BC be drawn intersecting the sides A%},
A C, and bisected by the line AD+;and draw EB, EC.

In the triangle BEC, since the line ED bisects the base BC,
the sum of the squares of EB and EC is equal to twice the
sum of the squares of ED and DC (EL (299) ). Also because
of the right angled triangles BAE and C A E, the square of BE
is equal to the sum of the squares of B A and A E, and the square
of CE is equal to the sum of the squares of C A gnd AE. Igence
the sum of the squares of BE and CE is equal to the sum of
the squares of BA and CA together with twice the square of
EA. Hence twice the sum of the squares of DE ansg DCis
equal to the sum of the squares of B A and A C together with
twice the square of AE.

But since the line AD bisects BC, the sum of the squares of
BA and CA is equal to twice the sum of the squares of D A
and DC. Hence twice the sum of the squares of DE and DC
is equal to twice the sum of the squares of EA, AD, and DC.
Take from both twice the square of DC, and we find that twice
the sum of the squares of %A and AD is equal to twice the

* Where El. precedes a reference, the article referred to is in the first six books of

Euclid’s Elements ; otherwise the reference is to the Solid Geometry.
1 Sece note, p. 243.
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square of E D, and therefore the sum of the squares of E A and
D A is equal to the square of E D, and therefore the angle E A D
is right; and the same may be proved of any other right line
drawn through A in the plane of the angle B A C.

Hence the line A E is perpendicular to every right line drawn
through A in the plane of the angle B A C.
(18) DEr.—A right line, such as A E, which is drawn from a
point in a plane so as to be perpendicular to all lines drawn in
the plane through that point, is said to be perpendicular to the
plane itself. '
(19) Cor.—Through the same point A in a given plane BA C
only one rightline A E can be drawn perpendicular to the plane.
For if another could be drawn let it be A F, and let A C be the
intersection of the plane of the angle F A E with the given plane
BAC. Since FAand EA are both perpendicular to the plane
B AC, the angles EA C and F A C are both right, and therefore
equal, a part to the whole, which is absurd.
(20) DEer.—We shall call that point at which a perpendicular
to a plane meets the plane, tke foot of the perpendicular.

Prorosition IX.

(21) From a given point out of a given plane a right
line may be drawn perpendicular to the plane,
and only one such line can be drawn.

Let ABC be the given plane, and P the given point. Draw
any line P B from P to the plane; if this be per- =
pendicular to the plane, the proposition is true.  If \~
not, let any line B C be drawn from the point B, %ST

and in the given plane, and let the angle PBC be | »
acute. From P inflect on BC a right line PC,
equal in length to PB, so that the triangle BPC shall be
isosceles. Bisect BC at D, and in the given plane draw D A
perpendicular to BC, and from P draw P A perpendicular to
AD. This line PA will be perpendicular to the given plane.

For draw AB, AC, and PD.

Since B PC is an isosceles triangle and PD bisects the base,
it is perpendicular to the base, and the angles PDB, PDC are
right. The angles ADC and ADB are right by construction.
'I%e square of PB is equal to the sum of the squares of PD
and DB. But since PAD is right by construction, the square
of PD is equal to the sum of the S(Luares of PA and AD.
Hence the square of PB is equal to the sum of the squares of
PA, AD, and BD. But since ADB is a right angle, the sum




232 ELEMENTS OF SOLID GEOMETRY.

of the squares of A D and B D is equal to the square of A B.
Hence the square of P B is equal to the sum of the squares of
P A and A B, and therefore the angle P A B is right, and since
P A Dis also right, the line P A is perpendicular to the plane
ABC (17, 18).

It is evident that only one perpendicular can be drawn from
the same point P, because if two were supposed to be drawn they
would both be perpendicular to the line joining the points where
they would meet the plane, and thus two right angles would be
in the same triangle.

ProrosiTion X.

(22) Of the several lines which may be drawn from a

given point P to a given plane A B C,

1°. The perpendicular P A is the shortest.

2°. Those which are equally inclined to the per-
pendicular are equal, and vice versd.

8°. The greater the angle which a line makes
with the perpendicular, the greater the line is,
and vice versd.

4°. Lines which meet the plane at equal dis-
tances from the foot of the perpendicular are
equal, and vice versd.

5°. The more distant the point where a line
meets the plane is from the foot of the per-
pendicular, the greater is the line, and vice
versd.

1°. The perpendicular P A is the shortest line, because it is the
side of a right angled triangle P A B, of which any
other line PB is 51e hypotenuse. 7\

2°. If the angles CPA and B P A be equal, since [
the angles PA%and P A C areright,and P A com- | &
mon to the triangles C PA and B%A, the sides BP
and P C are equal.

If the sides P B and P C be equal, since the angles PA B
and P A C are right and P A common, the angles AP B and
A P C must be equal. (EL (110).)

8°. If the angle A P B be greater than the angle A P C, since
the side P A is common and the angles at A right, the side A B
I(néxlst(llx; )eater than A C, and therefore P B greater than P C.

. (112).
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If PB be greater than PC, since PA is common, and th-
angles at A right, the side AB is 'ireater than AC, and there-
fore the angle A P B greater than the angle APC.

4°, If AB be equal to AC, since AP is common, and the
angles at A right, the lines PB and P C must be equal.

f PB be equal to PC, since P A is common, and the angles
at A right, the sides AB and A C are equal.

5° If AB be greater than A C, since P A is common, and the
angles at A right, the line PB must be greater than P C.

f PB be greater than PC, since PA is common, and the
angles at A right, the line AB must be greater than AC.
(23) Con.—%-lence all equal oblique lines from a point P to a
given plane terminate in the circumference of a circle described
upon the plane of which the foot of the perpendicular is the
centre; and also all lines which, drawn from the same point to a
plane, meet the plane in the circumference of a circle, of which
the foot of the perpendicular is the centre, are equal.

ProrosiTioNn XI.

(24) If PA be perpendicular to the plane ABC, and
B C be a right line in that plane, and from A
A D be drawn perpendicular to B C, then P D
will be perpendicular to B C.

On each side of D take equal parts DB and DC, and draw
PB, PC, AB, and AC.
Since DB is equal to DC, and the angles at D P\
are right, AB is equal to AC. Also, since AB
and A C are equal, and the angles PABand PAC B
are right, PB and PCare equal. In the isosceles | * M
triangle BP C, PD bisects the base and is there-
fore perpendicular to it.
g5) Cor.—It is evident that BC is perpendicular to the plane
D A, since it is perpendicular to D P and D A.

(26) The lines PA and BC are an instance of two lines which, with-
out being parallel, can never meet if produced indefinitely, since the
same plane cannot be drawn through them.

Prorosition XII.

(27) 1If aright line be perpendicular to a plane, every
right line which is parallel to it is perpendi-
cular to the same plane.
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Let P A be perpendicular to the plane ABC, and let DE be
parallel to PA. Draw AD, and draw BC per-
pendicular to AD, and in the given plane and
from any point P in the perpengicular APdraw [

PD. A
The line BC is perpendicular to the plane \yf
(o]

PD A (25), and since D E is parallel to P A the
same plane may be drawn through them, and this plane is evi-
dently that of the angle ED A. Since BC is perpendicular to
the plane PD A or ED A, EDC s a right angle. But because
of the parallels, ED A is a right angle. Hence ED is perpen-
dicular to DC and DA, and is therefore perpendicular to the
plane ABC.

Prorosition XIII.

(28) Perpendiculars to the same plane are parallel.

For if two perpendiculars be not parallel, through the foot of
one draw a parallel to the other. This will be perpendicular to
the plane (27), and therefore two perpendiculars to the same
plane would pass through the same point, which cannot be (19).

Prorosition XIV.

(29) Right lines which are parallel to the same right
line are parallel to each other.

For the plane which is perpendicular to the last will be also
perpendicular to the others (27), and therefore the other lines
must be parallel to each other (28).

This proposition applied to parallels in the same plane is the
thirticth proposition of the first book of the Elements.

(380) DEr.—When a plane and a right line are so placed that
each being indefinitely produced they will never meet, they are
said to be parallel.

ProrosiTion XV.

(81) If two right lines be parallel, every plane drawn
through one of them is parallel to the other.

(The plane of the parallels themselves is here excepted.)
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Let AB and CD be the parallels, and let EF be a pla: »
drawn through CD. The line AB is parallel ,——p
to the plane EF.

For let AD be the plane of the parallels. The
line A B, however produced, cannot pass out of
the plane AD, and therefore cannot meet the plane EF withou.
meeting CD; but it is parallel to CD, and therefore can never
meet the plane EF, and is therefore parallel to it.

(82) Der.—The inclination of a right line to a plane is the
complement of the inclination of that right line to a perpendicu-
lar to the plane drawn through the point where the line meets
the plane.

(88) If from any point P in a right line P D, which inter-
sects a plane ABC at D, a perpendicular PA | )
be drawn, and also the line D A, the inclination Ne ""
of PD to the plane ABC is equal to the angle < I :

¥
(]

PDA.

For through D draw DE perpendicular to | *
the plane. 'Fhe lines PA and DE are in the
same plane, and the line PD is in that plane. Hence the angle
P DA is the complement of PDE, and is therefore equal to the
inclination of the line PD to the plane.

From whatever point of the line PD the perpendicular be
drawn, it will meet the plane in the same right line AD. Sup-
pose it drawn from P’. The lines PA and P’ A’ being parallel
(28) are in the same plane, and that plane is evidently the plane
of the angle PD A, or PDE.

(34) Dcr. — If perpendiculars PA, P’A’ be drawn from the
extremities of a right line PP’ to a plane, the right line A A’
joining the feet of the perpendiculars is called the projection of
the right line PP’ upon the plane.

(85) Cor. 1.— Hence it appears that the inclination of a right
line to a plane is equal to the inclination of that right line to its
projection on the plane.

(86) Cor. 2.-—ff a right line be parallel to a plane it is parallel
to its projection, and therefore equal to it, but otherwise the line
is always greater than its projection.

A

The relation between a line and its projection is expressed trigono-
metrically thus: p = a cos. A, where a 18 the line, p its projection,
and A its inclination.

(87) DEer.— Two planes, which heing indefinitely produced
never meet, are said to be parallel.
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ProrosiTion XVI.
(38) Planes which are perpendicular to the same right

line are parallel.

For if not, let them meet, and from the feet of the perpendi-
cular draw two right lines to any point of their intersection.
These lines will both be at right angles to the perpendicular (18),
so that the triangle thus formed will have two right angles, which
is absurd.

Prorosition XVII.

(89) If two parallel planes be intersected by a third
plane their common intersections are parallel.

For they are in the same plane, as is evident, and they can
never meet, for if they did the parallel planes in which they
respectively are would meet.

ProrosiTion XVIIIL

(40) If two planes be parallel, any right line which is
perpendicular to one will also be perpendicular
to the other.

Let A B be perpendicular to the plane E F, and intersect the
plane G H which is parallel to EF at B. Through -
AB let any plane be drawn intersecting the B
parallel planes in AD and BC. The lines AD />— Z
and BC are by hyp. in the same plane, and
since they are also in parallel planes they can
never meet, and are therefore parallel. Hence
the angles BAD and ABC are supplemental ;
but BAD is right by hyp. and therefore ABC
is also right, and the same being true for every I
plane drawn through A B, the ﬁne ABis per- =
pendicular to every line through B in the plane G H, and is there-
fore perpendicular to the plane itself.

[ <3

Prorosition XIX.

(41) Planes which are parallel to the same plane are
parallel to each other.
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For let a right line be drawn perpendicular to the latter. It
is also perpendicular to the former (40), and therefore the former
are parallel (88).

Prorosition XX.

(42) The parts of parallel lines intercepted between
parallel planes are equal.

Let EF and GH be the parallel planes, and AB and CD
the parallel lines. Draw AC and BD. -

Since A C and BD are in parallel planes they
cannot meet, and since also they are in the same
plane (that of the parallels) they are parallel.
Hence A Dis a parallelogram, and therefore A B
and CD are equal.

(48) Cor.— Hence all perpendiculars drawn
between parallel planes are equal, and therefore
parallel planes are equidistant.

Prorosition XXI.

(44) If two angles have their sides respectively parallel
and lying in the same direction, they will be
equal, and their planes will be parallel.

If they be in the same plane, the proposition has been proved

in the Elements (117).
If they be not in the same plane, let the angles be BA C and

EDF. 8
Take AB equal to DEand AC to DF, and __~ = I\e

draw the lines BEFC. o T
Since AB and DE are equal and parallel, 118

BE and AD are equal and parallel. In the same
manner CF and A D are equal and parallel, and /’S
“therefore BE and CF are equal and parallel, and

hence BCand EF are equal and parallel. The
triangles BAC and EDF are therefore mutually equilateral,
and therefore mutually equiangular, and hence the angle BAC
is equal to the angle EDF.

The planes BAC and EDF are parallel, for if not draw
through A a plane parallel to EDF, and let it intersect CF at
any point G different from C. It follows from (42) that GF is
equal to AD, but CF has been proved equal to AD, and
therefore G F is equal to CF, which is absurd.

\

l
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ProrosiTion XXII.

(45) If the planes of two equal angles (BAC and
EDF) and one pair of their legs (AB and
DE) be parallel, and the other pair of legs
(AC and DF) be at the same side of the
parallel legs, they will also be parallel.

For if A C be not parallel to DF, draw AK parallel to DF.

The plane KAB is parallel to EDF (44), and therefore
coincident with the plane BAC. Also the angle K A B is equal
to EDF (44), and therefore equal to B A C, which is absurd.
(46) Der. — The inclination of two right lines which do not
meet, or through which the same plane cannot be drawn, is
estimated by the arx;ile contained by any two lines drawn through
the same point parallel to them. It appears from the preceding
proposition that this angle will be the same whatever be the point
through which the lines which form it are drawn.

ProrosiTion XXIII.

(47) If three right lines be parallel, equal, and not in
the same plane, the triangles formed by right
lines joining their extremities are mutually
equilateral, and their planes are parallel.

Let the parallel lines be AD, BE, and CF. Since BE and
AD are equal and parallel, AB and DE are equal and parallel,
and in the same manner it may be proved that AC and DF,
BCand EF are equal and parallel. Hence the triangles ABC
and DEF are mutually equilateral, and (44) that their planes
are parallel.

(48) Der. — The inclination of two Fla.nes, or the angle under
them, is estimated by the inclination of two right lines which are
respectively perpendicular to them.

Since all s)erpendiculars to the same plane are paralle), it follows
that the angle by which the inclination of two planes is estimated
must be the same, wherever the two perpendiculars to the planes may
be drawn. This will plainly appear from (44) and.(45). By this
definition the mutual inclination of planes is determined by t{at of

rihght. lines, which considerably simplifies all investigations respecting
them.
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Hence the student will easily perceive that the common properties
of intersecting right lines may be extended to intersecting planes. If
a plane intersect another, the adjacent angles are together equal to
two right angles, and the angles vertically opposite are equal. Also
if one plane be perpendicular to another, the latter is perpendicular
to the former. Consequences may be deduced respecting planes
similar to those in the twenty-seventh, twenty-eighth, and twenty-
ninth propositions of the first book of the Elements.

ProposiTion XXIV.

(49) If two planes intersect, their mutual inclinaticn 1s
equal to the angle contained by right lines
drawn from the same point on their common
intersection in the planes and respectively per-
pendicular to their intersection.

Let EF and G H be the planes and ED their intersection.
From any point A draw A B perpendicular to
ED, and in the plane G H and C’ﬁrpendi- T
cular to ED and in the plane EF. e angle o\i ! :
BAC is the inclination of the planes. 1 —"N

For from A draw A P perpendicular to GH n
and AR perpendicular to EF. Since RAD
and PAD are right angles, the plane of the angle PAR is per-
pendicular to the line AD, and since CAD and BAD are right
angles, the plane of the angle BAC is at right angles to A%)
Hence the angles BAC and PAR are in the same plane (19).
Since A R is perpendicular to EF, the angle RAC is right, and
since PA is perpendicular to GH, the angle PAB is right.
Hence the angle R A C is equal to theangle PAB.  From both
take the common part P A C and the remainders are equal, that
is, PAR, which is the inclination of the planes (48), is equal to
the angle BAC.

ProrositioNn XXV.

(50) If a right line P A be perpendicular to a plane
EF, every plane drawn through the perpendi-

cular P A is also perpendicular to EF. .
Let PAC be a plane drawn through the perpendicular P A,

and from A in the plane EF draw A D perpen- Ir
dicular to AC.

Since PA is perpendicular to the plane EF, /3
the angles P A C and P AD are right, and there- [

fore the line D A, being perpendicular to AP and
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A C, must be perpendicular to the plane PAC (17, 18). Since
then AD is perpendicular to the plane PAC, and AP is per-
pendicular to the plane EF, the inclination of those planes is
that of thelines AD and AP. But PAD is a right angle, and
therefore the planes are perpendicular; and the same may be
proved of any plane drawn through P A.

Prorosition XXVI.

(51) If a plane P AC be perpendicular to another EF,
and if the line P A be drawn in the plane PAC
perpendicular to the line of intersection BC,
then PA will be perpendicular to the plane
EF.

For draw AD in the plane EF and perpendicular to B C.
The angle P AD is the inclination of the two planes (49), and
is therefore a right angle. But PACis a ri ﬁt angle by hyp.
Hence the line P A being perpendicular to twolﬁines in the plane
EF is perpendicular to the plane EF (17, 18).

(52) Cor.—It is evident, that if from the intersection of two
perpendicular planes a right line be drawn perpendicular to
either, it will be entirely in the other.

ProrosiTion XXVII.

(68) 1If two intersecting planes be perpendicular to a
third plane, their common intersection will be
perpendicular to the third plane.

For if, from the point where their common intersection meets
the third plane, a perpendicular to the third plane be drawn, that
perpendicular must be in each of the two planes (52), and must
therefore be their intersection.

ProrosiTion XXVIII.
54) Right lines intersecting parallel planes are divided
1g g P p
proportionally.

Let the parallel planes be EF, G H, and IK, and let the right
lines which intersect them be A B and CD. Draw AD and
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Join the several points where the right lines
meet the planes by the lines AC, LMN,
and BD.

Since the planes G H and I K are parallel,
and intersected by the plane B A D, the lines
LM and BD are parallel (39); and since
the planes GH and EF are parallel and
intersected by the plane ADC, the lines __
MN and A(g are parallel (89). Hence by Y
the two triangles BAD and ADC we
have AL:LB=AM: MD,

CN: ND=AM: MD;
therefore AL: LB=CN: ND.

ProrosiTion XXIX.
(55) If two right lines be not in the same plane, planes
may be drawn through them which are parallel,
and only two such planes can be drawn.

Let the lines be AB and CD. Through any point A of the
line AB draw A E parallel to CD, and through any )
point C of the line CD draw CF parallel to AB.| 2<— _’
The planes of the angles BAE and FCD are pa-
rallel (44). It is evident that no other parallel
planes can be drswn through A B and CD. =

Prorosition XXX,

(56) If two right lines be not in the same plane, a
third right line may be drawn intersecting
them at right angles, and only one such line
can be drawn.

Let parallel planes be drawn through the given right lines, and
also let planes be drawn through each of them at right angles to
those parallel planes. The intersection of these two planes will
intersect the given right lines at right angles (58) (18), and will
be the only line which can be so drawn.

ProrosiTion XXXI.
(57) The right line which intersects perpendicularly
two right lines not in the same plane is the
shortest line which can be drawn between

those two right lines.
R

i
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For it is perpendicular to the parallel planes which may be

drawn through them (56), and any other line drawn between
them would be oblique to these planes and there-
fore longer (22).
(58) DEF.—A solid angle is formed by three
or more planes which meet at the same point.
Thus the planes BAC, BAD, and DAC form a
solid angle. T
(59) DEF.— The point A where the planes meet is called the
vertez of the solid angle.

It is evident that the sides or faces of a solid angle are plane angles,
and that less than three plane angles cannot form a solid angle.

(60) DEer.— The edges of a solid angle are the lines (AB, AC,
AD,) in which the plane angles intersect.

If with the point A as centre, and any distance A b as radius, a
circular arc bd be described in the plane of the angle BAD, and
another b¢ in the plane of the angle BA C, and a third de¢ in the
plane of the angle IgA C, a triangle b d ¢ will be formed by the three
arcs, called a spherical triangle. The sides of this triangle are the
measures of the plane angles which form the solid angle A, and its
angles are the inclinations of the planes of these angles. The pro-
perties of solid angles are thus identified with those of spherical
triangles, and they form the subject of spherical geometry and trigo-
nometry. On this subject the student is referred to the second part
of my treatise on trigonometry. If the solid angle be formed by more
than three plane angles, it corresponds to a spherical figure with more
than three sides. In spherical geometry the only property of a solid
angle which has been borrowetf from solid geometry is that which is
established in the following proposition.

ProrosiTion XXXII.

(61) If a solid angle be formed by three plane angles,
any two of these taken together must be greater
than the third.

It is only necessary to prove that the greatest of the three
plane angles is less than the sum of the other two.
Let BAC be the greatest, and draw A E so that the A
angle CAE shall be equal to the angle CAD. On
the line AD take AD equal to AE, and draw BD
and DC. ¢
In the triangles CAD and CAE the sides AD
and A E are equal, AC is common, and the angles
CAD and CAE are equal, therefore the bases CE and CD

D
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are equal. Hence BE is the difference of the sides BC and
CD of the triangle BCD, and is therefore less than the base
BD (EL 99). In the trianglesDAB and EA B the sides DA
and EA are equal, and BA is common, and the base BD has
been proved greater than BE, and therefore the angle BAD is
greater than the angle BAE. To these, let the equal angles
CAD and CAE be added, and it follows that the sum of the
angles BAD and CAD is greater than the angle BAC.

(62) All the other properties of solid angles may be deduced from
the results of spherical geometry and trigonometry. Thus we find
that in a solid angle formed by several plane angles, any one of the
plane angles is less than the sum of all the others. That ¢ the sum of
the plane angles which form any solid angle must be less than four
right angles.” Tria. (180).

That ¢if a solid angle be formed by three plane angles the sum of
the inclinations of the planes cannot be less than two right angles
nor greater than six,’ but may have any intermediate magnitude.
Tria. (140).

These and other properties too numerous to insert here will be
found in the work already cited. It may, however, be worth men-
tioning, that of the six quantities related to a solid angle contained by
three planes, viz. the three plane angles and the three inclinations of
the planes, any three being given the other three can always be deter-
mined. Trig. Part IL. Sect. VIIL.

Note on Prop. VIII. p. 230

In the construction of this proposition the solution of the following
problem is assumed.

A straight line AD is drawn through
the vertex of a given angle BAC. It is
required to draw another line terminated
in the sidles AB and A C of the given
angle, and so placed as to be bisected by
the line A D.

Take any distance A E from the vertex
A upon the side A B, and take from the
point E another space EF equal to AE. From the point E draw a
straight line parallel to A C. This line will intersect AD in some
point G. Draw a straight line through F and G, and produce it to
meet the side AC. This line F H will be bisected at G.

For since E G is lel to A H, the lines F A and F Hare cut
proportionally by E G. But since F A is bisected at E, F H must be
bisected at G.

R 2
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Of Solid Figures which are bounded by Planes.

(63) Since three planes are necessa.r{ to form a solid angle, it is
evident that they cannot completely enclose a solid space. There will
be in one direction a void which cannot be closed without one additional
plane at least. Hence it appears, that less than four planes cannot
enclose solid space, and therefore a solid figure cannot have less than
four faces, the plane figures which enclose such a solid being called
Jaces. The solid may also be conceived to be bounded by right lines
formed by the intersections of the planes of its faces. These are called
its edges; and it is evident that there cannot be more edges than there
are distinct pairs of faces. By the principles of algebra, it follows, that

if » be the number of bounding planes, n.ln ;

Thus if the number of faces be 4, the number of pairs is

1 is the number of pairs.

4x3
2

4or 10; if

or 6;

if the number of faces be 5, the number of pairs i55 X

the number of faces be 6, the number of pairs is 6x5 or 15, and so

on. In this way limits may be determined, which the number of edges
correspending to a given number of faces cannot exceed. These limits
are, however, too wide. An exact investigation of the relation between
the number of faces, edges, and angles of a solid figure, bounded by
planes, will be found in my Trigonometry, p. 814. (second edition), and
in Legendre’s Geometry, p. 180. and note. (Brewster’s Translation )
(64) Solid figures receive denominations expressive of the number of
their faces; thus a figure with;{bur faces 18 called a tetraedron, one
with siz faces an Aexaedron, and 8o on. Generally, solids with more
than six faces are called polyedrons.

(65) Solids also receive denominations according to the figures and
position of their faces, as in the following instances. v

66) DEr.— A prism is a solid figure two of whose faces are equal and
similar rectilinear figures so placed that their equal sides are respect-
ively parallel, the other faces being parallelograms formed by right
lines joining the vertices of the corresponding angles of these rectilinear
figures. These figures are called the bases of the prism, and the edges
formed by the right lines which are drawn connecting the vertices are
called the sides of the prism.
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Let ABCD and abed be equal and similar rectilinear figures
described upon parallel planes. Andlet AB and ab,
two homologous sides, be parallel, and so placed —
that the vertices A and a of corresponding angles
will be opposite. It will then follow that all the “ e _Ja
other homologous sides of the figures will be parallel |~
each to each. For since AB and ab are lel, *
and also the planes of the angles BAD and bad, and these angles
themselves are equal, it follows that the sides AD and ad are lel
(45); and the same may be proved successively of each pair of homo-
logous sides.

Since AB and ab are equal and parallel, the figure AB g is a
arallelogram, and in like manner it may be shown that the other faces
ormed by the lines joining the corresponding vertices of the bases are

parallelograms.

It is evident that all the sides of a prism are equal.

(67) DEer.—The altitude of a prism is the perpendicular dis-
tance between its bases.

(68) DEer.—A prism is said to be 7ight or oblique, according
as its sides are perpendicular or oblique to its bases.

(69) Der.— Prisms are denominated from the nature of their
bases, triangular, quadrangular, pentagonal, &c,

(70) DEer.— A prism whose bases are parallelograms is called
a parallelopiped.

A parallelopiped is therefore an hexaedron all whose faces
are parallelograms, and each pair of faces which do not actually
intersect are parallel. Any two parallel faces may be taken as
the bases of the prism.

If the bases of a parallelopiped be rectangles and its sides be

rpendicular to them, all the faces will evifently be rectangles.

n this case it is called a rectangular parallelopiped.
(71) DEr.—If the bases of a rectangular parallelopiped be
squares, and the altitude be equal to the side of the base, all its
faces will be squares. Such a parollelopiped is called a cube.

ProrosiTiON L

(72) If the bases of two prisms be equal and similar,
and two homologous sides of the bases be
equally inclined to the sides of the prisms
with which they form a solid angle, the several
sides of each prism will be inclined to the
sides of the base which they meet at angles

which are respectively equal.
RS
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Let the base ab cde be placed upon the base ABCDE, so
that the several homologous sides shall coin-
cide. Let the side g be inclined to & 2 and
b ¢ at the same angles as BG is inclined to
BA and BC. Hence the side bg coincides
with BG. Since the point a coincides with
A and the lines BAF and baf are in the
same plane, and the angles BAF and b a fare
equal, the line a f must coincide with AF; and in the same man-
ner it may be proved that the several sides of the prism whose
base is @ b ¢ d e will coincide with the corresponding sides of the
other prism, and therefore the angles under these sides and those
of the base are respectively equal to each.

ProposiTion II.

(73) If two prisms have equal sides and bases, and one
pair of corresponding sides be equally and
similarly inclined to the sides of the bases with
which they form solid angles, the prisms will
be equal in every respect.

For by the demonstration of (72) it appears, that the base of
one may be so applied to the base of the other that the several
sides of the one will respectively coincide with the sides of the
other ; and since these sides are equal the opposite bases must
coincide, and therefore the several vertices of the one prism will
coincide with those of the other, and the two solids will fill

exactly the same spaces and be bounded by the same lines and
planes.

(74) Cor.— Hence it obviously follows, that right prisms, which
have equal and similar bases and equal altitudes, are equal in all
respects.

Prorosition III.

(75) If two parallelopipeds have three conterminous
edges in the one equal to three conterminous
edges in the other and including angles which
are equal each to each, the parallelopipeds are
equal in all respects.

For if two conterminous edges in one be equal to two in the
other, the faces of which these edges are sides will be equal, and
thus the proposition becomes a particular case of (73).

(76) Cor.—If the vertex of a solid angle of a parallelopiped
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be given in position, and the three edges terminated at that
vertex be given in magnitude and position, the parallelopiped is
given.
ProrosiTiON IV,
(77) Every prism may be divided into as many trian-
gular prisms as there are triangles into which

its base may be resolved by diagonals drawn
from the vertex of any of its angles.
Since each pair of sides are equal and parallel, it follows that
the diagonals of the bases which connect the extremities
of the sides are equal and parallel, and the figure formed ?
l’Hlthe sides and diagonals is therefore a parallelogram. '
ere are as many of these parallelograms, which we
shall call diagonal planes, as there are different diago- 5
nals of the bases of the prism; and it is evident that the
prism may be resolved into triangular prisms by diagonal planes,
all of which pass through any one side and severally through the
other sides, except those which are adjacent to that side which is
their common intersection. 'This will be evident on inspecting
the figure.
(78) Cor.—1It is evident that each diagonal plane is parallel to
the sides of the prism, and also that the intersection of any two
such planes is parallel to the sides.

ProrposiTion V.

(79) The sections of a prism by parallel planes are
similar and equal rectilinear figures.

Let ABCDE and abcde be two parallel sections. Since
AB and ab are the intersections of parallel planes «JB\
with the same plane they are parallel (89), therefore "T\cﬁ
A a b B is a parallelogram, and therefore AB and 2 5 “N ‘
are equal. In the same manner it may be proved that j':‘

B

BC is equal to b¢, CD to ¢ d, and so on.

Since the sides of the angle ABC are parallel to |
those of abc, and in the same direction, the angle N,
ABC is equal to abec (44); and in like manner it
may be proved that the angle BCD is equal to bcd, K
and so on. Hence the two sections ABCDE and abcde are
equal and similar.
(80) Cor. 1.—Hence all sections of a prism parallel to its bases
are equal and similar to its bases.
(81) Cor. 2.— All sections of a parallelopiped parallel to any
face are parallelograms equal and similar to that face,

R 4
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ProrosiTion VI

(82) In every parallelopiped the opposite angles are
included by plane angles which are equal each
to each, but (except in the case of rectangular

_parallelopipeds) not similarly placed, so that the
solid angles do not admit of being placed with
their edges mutually coincident.

Since A a and 2 b are parallel to D d and d ¢, and in the same
direction, the angles A a5 and D dc are equal (44).
But the angle I% dcis equal to the opposite angle b
DCe¢, therefore Aab is equal to DCe. In ighe K
same manner it may be proved that the angle Aad
is equal to cCB and bad to BCD.

But if the point C be conceived to be placed ate *
and the edge C ¢ upon a A, and CB upon a d, the
edge CD will not coincide with @ b, but will extend in the oppe-
site direction from the vertex @ ; and in the same manner, what-
ever pair of edges of the angle C be tglwced in coincidence with
the pair of corresponding edges of @, the remaining edges will be
found not to coincide.

(83) Der.—Two solid angles contained by plane angles which
are equal each to each, but which do not admit of coincidence,
are said to be symmetrically equal.

\/‘,49
.~

c
D

Prorosition VII.

(84) Of four parallel edges of a parallelopiped the
diagonal planes which pass through each pair
of them intersect, each dividing the other into
two equal parallelograms, and the diagonals
of each bisecting and being bisected by their
common intersection.

Let A ac C be the diagonal plane through the opposite edges
A a and Cc, and D d b B that through the opposite 3
edges D d and B b, and let m M be the intersection .
of these planes which will be equal and parallel to
the edges A @, B b, &c. N
The diagonals ac and bd of the face abcd LZoN
bisect each other at m, and in like manner A C and >
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BD bisect each other at M. Hence it is evident that the paral-
lelogram A m is equal to the parallelogram Cm, and in like
manner B m is equal to Dm.

Also since a ¢ is bisected atm, and m O is parallel to a A, A ¢
must be bisected at O. And since m O is half of a A, it is also
half of m M which is equal to a A, and therefore m M is bisected
at O. By similar reasoning it may be proved that 5D is bisected
at O.

In this way it may be proved that every diagonal of the paral-
lelopiped pasysﬁs thry)ugh O and is bisectrg;l at that point, d
(85) Cor.—Every right line whatever drawn through the point
O, and terminated in the faces of the parallelopiped, is bisected
at O. For let pg be such a line terminated in the faces AJ
and D ¢; and draw ¢ D and p 4. 'The lines p b and ¢ D are
parallel, being the intersections of the plane of the lines p ¢ and
D 5 with the parallel planes D¢ and A 5. Hence the triangles
¢ O D and 5 O p are mutually equiangular, and since 5O is equal
- to O D, they are mutually equilateral. Therefore p O is equal
to ¢ O.

(86) DEr.—Hence the point O is called the centre of the
parallelopiped. :
(87) DEer.—The quantity of space included within the surface

or surfaces of a solid figure is called its volume.

Thus when we speak of the volume of a solid we do not take into
account its figure. If any solid figure were divided in any manner
into parts, and these parts changed in their arrangement so as to form
anotl‘:er and different solid figure, still the volume would remain the
same although the skape be altered.

ProrositTion VIII.

(88) The two prisms into which a di:fonal plane
divides a parallelopiped are equal in volume.

Let ABCD, abcd, be the bases of the parallelopiped, and
A c a diagonal plane. Through a and A draw planes at right
angles to the sides of the given parallelopiped, so as to form a
rectangular parallelopiped, of which the bases are A B"C’D),
a¥c'd’y and the sides of which coincide with those of the given
one.

- Since Cc and C’¢’ are each equal to Aa they are equal to
each other. Taking away the common part Cc’ we have ¢¢
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equal to CC. In the same manner we may prove that d &’ is
equal to DI, and 44 to BB'.

Now suppose the triangle ad'c’ brought down and placed on
AD’C’, which is in every respect equal to it (79).
Then the point d’ being placed on I, and the line
d’d coinciding with D’D, and being equal to it, the ,
point d will coincide with D, and in the same man-
ner ¢ will coincide with C. Hence the vertices of
the figure ad'dcc will severally coincide with
those of the figure AD’DCC’, and the figures 32X\ 2
themselves will coincide and are therefore equal. 4
To each of them let the figure Aacdd’CD be added, and it
follows that the prisms A CDacd and AC'D'ac’d’ are equal
in volume.

In exactly the same way it may be proved that the prisms
ABCabc, and AB'C'ab'¢” are equal in volume.

The prism AB’C’ ad’c is equal to the prism AC'D ac’d in
every respect; for the bases AB'C, CD’'A are equal and
similar, and the prisms are right (74). Hence the prisms
ABCabc and ACDacd, which are respectively equal to
them, are equal to each other.

It follows, therefore, that the volume of a parallelopiped is

bisected by each of its diagonal planes.
(89) DEr.—The triangular prisms into which an oblique paral-
lelopiped is divided by a diagonal plane, although equal in volume,
and also equal respectively as to their faces and have not
that equality which admits of coincidence. The solids are in this
case said to be symmetrically equal.

The triangular prisms into which a rectangular parallelopiped
is divided by a diagonal plane are not only equal but admit of

coincidence.

ProrosiTion 1X.

(90) Two parallelopipeds on the same base and be-
: tween the same parallel planes are equal in
volume.

1°. Let their opposite bases be between the same parallels,
ab’ and dc'.

Let ABCD be the common base and a '¢'d the plane of the
opposite bases parallel to ABC D.
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The triangular prisms Aa’d’d and B¥ ¢/c are equal and admit
of coincidence; for if the face BbcC be , e ¥
conceived to be placed upon AadD so as | H— N
to coincide with it, it is evident that the 17
lines C¢’ and B¥ will coincide with the
lines D&’ and Ad. For the angles dDd *<7
and ¢ Cc are equal in consequence of the » g
parallels; as also the angles a Ad’ and b B ¥ for the same reason.
And since Dd’ is equal to C¢” the point ¢ will coincide with &,
and in the same manner ¥ will coincide withe”. Hence the two
prisms will coincide, and are therefore equal.

Now if these equal prisms be successively taken from the solid
Aa¥ ¢, the remainders will be equal, but these remainders are
the parallelopipeds.

2° Let their opposite bases be not placed between the same
parallel lines.

The opposite bases abcd, a”8"’d” must be equal in every
respect, since each is equal to the com-
mon base ABCD. If the sides of
these opposite bases which are not pa-
rallel be produced until they intersect,

a third parallelogram a’¥¢’d” will be

formed in the same plane with the upper

bases, and equal to each of them in

all respects and to the common base

ABCD. The vertices @’'d d bein

respectively joined by right lines wi

those of ABCD, a third parallelopiped will be formed which
will have a common base ABC D with each of the given ones,
and which will have its opposite base in the same plane with those
of each of the 8fiven parallelopipeds. Hence this third parallel-
opiped is equal in volume (Part 1°.) to each of the given paral-
lelopipeds, and they are therefore equal to each other in volume.
(91) Cor.—1t is evident from eaus proposition that if two
parallelopipeds have bases which are equal in all respects, and
equal altitudes, they will have equal volumes. For if their bases
be placed one upon the other, so that the solids shall lie at the
same side of them, the opposite bases will be in the same plane
parallel to that of the coincident bases.
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ProrpositioNn X.

(92) An oblique parallelopiped is equal in volume to
a rectangular one having a base of the same
magnitude and an equal altitude.

On the base ABCD of the obh;?ue parallelopiped construct
another parallelopiped in the same al-

titude and whose sides will be per-
pendicular to the base. The volume
of this will be equal to that of the ob-
lique parallelopiped (90). If the base
be a rectangle this latter parallelopiped
will be rectangular, and the proposition
isproved. Butifthe base be an oblique
parallelogram take one of the per-
pendicular faces A B 2”asbase,andon
it construct a rectangular parallelopiped between the same paral-
lel planes as the last. It will be equal in volume to the latter (90)
and therefore to the oblique parallelopiped, and the base ABC D
will be equal to the base ABC”D”. Hence the rectangular
parallelopiped thus constructed on an equal base, and with an
equal altitude, is equal in volume to the oblique parallelopiped.
(98) ScuorL.—Hence it appears that the volume of a parallelo-
piped depends solely on the magnitudes of its base and altitude,
andfis independent of the obliquity of its edges or the figure of
its faces.

e” 3

Prorposition XI.

(94) Rectangular parallelopipeds which have the same
base are as their altitudes.

This is proved in exactly the same manner as the first pro-
position of the sixth book of the Elements. If the altitudes of the
parallelopipeds be increased until they become equimultiples of
their first magnitudés, the parallelopipeds themselves will be so
increased as to become the same multiples of their first mag-
nitudes. After this the reasoning is precisely the same here
as in Prop. I, Book VI., the altitudes of the parallelopipeds
taking the places of the bases of the triangles, and the volumes
of the parallelopipeds taking the places of the areas of the
triangles.

(95) Cor.—The same is true of rectangular parallelopipeds
bhaving bases in all respects equal, since by supposing them placed
one uipon the other they will have the same base.
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ProrosiTion XII.

(96) Rectangular parallelopipeds having the same al-
titude are as their bases.

Let A be the common altitude of the parallelopipeds, and let
b ¢ be the sides of one base and ¥ ¢’ of the other. Let a third
rectangular parallelopiped be constructed with the same altitude
A, and with a base whose sides are b . Let the two proposed
parallelopipeds be called A & ¢ and A ¥ ¢ and the constructed
one A b 0.

In the parallelopipeds A & ¢ and A b %', the faces whose sides
are A b are equal and may be considered as the bases, in which
case ¢ and &’ will be the altitudes. Hence by (95)

Abc:AblY =c:¥. ‘

In the same way in the parallelopipeds A 4% and A ¥ ¢,
the faces whose sides are A & are equal, and may be taken as
the bases, in which case 4 and ¢ will be the altitudes, and we
have (95)

AbYV:A¥VI=0b:c.

Hence A b cisto A ¥ ¢ in a ratio compounded of ¢ : ¥ and
b: ¢, or as the rectangle b x ¢ : &’ x ), that is,

: Abc: AV =bxc:¥ xc.

Hence the rectangular parallelopipeds having the altitude A
and the bases & x ¢ and & x ¢ are as those bases.

(97) Cor.—The same will be true when the altitudes are equal,
sinte by placing the bases in the same plane they will have the
same altitude.

Prorosirion XIII.

(98) Rectangular parallelopipeds in general are in a
ratio compounded of the ratios of their bases
and altitudes.

Let A and A’be the altitudes, and B and B’ the bases, and let
a third parallelopiped be constructed with the altitude A and the
base B’, and let the three solids be called AB, A’B’, and AB’,

By (97) we have AB: AB'=B: DB,
and by (95) AB: A’'B'=A: A’

But AB: A’B’ in a ratio compounded of AB : AB’, and
AB’: A’B, or of B: B’ and A : A/, that is, the parallelopipeds
are in a ratio compounded of the ratios of their bases and
altitudes.
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ProrosiTion XIV.

(99) Rectangular parallelopipeds are in a ratio com-
pounded of the ratios of three conterminous

edges.

Let a b ¢ be the three conterminous edges of one, and a” &' ¢’
those of the other. If aand & be considered as the altitudes and
b x ¢ and ¥ x ¢ as the bases, the solids are in a ratio com-
pounded of @ : @’ and b x c:8 x ¢. But the ratio b x c:
& x ¢ is compounded of the ratios 6 :5’and ¢ :¢'. Hence the
parallelopipeds are in a ratio compounded ofa: a’, b:5’yand ¢ : ¢,
that is, of their three conterminous edges.

Prorosition XV.

(100) If three conterminous edges of a rectangular
parallelopiped be expressed by numbers, the
product of these three numbers will express
its volume, the unit of such product being the
cube of one of the partsinto which the edges
are supposed to be divided when numerically
expressed.

When a line is expressed by a number, as 10, it is supposed to
consist of ten equal parts of some conventional denomination, as
inches, feet, yards, &c. When several lines entering the same
computation are expressed by numbers, their parts are commonly
taken to be equal. Thus if two lines be expressed by 10 and 8,
we do not in general in the same computation consider one as
10 inches amfe the other 8 feet. They are either 10 feet and
8 feet, or 10 inches and 8 inches.

Let us suppose the three conterminous edges to be divided into
inches, and let @, b, and ¢ represent the number of inches in each
of them.,

A parallelopiped whose base is a square inch, and whose alti-
tude is as many inches as there are units in @, has as many
cubic inches in its volume as there are units in a. This is evi-
dent, since it is nothing more than a pillar of cubic inches laid
one over another.

Hence a parallelopiped whose base is 2 or 8 square inches, and
whose altituge is as many inches as there are units in a, has 2 or 8
times as many cubic inches in its volume as there are units in a,
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and in general if B be the number of square inches in the base
a x B will be the number of cubic inches in the volume.

Hence it appears that the volume of a rectangular parallelo-
piped is represented numerically by multiplying together the
numbers which express its base and altitude.

But the number of square inches in the base B is found by
multiplying the number of inches in one side of the base by the
number of inches in the other side. The numbers of inches in
the sides of the base being b and ¢, the number of square inches
in the base is b x ¢. And since the number of cubic inches in
the volume is @ x B, this number becomes @ x & x ¢ when 4 x¢
is substituted for B.

It is evident that the same reasoning will be applicable if the
edges be supposed to be divided into parts of any other deno-
mination.

Prorosrrion XVIL

(101) The volume of a prism is expressed numerically
- *by the product of the numbers which express
its base and altitude.

If the prism be a rectangular parallelopiped, the proposition
has been proved in (100).

If it be an oblique parallelopiped its volume is equal to that of
a rectangular one having an equal base and altitude (92), and
therefore it is expressed by the same product.

If it be a triangular prism it may be considered as the half of
a paralielopiped cut off by a diagonal plane (88); and as its base
is half, also the product of its base and altitude is half that of the
base and altitude of the parallelopiped ; and therefore the product
represents the volume, which is also half of that of the parallelo-

piped.
If the prism have a polygonal base it may be divided into
triangular prisms by diagonal planes (77). e volume of each

of these is expressed by the product of the altitude and base, and
therefore the volume of the whole will be expressed by the pro-
duct of the altitude and the sum of the bases, that is, the product
of the altitude and the base of the polygonal prism.

(102) Cor. 1.—Hence prisms in general are in a ratio com-
pounded of their bases and altitudes. Also when they have the
same base they are as their altitudes, and when they have the
same altitude tﬁey are as their bases. '

(108) Cor. 2.— Prisms are equal when their bases and altitudes
are reciprocally proportional, and vice versd, whatever be the
figures of their bases or the inclinations of their sides.

-



256 ELEMENTS OF SOLID GEOMETRY.

(104) DEr.— Prisms are said to be similar when their bases are
similar rectilinear figures, and their sides are proportional to
homologous sides of their bases, and similarly inclined to those
bases. :

Prorosition XVIL

(105) Similar prisms are in the triplicate ratio of their
homologous edges.

For they are in a ratio compounded of the ratios of their bases
and a.ltituges (102). But their bases are in the duplicate ratio
of their homologous sides which are homologous edges of the
prisms, and since the sides are equally inclined to the bases, the
altitudes are as the sides; but the sides of the prism are propor-
tional to homologous sides of the bases (104), therefore the
altitudes are as homologous sides of the bases, or as homologous
edges of the prisms. ence the prisms are in a ratio com-
pounded of the duplicate and simple ratios of their homologous
edges, that is, in the triplicate ratio of their homologous edges.
(106) Cor. 1.— Since cubes are similar prisms, it follows that
cubes are in the triplicate ratio of their edges.
(107) Cor. 2.— Similar prisms are as the cubes of their homo-
logous edges.
(108) Cor. 8. — If the first two of four lines in continued pro-
portion be homologous sides of similar prisms, the volumes of the
prisms will be as the first line to the fourth.
(109) Cor. 4. — In order to construct a prism similar to a given
one and to which the given prism shall have a given ratio, it will
be necessary to find two mean proportionals between an edge of
the given prism and a line to which that edge bears the given
ratio. If on the first of these two means a prism be constructed
similar and similarly placed with the given prism, it will be that
which is required (108).
(110) Cor. 5. — If the given prism be a cube, and the given
ratio be 1 : 2, the preceding corollary becomes the celebrated
DELIAN PROBLEM, the duplication of the cube, for an account of
which see Elements (586).
(111) ScHor.— It will hereafter appear that the preceding
corollaries may be extended to all similar solids.
(112) Der.— A pyramid is a solid having several tri-
angular faces which have the same vertex P, and whose
bases are the sides of the remaining face, which may
be any rectilinear figure A BCDE, and which is called
the dase of the pyramid, the common vertex P of the = o
triangular faces being called the verter of the pyramid &=

»
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The areas of its triangular faces form the lateral or conver

surface of the %yramid.

"The sides P A, P B, &c. of the triangular faces are called
the sides of the pyramid.

113) Der.—The altitude of a pyramid is the ndicular
((iistance of the vertex from the plane of the base. perpe

(114) DEr.— A pyramid is denominated triangular, quadran-
gular, or polygonal, according as the base is triangular, quadran-
gular, or polygonal.
(115) DEeF.— A regular pyramid is one whose base is a regular
polygon, and whose vertex is so placed that a perpendicular
drawn from it to the plane of the base will meet that plane in
the centre of the base. This perpendicular is in this case called
the azis of the pyramid.
(116) DEer.—Similar pyramids are those which have similar
bases, altitudes proportional to the homologous sides of those
bases, and vertices so placed that perpendiculars drawn from
them to the planes of the bases will meet these planes at points
similarly placed.

Prorosition XVIIIL

(117) The sides of similar pyramids, which are con-
terminous with homologous sides of their
bases, are proportional to homologous sides
of the bases, and are equally inclined to the
planes of the bases.

For let PO and p o be the perpendiculars from the vertices
of the pyramids upon the planes of the

bases, and in those planes let lines be

drawn from the points O and o to the se-

veral vertices of the angles A, B, &c.a, b,

&c. By (116) it follows that the several

lines.O P, OA, OB, OC, &c. are re- L g .
spectively to 0 p, 0 a, 0b, oc, &c. as any A,, '

g;ir of homologous sides of the bases.

ence in the triangles PO A and poa,

PO :0A = po:oa, and the angles O and o being right, the

triangles P O A and p o0 a are simlar. Therefore PA:pa =

PO:po, thatis (116) as AB: a b, or as any pair of homolo-
ous sides. Also theangles A P O and ap o are equal, and there-
ore the sides A P and a p are equally inclined to the bases (32).

In the same manner it may be proved, that each pair of corre-

‘ ]
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sponding sides of the pyramid are proportional to each pair of
homologous sides of the base, and equally inclined to the base.

" (118) Cor.— The planes of the triangles AP O, BP O, C PO,
&ec. apo, b po, cpo, &e. divide the pyramids into a series of tri-
angular pyramids which are similar each to each.

Prorosition XIX.

(119) If a pyramid be intersected by parallel planes,
the pyramids cut off by those planes will be
similar.

Let A BCDE and abcde be the parallel sections, and from
the vertex P let the perpendicular P 0 O be drawn to
the parallel planes.

Since th(:e(famllel planes ABCDE and abede
are intersected by the plane A P B, the intersections /|
A B and ab are parallel (89), and in the same manner /£r;
it may be proved that B C is parallel to bc, CD tocd, /| °
and so on. Hence (44) it follows that the sections 7.
ABCDE and e b cde are mutually equiangular.
But also the triangles A P B and a P b are similar:_therefore
AB: ab=BP:bP,and in like manner BC:5¢e =BP: 5 P.
Hence A B: ab = BC: bc; and, by the same reasoning, each
pair of corresponding sides of the sections may be proved pro-

rtional.

The triangles A P O and a P o are evidently similar, therefore
AO:a0=PO0O:Po=AP:aP=AB:db; and the same being
applicable to the lines B O, bo, and C O, c o, &e., it follows that
the points O and o are similarly placed in the sections, and that
the altitudes P O, P o are aglroportional to the homologous sides.
(120) Cor. 1.— Hence all sections of a pyramid parallel to the
base are similar to the base, and the pyramids cut off by such
sections are similar to the original pyramid.

(121) Cor. 2.—The sections ABCDE and abcde are in
the duplicate ratio of the perpendiculars PO and P o; for these

rpendiculars are as the homologous sides.

(122) Cor. 3.—In any two pyramids sections parallel to their
bases which divide their altitudes proportionally are as their
bases. For the bases are to the sections in the duplicate ratio of
the altitudes to the segments of the altitudes between them and
the vertices. But these segments are as the altitudes themselves
by hypothesis. 'Therefore the bases are as the sections.

(128) Cor. 4.—If the bases of two pyramids be equal, sections
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dividing the altitude proportionally are equal ; and if both the
altitudes and bases be equal, all sections equally distant from the
vertices are equal in magnitude.

Prorosition XX.

(124) Pyramids which have equal altitudes, and bases
of equal areas, have equal volumes.

1f they be not equal in volume, let @ b ¢, &c. be the base of

the greater, and let o = be :
the altitude of a prism whose
base is abc or A BCD,
and whose volume is equal
to the difference of the two

yramids.
P Let the equal altitudes
P O, p o be divided into
such a number of e 13}
ts that each 8

{)):rless than o xI:'al:nd let
the pyramids be cut by
planes parallel to their bases

and passing through each of
the points of division of the
ual altitudes. The seve-
sections of the pyra-
mids by these planes will be equal each to each, since their
bases and altitudes are equal (123). If prisms be constructed
with these sections severally as bases and with the equal parts of
the altitudes as altitudes, these prisms will be equal each to each
(103). Let these prisms be constructed in the one pyramid below
the sections respectively, and so as to lie within the pyramid, and
in the other above the sections, and so as to lie partly without
it.. The sum of the prisms in the pyramid P is less than the
pyramid, and the sum of those in the pyramid p is greater than
the pyramid. Hence the difference between the sums of the
prisms is greater than the difference between the pyramids. But
the difference between the sums of the prisms is t%e prism whose
base is @.b ¢ or A B C D, and whose altitude is one of the equal

parts into which the altitude P O is divided, and the difference.
of the pyramids is a prism with the same base and the altitude
o z. Hence o z is less than one of the parts into which the
altitude is divided, but, by hypothesis, it is greater. Therefore
the volumes of the pyramids cannot be unequal. ;

82
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ProrosiTion XXI.

125) The volume, a triangular pyramid, is one third
of that of a prism having an equal base and

altitude.
Let A BC be the base of the pyramid and c its vertex. Through
Band A draw Bb and A a parallel to Ccand »

equal to it, and draw the lines a b ¢. The prism

A BCabcison the same base and has the same

altitude as the pyramid. The solid which has thus A
been added to the pyramid to complete the prism A

is a quadrangular pyramid whose base is Aab B,

and whose vertex isc. Draw A b, and through

this line and the vertex ¢ draw the plane A b ¢. This plane
divides the quadrangular pyramid into two triangular pyramids
having a common vertex ¢ and equal bases A aband A B 5.
These pyramids are therefore equal (124). But the pyramid
A abc has a base bca equal to A B C, and an altitude equal to
that of the pyramid whose base is A B C, and whose vertex is c.
Hence these are equal (124), and therefore the three trian
pyramids which form the prism are equal in volume. Hence
the triangular pyramid A B C cis a third of the volume of a
tri ar prism having the same base and altitude, and therefore
also (103) a third of one which has an equal base and altitude.

ProrosiTion XXII.

(126) The volume of every pyramid is one third of the
volume of a prism having an equal base and
altitude.

For every pyramid is equal to a triangular pyramid with an
equal base and altitude (124), and every prism is equal to a
triangular prism with an equal base and altitude (103). Hence
the proposition is evident by (125).

(127) Cor. 1.—Hence the volume of .a pyramid is found
numerically by multiplying its altitude by its base, and taking
one third of the product.

(128) Cor. 2.— Pyramids are in a ratio compounded of the
. ratios of their bases and altitudes.

(129) Cor.3.— Pyramids having equal bases are as their alti
tudes, and those which have equal altitudes are as their bases.
(180) Cor. 4.—Equal pyramids reciprocate their bases and
altitudes, and vice versd. :
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(181) Cogr. 5.— Similar pyramids are as the cubes of their
homologous edges, or in the triplicate ratio of these lines.

(182) Every solid figure, which is bounded by planes, may be
resolved into pyramids. Let any point be assumed within it,
and from this point let right lines be drawn to the several ver-
tices. These lines will be the sides of pyramids, of which the
faces of the solid are severally the bases, and whose common
vertex is the assumed point. The solid will thus be resolved
into as many pyramids as it has faces.

If required, the solid may be resolved into trian, pyramids.
Let face which is not triangular be resolved into triangles,
by diagonal lines. The pyramigustanding on it will be reso?ved
into triangular pyramids by planes drawn through those dia-
gonal lines, and the point assumed as the common vertex of the
pyramids.

Thus the resolution of a polyedron into pyramids is analogous
to the resolution of a polygon into triangles.
(183) Cor. 6.—Hence the volume ofg any solid, bounded by
plane surfaces, may be found by finding the volumes of its com-
ponent p ids (127).

(134) Cor. 7.—1If a solid have a Foint within it, from which
perpendiculars drawn to its several faces are equal, the compo-
nent pyramids having this point as their common vertex will
have equal altitudes. Hence the sum of their volumes will be
equal to that of one pyramid, whose base is the sum of their
bases, or the whole surface of the solid, and whose altitude is
the length of the perpendicular, which is their altitude. It will
hereafter appear that such a point is the centre of a sphere which
touches all the faces of the polyedron, and which is said to be
inscribed in it. 'The radius of this sphere is the perpendicular.
Hence it appears that the volume of a solid figure having plane
faces, and which admits of an inscribed sphere, is equal to that
of a pyramid, whose base is equal to the whole surface of the
solid, and whose altitude is the radius of the inscribed sphere.
(185) Cor. 8.— The volume of such a solid is found numeri~
cally by multiplying its whole surface by one third of the radius
of the inscribed sphere.
(186) DEF.— Similar polyedrons are solids constructed on similar
rectilinear figures as bases, and having the same number of ver-
tices similarly placed with respect to those bases. That is, so
placed that lfy perpendiculars be drawn form them severally, these
rpendiculars will meet the planes of the bases at points simi-
rly placed, and the perpendiculars themselves shall be each ta
each as homologous sides of the bases.

From this definition it easily appears, that the right lines

joining any homologous vertices are propartional to homologous
53
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sides of the bases. For the plane ?uadrilateral figures formed by
the perpendiculars on the plane of the base from two homologous
vertices and right lines joining their extremities are similar, and
therefore their sides proportional. Hence the lines joining the
homologous vertices are as two co nding perpendiculars, and
therefore as two homologous sides of the bases.

These lines joining homologous vertices are therefore homo-
logous edges of the solids, and all homologous edges are, conse-
quently, proportional.

(137) Hence also the faces bounded by homologous edges are
similar each to each, and may be called komologous faces.

(188) It also follows that the planes of every pair of homo-
logous faces are equally inclined to each other. To prove this,
let any two faces A BC D, A’ B'C'D’ * be assumed in the one,
and also two faces abcd, & ¥ ¢ & homologous respectively to
these in the other. Considering ABCD, abcd as the bases,
let perpendiculars to them be drawn from any three correspond-
ing vertices A’ B’ C’ and & ¥ ¢ of the other homologous faces.
Let the points A” B” C’, a” V" ¢, o

where the perpendiculars meet the
})lanes of the bases, be joined by right & A 4
ines, and let planes be conceived

to be drawn so as to form the solids
A'BCA'B'C,dlVc &l .

From the definition of similar solids A™———"o" 4 ce
and its consequences, it follows that the triangles A” B” C” and
a’ Y’ ¢ are similar, and that their homologous sides are as the
perpendiculars respectively, or as any homologous edges of the
given solids. Let the pointa™ be conceived to be placed on A”,
and the sides a” &’ and a” ¢’ upon A” B” and A” C” respectively.

Since ¢” ¢’ and C” C' are parallel, they are in the same plane
with each other and the line A” C” which intersects them. We
have A” ¢’:¢” ¢ =A”C": C"C’and the angles A”¢”¢ and A”C"C
equal, being right. Therefore the triangles A” ¢’ ¢’and A” C” C’
are similar; and the points A” ¢ C’ are in the same straight line,
and A”¢: A"C'=A"¢": A”C". Also we have A” a’?'i” A=
A" ¢": A”C"=A"¢ : A”C'. Hence the trianglesa’ A” ¢, A’A"C’
are similar, and the lines @’ ¢ A’C’ are parallel. In the same
manner it may be proved that the lines @’ ¥ and A’ B’ are parallel,
and therefore the planes ¥ a’ ¢ and B’ A’ C’ are parallel, and are
therefore equally inclined to the plane B” A” C”.

In this way we prove, that if the bases of similar polyedrons be
placed one upon the other in such a manner that the homologous
sides of those bases will be parallel, then the planes of every pair

=\

o e a c

® These faces are not represented in the cut,
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of homologous faces will be parallel, and they will be respectivel
similarly &oclined to the bg:»s and to eachyother, and in evergr
respect similarly placed.

(139) By the same reasoning it may be proved that right lines
joining four homologous vertices of similar polyedrons will be
the eigesofsimilartria.n ar pyramids. Igothiswa it will
easily appear, « that similar polyedrons may be resolved into
triangular pyramids, equal in number and similar each to each.”

Prorosition XXIII
140) Similar polyedrons may be divided into pyra-
mids equal in number, similar each to each,
and having volumes proportional to those ot
the polyedrons ; and the volumes of the poly-
edrons are as the cubes of their homologous

edges.

On two homologous faces of the solids let two points be as-
sumed similarly placed, and through these points let perpendi-
culars to the faces be drawn. Let points be assumed on these
perpendiculars, within the solids and at distances from the faces
proportional to any homologous edges. Let the solids be re-
solved into pyramids, by lines drawn from these points to the
several vertices.

The number of pyramids is equal, being the number of faces
in each solid.

The pyramids may be proved to be similar each to each by
reasoning exactly similar to that used in (138).

Each pair of similar pyramids are as the cubes of the homolo-
gous edges (131) of the solids, and therefore each component
pyramid in one solid bears the same ratio to the corresponding
pyramid in the other. Hence the sum of all the pyramids in
the one, or the volume of one solid is to the sum of all the pyra-
mids in the other, or the volume of the other solid in the same
ratio as any two corresponding pyramids.

Hence it is evident that the volumes of the solids are as the
cubes of their homologous edges.

(141) Cor. 1.—Hence if four right lines be in a continued pro-
portion, and the first two be homologous edges of similar polﬁ'-
edrons, the volumes of these solids will be as the first line to the
fourth,

(142) Since the faces of similar polyedrons are similar each to
each, their magnitudes are as the squares of their homologous
edges, and therefore the sums of ail the faces are in the same
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ratio. Hence the surfaces of similar polyedrons are as the
squares of their homologous edges.

ProrosiTion XXIV.

(143) To construct a solid similar to a given solid, and
such that the volume of the given solid shall
bear to the volume of the constructed one a
given ratio.

The geometrical solution of this problem would require the
solution of the problem ¢ to find two mean proportionals,” and
therefore it cannot be solved by a strictly geometrical process.
If we suppose, however, the two mean proportionals to be
found, the problem admits of solution. That is, we can con-
struct upon a e‘fiven right line as an edge a solid similar and
similarly placed with a given solid.

Let a line be assumed to which one of the edges of the given
solid bears the given ratio, and between this edge and the line
so assumed conceive two mean proportionals to be found. The
first of these mean proportionals must be an edge of the solid to
be constructed, homologous to that edge of the given solid which
is taken as the antecedent of the given ratio.

Let A B be the edge of the given solid which is taken as
antecedent of the given ratio, and let

-
A B CD E be one of the faces of the _ 2
solid, of which this edge is a side. Let P e
a b be the first mean. On a b construct ] T
a rectilinear figureabcde similarand A% 3 27 7%
similarly placed with ABCD Eon A B.

From a{l the vertices of the solid which stands on ABCDE, let
perpendiculars be drawn upon the plane ABCDE, and let P be
the foot of one of these perpendiculars. Draw PN perpendicular
to A B. Letabbecut at n similarly to A B at N, and draw
the perpendicular z p so that n p: NP=ab:A B, Then pand
P are homologous points in the similar figures ABCDE and
abcde. .

From the point p let a perpendicular to the plane abcde be
drawn, such that it shall have to the perpendicular, whose foot
is P, the ratio ab: AB. The end of the perpendicular thus
drawn will determine that vertex of the solid to be constructed,
which is homologous to the vertex of the given solid from which
the perpendicular P is drawn.

In the same manner each of the other vertices of the required
solid is determined,
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The similarity of the solid thus constructed with the given solid
will easily appear from the results of (136) et seq. ’
(144) IZ; should be observed, that in this book we confine
our investigations to what are called convex polyedrons, or those
which have no solid angles whose vertices are presented inwards.
The most distinct test of a convex figure, whether plane or
solid, is, that its perimeter or surface can be only intersected by
a right line in two points.

(145) Der.—The solid e included between two parallel
planes intersecting a pyramid is called a truncated pyramid.

‘Proposition XXV,

(146) The volume of a truncated pyramid is equal to
the sum of the volumes of three pyramids
having the same altitude as the truncated
pyramid, and whose bases are those of the
truncated pyramid and a mean proportional
between them.

This proposition is most simply investigated by the aid of alge~
braical rlx)otapt(i)sn. Let a, ' be homologﬁ?s sides of the si;lﬁar
bases (119) of the truncated pyramid. The squares of these
lines are as the areas of the bases, or the square of each line
bears the same ratio to the area of the base of which it is a side.
Hence if m be such a number that m a® is equal to the one base,
ma’? will be equal to the other. Now, suppose the sides of the
truncated pyramid produced till they meet so as to complete the
pyramid, and let a perpendicular be drawn from the vertex to
the parallel bases of the truncated pyramid. Let the length of
this perpendicular drawn to the greater base be %, and to the
lesser . The volume of the pyramid having the greater base
m a? is then 3 h ma® (127), and that of the lesser 4 &’ m a’?, and
therefore the volume of the truncated pyramid is 4 k m a>—
3K ma*=}m (ha*~F a®). But (122) h:h'::a:a’, and
hence we easily infer
R _a _ K _ &
h—K "a—d h—K"a—d
Now let V be the volume of the truncated pyramid
3 m (ha2—k %)=V,
divide these equals by A—//, and we find
b)Y
bm (o= ) =
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a ad Vv
or $ "‘(a‘:i“'—a_a' o ’) ==
a®—a? A%
or im a—d “h=F

But h—¥ is the altitude of the truncated pyramid. Call this
H; and if a®—a? be divided by a—a’, the quote is a2+
a d +a? Hence we have

im (a®*+a d +a"?) =§

or $Hma*+31 Hma?+3{ Hmad=V.

Now m a? is the greater base, and 3 H m a? is the volume of a
pyramid whose base is m a® and whose height is H, or that of
the truncated pyramid. In like manner 4 H m &’ is the volume
of a pyramid whose base is the lesser base m a2 of the trun-
cated pyramid, and whose height is H, that of the truncated
pyramid; and, lastly, 4 H m aa’ is the volume of a p id
whose base is m a @’ (a mean proportional between m a? and m a”)
and whose altitude is H, that of the truncated pyramid.

Prorosition XXVIL

(147) The volume of a solid included by two planes
intersecting the sides of a triangular prism,
is equal to the sum of the volumes of three
pyramids whose common base is either of the
sections, and whose vertices are the vertices
of the angles of the other section.

If the two planes intersecting the sides of the prism be paral-
lel, the solid is a triangular prism, and the three pyramids are
equal, and hence the proposition becomes identical with (126).

If the planes be not parallel, let the triangular sections be
ABCand abe. Draw the plane BCa. This ,
divides the solid into the pyramid A B Ca, and N\ ——¢
the solid ab¢B C. Draw the plane a b C. 3
This divides the latter solid into two pyramids,
whose bases are ¢ C and B Cb, and of which a
is the common vertex. The pyramid whose
base is B C b and vertex a is equal to that with
the same base B C b and vertex A ; becausea A ¢ A
is parallel to the plane B C b, and therefore the
two pyramids have equal altitudes. But the
pyramid A C a B is that which is on the base A B C, and has
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the vertex a. Hence, in like manner, the pyramid Ca ¢  is equal
to Cbc A, for they have the same base C b ¢ and equal altitudes,
since A a is parallel to that base. But the pyramid A b¢C is
equal to the pyramid A B¢ C, for they have the same base A ¢C
and equal altitudes, since B 4 is parallel to that base. Hence it
appears that the three pyramids ABCa, BaCbd, and aCc)d,
into which the solid is resolved by the planes Ba C and ab C
through the vertex a, are respectively equal to three pyramids,
of v:rl}‘iich A BC is the basel,)ec and wﬁqose vertices are at the
points a, b, c.



BOOK III.

Of the Regular Solids,

(148) DEer.— A regular solid is one whose faces are
equal equilateral and equiangular plane figures.

ProrosiTioNn XXVIIL
(149) There cannot be more than five regular solids.

1°. Let the faces be equilateral triangles. A solid angle may
be formed by three, four, or five plane angles, each of which is
two thirds of a right angle. But six or more angles of this
magnitude would be eqﬁ to or greater than four right angles;
anatf consequently, could not form a solid angle (62). gI'he
number of regular solids, therefore, whose faces are triangular
cannot exceed three.

2% Let the faces be squares. A solid angle may be formed
of three right angles, but not of a greater number. Wherefore
there is but one regular solid with square faces.

3% Let the faces be pentagons. A solid angle may be formed
of three angles of a regular pentagon; for the magnitude of one
is six fifths of a right angle, and therefore the aggregate magni-
tude of three suclﬁ angles is 1# of a right angle, or three right
angles and three fifths, which is less than four right angles. But
four or more such angles will be greater than four right angles,
and therefore cannot form a solid angle. Hence there cannot
be more than one regular solid with pentagonal faces.

4°, If the faces were hexagons, the angles would be four thirds
of a right angle, and three such angles would be equal to four
right angles, and therefore could not form a solid angle ; and it
is evident that no greater number of such angles than three
could form a solid angle. If the faces were polygons with more
than six sides, their angles would be greater than those of a



BOOK THE THIRD. 269

-regular hexagon, and similar observations would be applicable.
Hence no regular solid can have faces with more sides than five.
Hence we infer, .

1°. That there cannot be more than five regular solids.

2° That three of these have triangular faces, one square faces,
and the remaining one pentagonal faces.

8° That the solid angles of the three regular solids with tri-
angu]a.r faces are formed of three, four, and five plane angles,
and that the solid angles of the others are formed of three p%ane

angles.

Prorosition XXVIII.

(150) " To construct a regular solid, whose faces are
triangular, and whose solid angles are con-
tained by three plane angles.

From the centre O of an equilateral triangle A C B draw a
perpendicular O P to its plane, and on this perpen-  »
dicular from the points A, B, C inflect lines AP, BP,

C P equal to the side of the equilateral triangle. It is c
evident that these lines will meet the perpendicular in *<5

the same point P. A pyramid will thus be formed on »
the base A B C, having its vertex at P, the four faces of which
will be equal equilateral triangles. This is therefore the regular
solid required.

This solid is therefore the regular tetraedron.

(1561) Cor. 1.—The inclinations of the planes of every pair of
faces are equal. - Let right lines P a, A a, be drawn from P and
A, any two vertices to the middle point a of the opposite edge
B C. These lines will be perpendicular to B C, and will there-
fore include an angle equal to the inclination of the planes PB C
and A BC. In like manner, P ¢, Cc drawn to the middle point
of A B include an angle equal to the inclination of the planes
PABand CAB. I§ut the lines P a, A @, P ¢, C¢, are equal,
being the altitudes of equal equilateral triangles, and the edges
P A and P C are also equal, and therefore tie triangles P a A
and P¢C are equal in :ﬂ respects ; and the angle P a A is equal
to the angle P ¢ C, that is, the inclination of the planes P B C
and P B A to the plane A B C are equal, and in the same manner
it may be proved that the planes of every pair of faces are equally
inclined. '

(152) Cor. 2.—The triangle Pa A is an isosceles triangle,
whose base is to its side as the side of an equilateral triangle to
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its altitude. Hence the vertical angle of such an isosceles triangle
is the inclination of the faces of the regular tetraedron.

" Also in the right-angled triangle P O a the side Oa is one
third of A a, and therefore one third of a P. Hence the inclin-
ation of the faces is equal to the greater acute angle of a right-
angled triangle, whose hypotenuse is three times its lesser side.

Also if the perpendicular A o’ be drawn to P a, the angle
A m O will be equal to Pa A. But it is double the angle A P O,
and A O is the radius of the circle circumscribed round A B C.
Hence the inclination of the faces 18 equal to twice the lesser
acute angle of a right-angled triangle, whose hypotenuse is to
its lesser side as the side of an equi?atera.l triangle to the radius
of its circumscribed circle.
(153) Cogr. 8.—The volume of a regular tetraedron may now
be determined numerically. Let the edge be the unit. The radius

O A of the circle which circumscribes the base will be‘/—%v This

line, the edge A P, (which is=1,) and the perpendicular O P,
form a right-angled triangle. Hence the perpendicular is
\/ 1—%=‘/ % The area of the base is “if; one
third of the product of this and the perpendicular is then
V3 \/ 2 1_ 1 oh .

e X562 which expresses the proportion
of the tetraedron to a cube constructed with an equal edge.

ProrosiTion XXIX.

(154) To construct a regular solid with triangular
faces, and whose solid angles are formed by

four plane angles.

Construct a square A B C D, and through its centre O draw a
perpendicular, producing it on both sides of the
plane of the square. From the points A BC D
inflect on this perpendicular, at both sides of 4
the planes, lines equal to the side of the square. “&-
It is evident that those which are on the same ™
side of the plane will meet the perpendicular at
the same point. Let these points be P and P. B !
Two pyramids will thus be constructed on opposite sides of the
square, and the lateral faces of each of these pyramids will be
the equilateral triangles constructed on the sides of the square.
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These two pyramids united form a regular solid with eight trian-
gular sides, and of which the square is a diagonal plane.

This solid is therefore the regular octaedron.
(155) Cor. 1.— The inclinations of the planes of every pair of
adjacent faces are equal. From D and B draw lines to the
middle points m, n of the edges P’ C, P’ A. These lines are
perpendicular to P’ C and P A, and therefore contain angles
D m B and D n B equal to the inclinations of the planes D P’ C,
BP Cand DP'A, BP A. But they are equal, being the alti-
tudes of equal equilateral trian%}a, and therefore the isosceles
triangles D m B, D » B having the common base D B are equal,
and the angles D m B and D » B which determine the inclin-
ations of the planes are equal. In the same manner the inclin-
ations of other pairs of adjacent faces are proved to be equal.
(156) Cor. 2.— Hence the inclinations of the faces is equal to
the vertical angle of an isosceles triangle whose base (D B) is to
its side (D =) as the hypotenuse of al:irg’it-angled isosceles triangle
is to the altitude of an equilateral triangle constructed on one of
its sides.
(157) Cor.3.—If n O be produced through O to meet P C at
7’ and D »’ be drawn, the triangle n D z’ is isosceles and the line
D O bisects the anglen D#’. But twice the angle z D O is the
supplement of D n B, and therefore the angle ngD ' is the sup-
plement of the inclination of the adjacent faces.
(158) Cor.4.—The angle D ' is the inclination of the faces
of the regular tetraedron; for it is the verticle angle of an isos-
celes triangle (n D n’) whose side (r D) is the altitude of an equi-
lateral triangle constructed on its base (152). Hence the inclin-
ation of the faces of the regular tetraedron and octaedron are
supplemental.
(159) Cor. 5.— If three faces of the octaedron whose bases
form the sides of the same face (suchas AD P, BCP, A ' B,)
be produced through those sides until they form a solid angle,
the produced parts will form a regular tetraedron with the face
through whose sides they are produced.
(160) Cor. 6.— Each pair of faces of the octaedron (A P B,
D P C,) which are constructed on opposite sides, A B, D C of
the square, and also on opposite sides of its plane, are parallel.
For the alternate angles which their planes form with that of the
square are equal.
(161) Cor. 7.—If the planes of three faces which are terminated
in the sides of any one face A B P be produced until they form a
solid angle, and also until they meet the plane of the face D C P”
which is parallel to A B P produced, they will with it form a
regular tetraedron circumscribing the octaedron. Each face of
this tetraedron will be divided into four equal equilateral
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triangles, by the edges of the face of the octaedron by whose
production it is formed.

Hence it follows that the whole surface of the tetraedron is
equal to sixteen times one of the faces of the octaedron, and
therefore to double the whole surface of the octaedron.

It appears, therefore, that if the four corners be cut from a
regular tetraedron by planes through the points of bisection of
every three conterminous edges, the remaining figure will be a
regular octaedron. Since each pyramid which is thus cut off is
similar to the whole, and the edges are in the proportion of 1: 2,
the volumes are as 1: 8. Therefore each of the four pyramids
is equal to an eighth of the orilginal pyramid, and to a fourth of
the octaedron which remains after their removal.

(162) Hence it appears, that the volume of a regular octaedron
whose edge is 1, is the volume of a regular tetraedron whose
edgeis 2. But by (153) the volume of a tetraedron whose edge is

1 isé—;—é-- And since a similar solid whose edge is 2 has eight

times the volume (140), it follows that the volume of a tetraedron
hose edge is 2 i 8 or 2 v
whose edge is 2 is £ 3

edron whose edge is 1 is ‘./_g The volumes of an octaedron and

cube constructed on the same edge are therefore as / 2:8.

Hence the regular octa-

Prorosition XXX.

(163) To construct a regular solid with triangular
faces, and whose solid angles are formed by
five plane angles.

Let a regular pentagon A B C D E be constructed, and through
its centre let a perpendicular
to its plane be drawn. From
the points A, B, C, D, E,
spectively, let right lines equal "%
to the side of the pentagon be Y\ AY:
inflected on this perpendicu- V¢ W d'V
lar. Since the side of a re-
gular pentagon is greater than the radius of its circumscribing
circle, these lines will meet the perpendicular below the plane
of the pentagon ; and since the lines so inflected are equal, they
will meet the perpendicular at the same point P so as to form a
regular pentagonal pyramid. The solid angle P at the vertex of
this pyramid will be then formed of five plane angles, each of
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which is two thirds of a right angle. Two of the plane angles
which form each solid angle at the base of the [;yramid have evi-
dently the same inclination as any two of the plane angles which
form the solid angle P, being, in fact, the same planes. Hence
the solid angles A, B, C, &c. at the base may be considered parts
of solid angles equal to P formed by five plane angles, the fmrt
included by three of the plane angles being cut off by the plane
le of the base of the pyramid.

an%n each side of the base of the pyramid let an equilateral
triangle be constructed, so that its plane shall be inclined to the
adjacent lateral face of the pyramid at the same angle as any
two of the adjacent lateral faces ; that is, so that the angle under
the planes A BC’ and A B P shall be equal to the angle under
any two adjacent planes containing the angle P, and so that the
same may be true of the planes BCIY and BCP, CDE' and
CDP, &e.

Hence it follows, that at each of the vertices A, B, C, &c. of
the base of the pyramid there are four angles, each two thirds of
‘a right angle, and whose planes are united at the same inclin-
ations as four of the angles which form the solid angle P. It
follows, therefore, that the angle C’ B IV included between the
conterminous sides (B C’, BIY) of two equilateral triangles A BC/,
C B, constructed upon conterminous sides of the pentagonal
base, must be an angle of an egru:lateral triangle, so p that
if its plane be supposed to be drawn it will complete the solid
angle B, and render it equal to P. The same conclusion is ob
viously applicable to each of the other angular points of the base.

We have thus a figure formed having a solid angle at P
. formed of five angles of equilateral triangles, having ten equi-

lateral tri m%ees, and a serrateu(—lm;%e or boundary A C’
BIY CE, &ec., the planes of the angles being so disposed that
if the gaps ' BD/, I’ CE/, &c. be up, solid angles will be
formegaat A, B, C, &c. equal to P.

Let another figure in every respect equal and similar to this
be formed, the corresponding points being marked by the small
letters a, b, ¢,. . ..d, ¥, ¢, &c. Let the point ¢ be placed upon
B, and the sides ¢ a, ¢ b, upon the e?l:lnal sides B C/, BIY of the
equal angle C'BIY. It is evident that the points a and b will
coincide with C’ and I respectively. Thus the angle a¢ b in-
:;ned uﬁ c :lg I¥ will complete the solid angle B, which will then

eq to L

The plane of the angle I’ B C has been already proved to be
inclined to that of IV BC’ at the same angle as any two adjacent
plane angles of P, and the same is true of the planes of the
ancles a ? b and ¢/ b &. Since, then, the plane a ¢ b coincides
with C' B I, and the planes ¢ b @ and B IV C are equally

T
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inclined to that plane, the pla.ne ¢ b & must coincide with BDY C.
Since the line B I¥ coincides with ¢ 4, and the angles BDY C
and ¢ bd’ are equal, and in the same plane, the point & must
coincide with C. In the same manner we may prove that the
points ¢, ¢, &e. coincide with E’' D, &c.; and we may prove that
each of the solid angles at these points is equal to P, as we have
already proved of the solid angle B.

Hence it appears, that by the union of the two shells formed
of ten equilateral triangles, in the manner already described, a
re% solid with twenty triangular faces is formed.

is solid is called the regular icosaedron.

(164) Cor.— By the construction it appears, that the inclin-
ations of the planes of every pair of adjacent faces are equal. To
determine this inclination conceive lines drawn from any two ver-
tices A, C to the middle point of the opi)osite edge B P. These
two lines being perE)endicular to B P will contain an angle equal
to the inclination of the planes A P B, C P B. But they are the
sides of an isosceles triangle, whose base is the di n:YA C of
the regular pentagon, and they are each equal to the altitude of
an equilateral triangle, whose side is one of the edges. Hence
the inclination of the planes of the faces of a regular icosaedron
is equal to the vertical angle of an isosceles triangle, whose base
is to its side as the diagonal of a regular pentagon to the altitude
of an equilateral triangle constructed on one of its sides.

ProrosiTion XXXI.
(165) To construct a regular solid with square faces.
This is obviously a rectangular elop?ed, whose base is a
square, and whose altitude is equal to the side of the base.
The regular hezaedron is therefore the cube.

Prorosition XXXIIL
(166) To construct a regular solid with pentagonal faces.

. Let ABCDE be a regular pentagon. From the vertex A
draw the line A a equal to the sidctaa%f

the pentagon, and inclined to A B and . a
A E at angles equal to the anfgle of the

pentagon. The solid angle formed by

the three lines which meet at that point

is one of the angles of the required solid,

formed by the three pentagonal angles
aAB,aAE,and BAE. In the same

manner, let the lines B d, C ¢, &c. be

drawn from each of the angles of the
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n, forming solid angles of the same kind at the points

EMC, , &c.  Let the pentagon, of whicha A Bbare threeg‘i)des,
be completed, and in the same manner let each of the other
pentagons on the sides of the base A B C D E be completed. We
shall thus have a shell with six regular and equal pentagonal
faces, and a serrated edge,a C' 5 ¢, &c. 'The adjacent planes,
forming several pentagonal faces, are inclined each to each at
the same angle; and it may be proved in the same manner as
in (168), that if a plane be drawn through the angle C’'5 D/, a
solid angle will be formed at b equal to those at A, B, C, &c. As
in (163), let another shell in every respect equal and similar to
this be constructed, and let them be uni at their serrated
edges. It will follow, by the reasoning used in the former case,
that the several solid angles which will be formed at q, C, 3, I/,
&ec. will be equal to those at A, B, C, &e.

Hence, by the union of those two shells with six pentagonal
faces, a regular solid with twelve pentagonal faces is formed.

This solid is called the regular dodecaedron.
(167) Cor.— To determine the inclination of the planes of the
adjacent faces. Let any edge B A be conceived to%e roduced
through A, and from a and E let perpendiculars to it be drawn
in the planes of the angles BAa and B A E. Since the angles
B A a and B A E are equal, those perpendiculars will meet B A .
produced in the same point, and will include an a.r:ﬁle equal to
the inclination of the faces B A C’ and B A D. The diagonala E
will be the base of an isosceles triangle, of which the perpen-
diculars are sides. Hence the inclination of the faces is the
vertical angle of an isosceles triangle, whose base is to its side as
the diagonal of a regular pentagon is to the perpendicular from
one of its angles upon a side terminated at the adjacent angle.

T2
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BOOK IV.

On the Cylinder, the Cone, and the Sphere.

(168) Dzr.— A cylinder is a solid produced by the revolution
of a rectangle A B CD, (fig. (Art. 177) ) which is conceived to
turn on the immovable side A B as an axis.
(169) By this motion the sides B C and A D move in planes
which are perpendicular to A B, and their extremities C and D
describe circles in those planes with the points B and A as centres,
and the lines B C and A D as radii. The side D C evidently
describes a surface concave towards the fixed central line A B.
(170) What has been just stated of the sides B C and A D
is equally true of any other line perpendicular to A B, which
also moves in a plane perpendicular to A B, and its extremity
describes a circle on that plane, and which circle is also on the
surface of the cylinder. Hence it follows, that every section of
the cylinder perpendicular to the line A B is a circle equal to the
circular ends A and B.
(171) Der.—The line A B is called the azis of the cylinder,
and the circular ends are called its bases.
(172) Cor. 1.— Every section of a cylinder by a plane through
i% agxls) is a rectangle equal to twice the generating rectangle
(178) Cor.2.—If from any point C in the circumference of the
base of a cylinder a straight line be drawn perpendicular to the
lane of the base, that line must be in the cylindrical surface.
%or it coincides with the side of the generating rectangle when
the extremity of that line is at the point C.
(174) Cor. 8.—The right line CD is the intersection of the
cylindrical surface with every plane through C parallel to the
axis A B or perpendicular to the base. Hence it appears, that
the intersection of a cylindrical surface, and a plane which is
parallel to its axis, is a ri ht line parallel to the axis; or, as the
plane will meet the cylin ical surface twice, it intersects it in
two right lines parallel to the axis, and therefore to each other.
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The intersections of this plane with the bases of the cylinder
are parallel to each other and perpendicular to the
axis, and therefore also ndic to the inter-
sections with the cylindrical surface. Hence the
entire intersection of the plane with the cylinder is
a rectangle, whose sides are parallel and perpendi-
cular to the axis.

(175) Cor. 4.—1It is evident from (178) that a
right line drawn through any point in the cylindrical
surface parallel to its axis is wll’::)ll in the surface.

(176) DEr.— Such a line is ca.lIved a side of the cylinder.

ProrositioNn L

(177) If a plane A B C D be drawn through the axis
of a cylinder, and another FC D G perpen-
dicular to this and passing through the side
C D, the plane F C G D will be entirely out-
side the cylindrical surface except in the line
CD in which it meets it.

For let any other plane A I H B be drawn through the axis
of the cylinder intersecting the plane F CD G. e
In the right-angled triangle ADI the hypo-
tenuse A I is greater than the side A D. Since 7
A1 is greater than the radius of the circular | }{]
base, the point I must be outside the cylinder,
and the same may be proved of H, and every

int in the line H I, and, in general, for every

ine in the plane F C D G parallel to C D.
Hence every part of the plane except the line
C D lies outside the cylinder.

(178) Der,— Such a plane is called a tangent
plane to the cylindrical surface.

(179) Cor. 1.—Hence all tangent planes are parallel to the
axis, and their lines of contact are sides of the cylinder.

(180) ~ Cor. 2.—Tangent planes which pass through the ex-
treﬁ'ties of the same diameter of the base are parallel, and vice
ver )

(181) Der.—If the base of a cylinder be divided at three or
more points, and sides be drawn through these points, and pro-
duced to the opposite base, these sides will divide the ogposme
base similarly with the first; and if planes be drawn through every

T3
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pair of adjacent sides, these planes will form a
prism whose sides are those of the cylinder passing
through the points of division, and whose bases are
formed by the chords of the arcs into which the cir-
cular bases of the cylinder are divided. Such a
prism is said to be inscribed in the cylinder.
(182) Der.—If several planes touch the same cylinder
intersecting each other, and also the planes of the
bases of the cylinder produced, their intersections
with the planes of the bases will be tangent to the bases them-
selves, and the planes may be so disposed that :
these tangents shall form polygons circumscribing
the bases. Hence a prism will be formed of
which the tangent planes are lateral faces, and the
polygons are bases.

Such a prism is said to circumscribe the cylin-
der.
(188) It is evident, that both the volume and
surface of a cylinder are greater than those of
any inscribed prism, and are less than those of any
eircumscribed prism.
(184) This observation is applicable to the surfaces, whether
the bases be considered as parts of them or not.
(185) It is also evident, that as the number of sides of the
mscribed or circumscribed prism is increased, the difference
between its volume or surface and that of the cylinder is dimi-
nished, and that the sides may be so increased in number as to
render this difference less than any given magnitude.

" ProposiTion II.

(186) If a cylinder and right prism have equal bases
and altitudes, they will have equal volumes.

Let V be the volume of the cylinder, and V’ that of the prism.
If they be not equal, V must either be greater or less that V”.

First. Let V be greater than V. t a prism be inscribed
in the cylinder V, such that the difference between its volume
and that of the cylinder shall be less than the difference between
V and V/, and let the volume of this prism be P. It follows
that P is greater than V’; but, since these prisms have equal alti-
tudes, the base of P must be greater than the base of V’, and
therefore greater than the base of V. But the base of Pisa
polygon inscribed in the base of V, and therefore cannot be
greater than the base of V; hence the volume V cannot be
greater than V.
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Secondly. Let V be less than V. Let a prism be circum-
scribed round the cylinder V, such that the difference between it
and the cylinder shall be less than the difference between V
and V/, and let the volume of this prism be P. Then V’is
greater than P, and therefore the base of V” is greater than the
base of P, and hence the base of the cylinder is greater than
that of its circumscribed prism, which cannot be. Hence V
cannot be less than V’, and since it can neither be greater than
V/, nor less, they must be equal.

(187) Cor. 1.— Hence the volume of a cylinder is expressed

numerically by the il:)duct of its base and altitude.

(188) Cor. 2.—Let a be the altitude of a cylinder, and r the

radius of its base, and let # be the number which expresses the

approximate ratio of the circumference of a circle to its diameter.
ex;2 the area of the base is x 7%, and the volume of the cylinder

is7xra

(189) Cor. 3.—Since the areas of circles are as the squares of

their radii, or diameters, it follows that the volumes of cylinders

are as the products of their altitudes and the squares of their

diameters, or in a ratio compounded of their altitudes and the

squares of their diameters.

(190) Cor. 4.— The volumes of cylinders with equal bases

Ere as their altitudes, and those with equal altitudes are as their

ases.

(191) Der.—Similar cylinders are those whose altitudes are

proportional to their diameters.

(192) Cor. 1.—The volumes of similar cylinders are as the

cubes of their altitudes or diameters.

(198) Cor. 2.— In equal cylinders the bases and altitudes are

reciprocally proportional, and vice versd.

(194) Cor. 38.—In equal cylinders the altitudes are inversely

as the squares of the diameters, and vice versd.

Prorosimion III.

(195) If a cylinder and right prism have equal alti-
tudes and isoperimetrical bases, they will have
equal convex surfaces.

(By the conver surfaces is meant those parts of the surfaces
which are included between the bases.)

Let S be the surface of the cylinder, and § that of the prism.
If these be not equal,

1° Let S be ter than &/, and let a prism be inscribed in
the cylinder, such that the difference between its surface and
that of the cylinder shall be less than the difference between S

T 4
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and & and let the surface of the prism be P. Hence P is
greater than &', and therefore the perimeter of the base of P is
greater than that of &', or than that of the given cylinder; that
15, the perimeter of a Kolygon inscribed in a circle is greater than
the circle itself, which is absurd.

2° Let S be less than §'; by reasoning precisely similar to
that used in Prop. IL we may prove, that if this were the case,
the perimeter of a polygon circumscribed round a circle is less
than that of ‘the circle itself.

Hence it follows that S and & are equal.

ProrosiTion IV.

(196) The convex surface of a cylinder is equal to the
rectangle under its altitude and the circum-
ference of its base.

For it is equal to a prism with an isoperimetrical base (195).
(197)  Cor. 1.— A cylindrical surface is represented numeri-
call{asl;y the product of its altitude into the circumference of
its 2

(198) Cor. 2.—Let a and r represent.the altitude and radius
asin (188). Then S =2=xra.
(199) Cor. 3.— Since the circumferences of circles are as their
diameters, cylindrical surfaces are as the rectangles under their
altitudes, and the diameters of their bases.
(200) Cor. 4.—Cylindrical surfaces with equal bases are as
their altitudes, and with equal altitudes are as the circumferences
of their bases.
(201) Cor. 5.—The surfaces of similar cylinders are as the
squares of their diameters or altitudes.
(202) Cor. 6.—In equal cylindrical surfaces the diameters
and altitudes are reciprocally proportional, and vice versd.
(203) DEF.— A cone is a solid produced by the revolution of
the hypotenuse of a right-angled triangle about one of the sides
as a fixed axis.

Let P B be the hypotenuse, and P A the fixed axis. The
side A B moving in a plane at right angles to P A
describes in that plane a circle B M N.  This circle
is called the base of the cone. A convex surface,
called a conical surface, is described by the motion
of the hypotenuse; and as this line, in all its suc-
cessive positions, must be entirely in the conical
surface, it follows that every right line drawn from
P to a point in the circumféerence of the base must ™
be entirely in the conical surface.
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The point P is called the vertez, and every right line drawn
from that point to the circumference of the base is called a side
of the cone.

(204) Der.— The line P A is called the azis of the cone.
(205) Cor. 1. — It is evident, therefore, that if any plane pass
through the vertex and intersect the conical surfaces, the inter-
sections will be two sides of the cone; and as the intersection
with the base will be a chord of the circle, the whole intersection
will be a triangle M P N.

gOG) Cor. 2. — Wllxat ha:lbeen (ibseglved of the base 3&1 B of

e generating triangle, is also applicable to any perpendicular
G H to thet:n;‘;is terrginated in thglilypotenuse ofy the generating
triangle. Such a line G H moves in a plane perpendicular to
P A, and its extremity H describes a circle. Hence it follows,
that every section of a cone by a plane parallel to the base is a
circle, the centre of which is in the axis, and the radius G H of
which is to that A B of the base as their distances from the
vertex, that is, as P G : PA.

ProrosiTioN V.

(207) If aplane P A B be drawn through the axis of
a cone intersecting the conical surface in the
side P B, and through P B another plane
C BPD be drawn perpendicular to the former,
this plane will lie entirely outside the conical
surface, except in the line P B, in which it
meets it.

For let any other plane P A H be drawn through the axis P A
and intersecting the planeCBP D. In the right~
angled triangle A B H the hypotenuse A H is
greater than the side A B or the radius of the base, N
and therefore the point H lies outside the base.
The same may be proved by every section parallel
to the base, and therefore it follows that the li]’ane
C B PD meets the conical surface only in P B,
lying elsewhere wholly outside it.
(208) DEer.— Such a plane is called a tangent
plane to the conical , which it touches in
the line P B,
(209) Cog. 1. — Hence all tangent planes pass through the
vertex, and the lines of contact are sides of the cone.
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(210) DEer. — If the circumference of the base be divided at
three or more points, and lines be drawn from these to the vertex P,
as also lines joining the points of division so as to form a polygon
inscribed in the base, these lines will form the edges of a pyramid
whose base is the polygon inscribed in the base, and whose sides
are the lines drawn to the vertex, and all of which are sides of
the cone. Such a pyramid is said to be inscribed in the cone.
(211) Der.—If several tangent planes be drawn to the same
cone intersecting each other, and also the plane of the base of the
cone produced, their intersections with the plane of the base will
be tangents to the base itself, and the planes may be so disposed
that these tangents shall form a polygon circumscribing the base.
This polygon will be the base of a pyramid whose lateral faces
are the tangent planes. Such a pyramid is said to circumscribe
the cone.
(212) It is evident that both the volume and surface of the
cone are greater than those of any inscribed, and less than those
of any circumscribed pyramid. . v

This observation is applicable to the surfaces whether the bases
be parts of them or not.
(213) 1t is also evident, that the number of sides of the bases of
the inscribed or circumscribed pyramid may be increased until
the difference between its volume or surface and that of the cone
shall be less than any given magnitude.

Prorosition VI.

(214) If a cone and pyramid have equal bases and
equal altitudes they will have equal volumes.

This proposition is proved in exactly the same manner as
(186). In fact, the same words may be used here, changing
cylinder into cone, and prism into pyramid.

(215) Cor. 1.— Hence the volume of a cone is ressed
numerically by one third of the product of the base and altitude.
(216) Cor. 2.— A cone is one third of a cylinder on the same
base and in the same altitude.

(217) Cor. 8. —If a be the altitude, and r the radius of the
base, ¢ » r* a is the volume (188).

(218) Cor. 4.— The volumes of cones are as the product of
their altitudes, and the squares of the diameters of their bases.
(219) DEr. — Similar cones are those whose axes are .as the
radii of their bases.

(220) Cor. 5. — The volumes of similar cones are as the cubes
of their altitudes or diameters. : : -
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(221) Cor. 6.— Cones with equal bases are as their altitudes,

and with equal altitudes are as their bases.

(222) Cor. 7. — If the volumes of cones be equal, their bases

and altitudes are reciprocally proportional, and vice versi. Also

if the volumes be equal, their altitudes and the squares of the

diameters of their bases are reciprocally proportional, and vice
versd.

Prorosition VII.

(223) The surface of a circumscribed pyramid, ex-
clusive of its base, is equal to half of the
rectangle under the side of the cone and the
perimeter of the base.

"For let P B (fig.(Art.207)) be the line of contact of one of the
trian faces,and let E C be the corresponding side of the base,
and P A the axis of the cone. The plane P A B is perpendicular to
the plane of the base, and also to the plane D B C. Hence the
intersection E C of these planes is perpendicular to the plane
P A B, and therefore perpendicular to P B. Hence the area of
the triangle E P C is equal to half of the rectangle under the side
P B of the cone, and the side E C of the polygonal base of the
pyramid. The same being true for every triangular face of the
pyramid, it follows that the sum of its tri faces is equal
to half the rectangle under the side of the cone, and the peri-
meter of the base of the J)lyramld.

(224) Cor.— Hence the surfaces of circumscribed pyramids
are as the perimeters of their bases.

ProrosiTion VIII.

(225) A conical surface is equal to half of the rect-
angle under the side of the cone and the
circumference of its base.

If the conical surface be not equal to half this rectangle, let
any other conical surface having the same vertex and axis and its
base on the same plane be equal to it. The base of this other
cone being concentrical with that of the given one, must be either
contained within the base of the given cone, or must contain the
base of the given cone within it.

First. Su that it is contained within the base of the
given cone. t the surface of the given cone be S, and let the
side of the given cone be s, and the circwnference of its base c.
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The surface of the lesser cone will then be §sx c. Let the poly-
n be circumscribed round the base of the lesser cone, so as to
%2 contained within the base of the greater. If this polygon be
the base of a pyramid circumscribing the lesser cone, its surface
will be § ¢ x ¢, ¢ being the circumference of its base, and ¢ the
side of the lesser cone; and this surface will be greater than that
of the lesser cone, and less than that of the greater; that is, .
3dxd is freater than 3sxc, and less than S. But ¢ the
side of the lesser cone is less than s the side of the greater, and
¢ the perimeter of the included polygon is less than the cir-
cumference of the circle which includes it. Therefore & x ¢ is
less than } sx ¢; but it was already proved to be greater than
it, which is absurd. Therefore the base of the cone whose sur-
face is equal to § s X ¢ is not contained within that of the given
cone.
Secondly. Let it contain the base of the given cone within it.
Leta polygon be circumscribed round the base of the given cone,
80 as to be included within the greater base. As before, let this
pol ﬁon be the base of a pyramid circumscribing the given cone,
a.mi7 et the circumference of the base of this pyramid be ¢/, its
surface will then be § sx ¢, and that of the greater cone which
includes it, and is therefore greater than it,is § sx¢. But ¢ the
perimeter of the polygon is greater than ¢ the circumference of
the circle which it circumscribes: and therefore § s x ¢’ is ter
than § s x ¢, the contrary of which has just been proved. %ce
the base of the cone whose surface is equal to 4 s X ¢ can neither
be within nor without that of the given cone, and therefore must
coincide with it. The surface of the cone is therefore equal to
half the rectangle under its side, and the circumference of its
base. ‘

(226) Cor 1. — The surface of a cone is represented numeri-
cally by half the product of its side, and the circumference of its
base.

(227) Cor. 2. — The surface of a cone is half that of a cylinder
on the same base and with an equal side.

(228) Cor. 8. — If a be the side, and r the radius of the base,
the surface=»r a.

(229) Cor. 4. — Conical surfaces are as the rectangles under
their sides and the diameters of their bases.

(230) Cor. 5.— Conical surfaces with equal sides are as the
diameters of their bases, and those with equal diameters are as
their sides.

(281) Cor. 6. — Similar conical surfaces are as the squares of
their sides, or the diameters of their bases.

(232) Cor. 7. — Equal conical surfaces reciprocate their sides
and diameters.
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- (283) Cor. 8.—The surface of a cone is equal to a triangle
whose altitude is the side and whose base is the circumference of
the base: or it is equal to the area of a sector whose radius is
the side, and whose arc is the circumference of the base.

ProrosiTion 1X.

(284) The volume of a truncated cone is equal to the
sum of the volumes of three cones, having
the same altitude as the truncated cone, and
having bases two of which are equal to those
of the truncated tone, and the third is a mean
proportional between them. Also the conical
surfpace is equal to the rectangle under the
side, and half the sum of the circumferences
of the bases.

The first part is evident from (146) and (214).

Suppose the truncated cone completed. Let AB be equal
to the circumference of the greater base, and let the c
altitude CD of the triangle ACD be equal to the
side of the entire cone. Take DE equal to the » ¢
side of the truncated cone, and C E will be equal
to the side of that part which is cut offi Draw FG o™ ©

el to AB.

The parallel FG is equal to the circumference of the lesser
base of the truncated cone. For, since the triangles ACB and
F C G are similar,

CD: CE=AD:FG.

But CD and CE are equal to the altitudes of the whole cone
and the part cut off, and AB is equal to the circumference of
the base of the former. Since these are similar cones (219, 206),
the line F G must be equal to the circumference of the base of
the}gm-t cut off (206).

ence the area FCG is equal to the surface of the part cut
off (233), and A CB being equal to the whole surface, the dif-
ference AFGB is equal to the conical surface of the truncated
cone. But AFGB is equal to the rectangle under DE and
half the sum of AB and FG. El (189).
(235) ScuoL.— The several results to which we have arrived,
respecting cylindrical and conical surfaces, may be obtained by
a more expeditious and obvious sroeess: although, perhaps, not
so rigorous a one as might be desired. It is evident, if a rect-
angle, whose base is equal to the circumference of the base of a
cylinder, and whose altitude is equal to the side of the cylinder,
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be described upon a thin flexible plane surface, such as paper,
and the side of this rectangle, which is equal to that of the
cylinder, be applied to it, the rectangle may be rolled round the
cylinder so as to cover it exactly. Thus it appears, that a cylin-
. drical surface is nothing more than a plane rectangle which is
bent into a round form in one direction. This illustrates the
result of (196). )

Again, if a circular sector be similarly described on paper, so
that its radius shall be equal to the side of a cone, and its arc
equal to the circumference of the base, this sector may be rolled
upon the conical surface, so as to cover it exactly in the same
way as with the cylinder (233).

Cylindrical and conical surfaces belong to an extensive class
of surfaces, which are distinguished by the general property to
which we have just alluded, viz. that a plane flexible surface may
be applied to them, so as exactly to fit them, or to be in every
point in contact with them. Such surfaces are called by the

neral name of developable surfaces, and form an important sub-
Ject in the higher departments of geometry.

The student may, perhaps, conceive that a flexible plane can
be applied to any surface. He will, however, see his mistake,
if he attempts applying a piece of paper to a globular surface.
It will be found to gather into folds, and some parts of it to
overlay others.

In elementary geometry it is not usual to extend our investi-
gations beyond right cylinders and right cones. ‘There are, how-
ever, oblique cylinders and cones whose axes are not perpen-
dicular to their bases, and which enjoy properties very nearly the
same as those which we have established in the present boo!
gzis) DEr.— A sphere is a solid terminated by a curved sur-

all the points of which are equally distant from a certain
point within 1t, called its centre. ’

A sphere may be conceived to be {produced by the revolution
of a semicircle round its diameter; for the surface described by
the semicircle in this motion will evidently have all its points
equally distant from the centre of the generating semicircle.

We shall confine our investigations here to the magnitude of
the surface and volume of the sphere. For the geometrical pro-
EFrties of the sphere in general, the student is referred to the

reatise on Spherical Geomen% contained in the first three sec-
tions of the second part of my TR1GONOMETRY.

LEMMaA.

(237) Let ABCD, &c. be a regular polygon with an
even number of sides circumscribed round a
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circle whose centre is O, and let GF be a
diagonal of the polygon dividing it into two
equal parts and passing through the centre O
of the circle. If the figure be supposed to
revolve round G F, each side as A B will de-
scribe the surface of a truncated cone, which
will be equal to a cylindrical surface whose
altitude is AN or ML, and whose radius is
that of the circle.

For the conical surface described by A B is equal to half the
sum of the circumferences described by the
points A and B multiplied by the line A B 2 v
(234). Draw O I to the point of contact I [ L
of A B. The point I being the middle point
of A B, the circumferences described by the N
points A, I, and B are in arithmetical pro- : :
gression : and therefore the circumference offs- °

escribed by the point I is half the sum of
those described by the points A and B. Hence
the conical surface described by A B is equal »
to the line A B multiplied by the circum-
ference described by the point I. Let the
circumference described by the point I be ¢, "
and let the circumference of the circle whose centre is O and
radius O I be C, and we have
c:C=IP:IO.
But by the similar right-angled triangles BA N and O I P we

have
IP:IO=AN:BA,
«c:C=AN:BA,
‘wexBA=CxAN=CxML;

that is, the circumference described by I multiplied by the line
B A, is equal to the circumference of the revolving circle multi-
plied by M L; but the former is equal to the conical surface
described by the line A B, and the latter is equal to a cylindrical
surface whose base is equal to the revolving circle, and whose
altitude is M L.

(238) Cor.— Let a tangent T T” to the circle parallel to G F
be drawn, and from G and F draw G T, I T’ perpendicular to
G F, and meeting this tangent. By the revolution of the figure
round G F the tangent T T will describe a cylindrical surface
having G F for its axis. Let M A, L B, &c. be produced to meet
T T' at A, B, &c. The cylindrical surface described by A’ B
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will be equal to its altitude A’ B’ or M L multiplied by the cir-
cumference described by B’, which is a circle whose radius is
B’ L which is equal to O I. Hence the cylindrical surface
described by A’ B’ is equal to the conical surface described by
A B. In the same manner the cylindrical surface described by
B’ C'is equal to the conical surface described by B C, and so on.
It follows, therefore, that the sum of the conical surfaces de-
scribed by any number of sides of the polygon A B, B C, C D, &c.
is equal to the A’ ¥ of the cylindrical surface described by
T T’ corresponding to those sides, and that the surface described
by the entire contour G A B C D E F of the polygon is equal to
the entire cylindrical surface T T.

Prorosition X.

(239) The surface of a sphere is equal to that of the
circumscribed cylinder.

The surface of the cylinder T T” is not greater than that of the
sphere, for if it were, let it be

ual to the surface of the sphere
whose gimnffr is D E greater
than A B. t a regular polygon
with an even number of Bx(:iesgobe
circumscribed round the circle
A B, and s0 as to be contained
within the circle D E. The sur-
face produced by the revolution
of this polygon on F G is equal to
a cylindrical surface whose alti-
tude is F G, and base is a circle
equal to A B. Hence this sur-
face is greater than that of the
cylinder T T, since its base is the same and it has a alti-
tude, and therefore it is greater than the surface of the sphere
D E; but it is contained within the surface of this sphere and
is therefore less than it, which is absurd. Hence the surface of
the cylinder T T is not greater than that of the sphere.

The circumseribed cylindrical surface is not less than that of
the sphere: for if it were, let the cylindrical surface circumscribing
the sphere D E be equal to the surface of a lesser sphere A B. Let
a polygon with an even number of sides be circumscribed round
the circle A B, and so as to be contained within the circle D E.
It then follows, as before, that the surface of this polygon is equal
to that of a cylinder which is less than the cylinder cucumscf'ﬁ)ed

D
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round D E, but it is greater than the surface of the sphere A B
which it circumscribes, and which is equal to the cylindrical sur-
face circumscribed round D E. Hence it follows, that the cy-
lindrical surface circumscribed round a sphere is not less than
the surface of the sphere.
Since the cylindgical surface is neither greater nor less than

the surface of the sphere, it must be equal to it.

240) Cor. 1. — The cylindrical su:gme is equal to the circum-
erence of its base, which is a great circle of the ?here, multi-
plied by its altitude, which is a diameter of the sphere. Hence
the surface of the sphere is equal to the circumference of one
of its great circles multiplied by its diameter. But the circum-
ference of the great circle, multiplied by its radius, is equal to
twice the area of the circle, and therefore, when multiplied by
the diameter, is four times the area. Hence ¢the s ofa
sphere is equal to four times the area of one of its great circles.’
(241) Cor. 2.— Hence the surfaces of spheres are as the
squares of their radii or diameters.

Prorosition XI.

(242) If a cylinder be circumscribed around a sphere,
and they be intersected by any two parallel
planes, perpendicular to the axis of the cy-
linder, the parts of the surfaces intercepted
between the planes will be equal.

Let E F be any arc of the circle described by the radius CE,

and let F G bedrawn c

ndicular to the T x

pr:d.lrp:s CE. The sur- N
face of the spherical p
segment described
by the revolution of
the arc EF round
C E is equal to the
surface of a cylinder o o
whose altitude is
EG, and whose base
is a circle with the ¥
radius CE.

For, first, let this
spherical surface be
less than that of the
eylinder,andlet itbe =

R
R
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equal to the surface of a cylinder having the altitude E G, and a
base with the lesser radius C A. In the arc E F inscribe a por-
tion of a regular polygon EM N O P F, whose sides shall not
meet the arc A B, and draw C I perpendicular to one of the
sides of the polygon. By (237) the surface generated by the
revolution of the polygon will be equal to that of a cylinder whose
altitude is E G, and ti: radius of whose base is CI. Hence the
surface produced by this poly:i;on must be greater than the sur-
face of a cylinder whose altitude is E G, and whose radius is A C.
‘But this last is, by hypothesis, e%m to the surface produced by
the revolution of the arc E F. From whence it follows, that the
spherical surface produced by the revolution of the arc E F is
less than the surfg::e produced by the polygon inscribed in it;
but the former surface includes the latter entirely within it, and
therefore cannot be less than it. Hence it follows, that the sur-
face of the spherical segment E F is not less than the surface
of the cylinder whose altitude is E G, and whose radius is E C. .

Next let the spherical surface be greater than that of the
cylinder. Let the proposed spherical surface be that which would
be produced by the revolution of the are AB round AC. We
are to prove that this surface is not greater than that of a cylin-
der whose altitude is A D, and whose radius is A C. If possible,
let it be greater than this cylindrical surface. But if the surface
generated by the arc A B be greater than that of the cylinder
whose altitude is A D and radius A C, for the same reason the
surface produced by the arc B H must be greater than that of the
cylinder whose altitude is D H and whose radius is A C; and
hence the whole surface of the sphere would be greater than that
of the circumscribing cylinder; which is contrary to what was
proved in (239). Hence the surface generated by the arc A B
1s not greater than a cylindrical surface whose altitude is A D
and whose radius is A é’

Hence it appears, that any plane drawn intersecting a sphere
and its circumseribing cylinder, parallel to the bases of the cy-
linder, divides the cylindrical and spherical surfaces into parts
which are equal each to each. Hence, if two such planes be
drawn, the cylindrical and spherical surfaces which they include
between them will be the differences between the equal cylin-
drical and spherical surfaces which they cut off towards either
base of the cylinder, and therefore those differences are equal.
(243) Cor 1.— The spherical surface included between two
parallel planes intersecting the sphere is therefore equal to the
circumference of a great circle, multiplied by the perpendicular
distance between the planes.

(244) CoRr.2.— Let the distance between the planes be a, and Jet
7 be the radius of the sphere. The circumference of a great circle
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is 2 x r, and the surface between the planesis 2x ra. If# bea
mean proportional between 2 r and @, we have 2 » r a=x 13,
Hence the surface is equal to the area of a circle whose radius is
a mean proportional between the distance between the planes
and the diameter of the sphere,
(245) Cor.3.— If one of the planes be a tangent plane, the
surface becomes that of a spherical segment, and the mean pro-
Eortiona.l between the diameter and perpendicular is the chord

F of the generating arc. Therefore the surface of a spherical
segment is equal to a circle whose radius is the chord of half
the arc formed by a section of the segment by a plane through
its axis.

Prorosition XII.

(246) If the triangle BAC, and the rectangle BCEF,
having the same base and the same altitude,
revolve together round their common base
B C, the solid described by the revolution of
the triangle will be one third of the cylinder
described by the revolution of the rectangle.

Draw the perpendicular A D. The cone described by B A D
is one third of the cylinder AE
described by B F A D, and in
like manner the cone de-
scribed by C A D is one third
of the cylinder described by
CEA Ig (216). When the perpendicular A D falls within the
base, the solids in question are the sums of these cones and
cylinders, and when it falls without the base A D they are their
differences. In either case the truth of the proposition is there-
fore apparent. If the perpendicular fall on the extremity of the
base, the solids in question will be simply a cylinder and cone
baving ;he same base and altitude, and the proposition is reduced
to (216).

(24(7) Cor.— Since the cylinder is equal to . AD?x B C, the
solid described by the triangle will be 4 ». AD*x BC.

A

Prorosrrion XIIL
(248) The triangle C A B being supposed to revolve
round any line CD passing through the ver-
tex C, to determine the volume of the solid
produced by its revolution.
L]
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Produce the side A B until it meet the axis in D, and draw the
right lines AM and B N perpendicular to the .

axis C D.

The volume of the solid described by the o
triangle CAD is $ » . AM?>xCD (246).
The solid described by the triangle C BD is

in like manner 4 » x B N2 x CD. Hence the difference of these
solids, or the solid described by ABC, is4«. (A M2—B N?)

x C D.

Let I be the middle point of A B, and draw I K perpendicular
toCD. Hence AM, go , and B N are in arithmetical p.
sion, and therefore 2 1 K=A M+ BN. Also, if B O be drawn
parallel to CD, A O=A M—BN. Therefore 2IKxA O
=(AM+BN) x(AM—BN)=A M?—B N2. Hence the solid
described by the triangle C A Bisequal to $# x I K x AO x CD.
If CP be grawn perpendicular to A B, the triangle D C P and
A B O are similar; and we have therefore

AO:AB=CP:CD,
*AOxCD=ABxCP.

But ABx CP is twice the area CAB. Hence the solid de-
scribed by C A B is equal to $ x x I K x area C A B; or, which
is the same, it is equal to 4 C A B multiplied by the circumference
whose radius is ﬁ( Hence ¢ the volume of the solid described
by the revolution of the triangle C A B is equal to two thirds of
the area of the triangle C A B multiplied by the circumference
traced by I, the middle point of the base.”

. We have, in the preceding proof, supposed that A B produced
will meet the axis C D. e same result will, , :
however, be obtained if A B be parallel to the
axis. In this case the volume of the cylinder de-
scribed by A M N B is equal to . A M?. M N;
the cone described by ACM is equal to
3x. A M2, CM, and the cone described by B C N is equal to
4x. AM?. CN. Add the first two volumes, and subtract from
their sum the third, and we shall have the volume described by
ABC equal tor. AM? (MN+34 CM—4 CN); and since
CN—~CM=MN, the volume is equal to . A M2, § M N
=4 n. CP2.M N; which is equivalent to the result already
found.

(249) Cor. 1. —If the triangle A C B be isosceles, the point P
will coincide with I, and the area CA B
will be e?ual to ABx3 CI, and the
volume of the solid will be 4 rx AB C 3
xIK,or 4 xABxIKxCIL But

the triangles A B O and CIK are similar,
and therefore ‘ e WE W
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' ' AB:BO=CIl:1K;
or AB: MN=CI:IK.
ABxIK=MNxCL

Hence the solid described by the isosceles triangle A B C is equal
o 3xx MNxCI. ‘

ProrosiTioNn XIV.

(250) Let AB, BC,CD,........ be several sides
of a regular polygon, O its centre, and
O1 the radius of the inscribed circle; if
the polygonal sector AOD, lying all on
the same side of the diameter FG, be sup-
posed to revolve round this diameter, the
volume of the solid described by it will be
equal to §7.0I’. MQ; MQ being that
part of the axis included between perpen-
diculars AM, D Q from the extremes of the -
polygonal sector.

Since the polygon is regular, the several
triangles A O B, BOGC,...... are equal and
jsosceles. By (249) the volume described b
the triangle A O Bis equal to $#.OI’. MN.
In the same manner the volume described by
BOCisequal to $5.012.N O, and so on.
Hence the whole solid described by the poly-

onal sector being the sum of these is equal to
x.OP(MN+NO+....),or§=.0*

.MQ

ProrosiTioNn XV.

(251) The volume of a spherical sector is equal to its
spherical surface multiplied by a third of the
radius, and the volume of the whole sphere is
equal to the surface of the sphere multiplied
by a third of the radius.
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Let A B C be the circular sector which by its revolution round
A C describes the

spherical sector.The
surface of the sphe-
rical ent de-
scribed by the are
A Bisequal to27,
AC.AD (242).
Now the volume of
the spherical sector
ACB is equal to
$r. AC*. AD, that
is, the surface of the
spherical segment
multiplied byathird
ofF the radius. e

irst, su t
$r. A I.)oieD is
greater than the sector A C B and equal to the sector ECF. In
the arc E F inscribe a portion of a regular polygon, so that its
sides shall not meet the arc A B. t the polygonal sector
E CF be supposed to revolve at the same time wit.gthe accEF
round EC. t CI be the radius of the circle inscribed in the
polygon, and let F G be drawn perpendicular to E C. The
volume described by the polygonal sector will be equal to
4x.CI*. EG. (250); but CI 1s greater than AC,and EG is .
greater than A D; for if AB anﬁTEF be drawn, the similar
triangles E F G and A BD give

EG:AD=FG:BD=CF:CB,

and therefore E G is greater than A D.

Hence it follows, that §.x.CI2. E G is greater than $x.CA2. AD.
The former is equal to the volume (ferscribed by the polygonal
sector, and the latter is, by hypothesis, that of the spherical sector
E CF. Hence the volume}:f;cribed by the %?ly nal sector is
greater than that of the spherical sector E C F, of whichitisa
part, which is absurd. Hence the spherical surface multiplied
by a third of the radius is not greater than the volume of the
spherical sector.

Secondly, this product is not less than the volume of the spher-
ical sector. Let E CF be the circular sector which by its revo-
lution describes the spherical sector, and suppose, if possible, that
$x CE.EG is equal to a smaller sector A C B. The former
construction being retained, the volume of the polygonal sector
will be § », CI*. EG. But Clis less than CE, and therefore
the volume of the polygonal sector is less than § . C E*. EG,
which, by hypothesis, is equal to the volume of the spherical sector
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ACB. Hence the volume of the polygonal sector must be less
than that of the spherical sector A C B, which is a part of it,
which is absurd. Hence the product of the spherical surface by
a third of its radius is not less than the volume of the spherical
sector. '
Hence this product must be equal to the volume of the
spherical sector. . . . .
If the circular sector A C B be supg:?
increase of the angle A CB, until it becomes equal to a semi-
‘circle, the corresponding spherical sector will become equal to
the whole sphere. Hence the volume of the entire sphere is
equal to the product of its surface by a third of its radius.
(252) Cor. 1. — The volume of a spherical sector is equal to
that of a cone whose altitude is the radius, and whose base is
equal to the spherical base of the sector; for the volume of the
cone is equal to its base multiplied by a third of its altitude.
This may also appear from considering the spherical sector to
be formed of an infinite number of cones having the same vertex,
equal altitudes, and infinitely small bases, which bases may be
conceived to form the spherical base of the sector.
(253) Cor. 2. — The volume of a sphere is equal to that of a
cone whose base is equal to the surface of the sphere, and whose
altitude is equal to the radius. ,
(264) Cor. 8.— The volumes of spheres are as the cubes of
their radii or diameters. For their surfaces are as the squares
of the radii, and these being multiplied by one third of the radii
give products which are as the cubes of the radii. )

to increase by the

ProrosiTioNn XVI.

(255) Let a square and an equilateral triangle be cir-
cumscribed round the same circle, the base
of the equilateral triangle coinciding with a
side of the square, and let the whole figure
revolve round the altitude BA of the tri-
angle. A sphere will thus be described
circumscribed by a cylinder and cone; the
entire surfaces of this sphere, cylinder, and
cone are in continued proportion, the com-
mon ratio being 2: 8, and their volumes are
also in continued proportion and in the same
ratio.



206 ELEMENTS OF SOLID GEOMETRY.

The surface of the sphere is equal to four times one of its-
great circles (240). The cylindrical surface is P :
equal to this; and as each of the bases of the
cylinder is a great circle, the entire surface of -

e cylinder is equal to six times a great circle. -
Hence the ratio of the surface of the sphere
to the entire surface of the cylinder is 4: 6,
or 2:3. '

If the radius C A of the circle be r, half the base of the equi-
lateral triangle will bey/ 3. r; hence the area of the base of
the cone will be 3r3x. The circumference of the base will be
2.+ 8.rx and the side of the coneis 2. o/ 3. r; therefore
the conical surface is 2.8 .72 x, or 6 72 x (228) ; to which if the
base be added, the entire surface of the cone will be 9 2 x, or
nine times the area of a great circle. Thus it appears, that the
entire surfaces of  the sphere, cylinder, and cone are respectively
equal to 4, 6, and 9 great circles, and are, therefore, in continued
proportion, the common ratio being 2 : 8.

e volume of the sphere is equal to 4 ° » (251). The
volume of the cylinder is 213 . e&’he base of the cone being
8 7”2 x, and its altitude 8 r, its volume is 8 7 . Hence the
volumes of the three solids are as the numbers §, 2, 8, or
4, 6, 9, which are in continued proportion, the common ratio

ing 2 : 8.

(266) Cor.— The base of the cone is equal to three great cir-
cles, and its conical surface to six. Hence in such a cone the
conical surface is double its base.




APPENDIX.

No. I
GEOMETRICAL ANALYSIS.

SECTION I
Introduction.

1) @AL_Y_uJ, or resolution, is a name given to a species of mathe-
matical investigation, which commencing with the assumption of that
which is sought as if it were given, a chain of relations is pursued
which terminates in what is given (or may be obtained) as if it were
sought. SyYNTHESi8y Or composition, is a process the very reverse of
this ; being one in which the series of relations exhibited commences
with what is given, and ends with what is sought. Consequently,
analysis is the instrument .of invention, and synthesis of in-
struction.

The analysis of the ancients is distinguished fropythat of thefmo-
derns }y being conducted without the aid of any célculus, or the use
of any principles except those of Geometry, thelattepbeing conducted
entirely by the language and principles of Algebra. The ancient is,
therefore, called the Geometrical Anglys:,

The interest which the Geometrical Analysis derives from its anti-
quity, and from having been the instrument by which the splendid
results of the ancient Geometry were obtained, would alone be suffi-
cient to render it an object of attention, even after the discovery of the
more powerful agency of Algebra. But this is not its only nor its
principal claim upon our notice. Its inferiority, compared with the
modern analysis, in power and facility, is balanced by its extreme
gurity and rigour ; and though its value as an instrument of discovery

e lost, yet it must ever be considered as a most useful exercise for
the mind of a student ; and it may be fairly questioned, whether it may
not be more conducive to the improvement of the mental faculties
than the modern analysis, unless the latter be pursued much farther
than it usually is in the common course of academical education,
in which the student acquires little more than a knowledge of its
notation. Newton was fully aware of the advantages attending the
cultivation of this branch of mathematical science, and in many parts
of his work laments that the study of it has been so much abandoned.
He considered that, however inferior in power and despatch the
ancient method might be, it had greatly the advantage in rigour and
purity; and he feared that, by the premature and too frequent use of
the modern analysis, the mind would become debilitated and the taste
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vitiated. Wemust, however, confess that the pretensions of the ancient
method to superior rigour do not seem to us to be as well founded as
they are sometimes considered. It would be no very difficult matter
to expunge the algebraical symbols from a modern investigation, and
substitute for themn their meaning expressed in the language used
in geometrical investigations; but would such a change confer upon
them greater rigour, or would it give to the conclusions ter
validity ? And yet this is precisely what Newton himself has done in
many parts of his t work, the Principia. His theorems are evi-
dently investigated algebraically; but, in demonstrating them, the

rocess is disguised by the substitution of lines and geometrical figures
?or the algebraical species and formule. Itcannot but excite astonish-
ment, that a man of his extraordinary sagacity could so far deceive
himself as to suppose that by such a proceeding his reasoning acquired
great rigour.

But, without reference to the modern analysis, we conceive that the
ancient method has sufficient claims to our attention on the score of its
own intrinsic beauty. It has this furtheradvantage, that we can enter
at once upon its most interesting discussions without the repelling task
of learning any new language or system of notation.

In the application of the Geometrical Analysis to the solution of
problems, or the demonstration of theorems, no general rules nor
invariable directions can be given which will apply in all cases. The
previous construction to be used, and the preparatory steps to be
taken, depend on the particular circumstances of the question, and
must be determined by the sagacity of the analyst; and his skill and
taste will be evinced in the selection of the properties or affections of
the given or sought quantities on which he founds his analysis; for
the same question may frequently be investigated in many different

ways.
fvn submitting a problem to analysis, its solution, in the first in-
stance, is assumed; and from this assumption a series of conse-
quences is drawn, until at length something is.found which may be
done by established principles, and which if done will necessarily lead
to the execution of what is required in the problem. Such is the
analysis. In the synthesis, then, or the solution, we retrace our steps ;
beginning by the execution of the construction indicated by the final
result of the analysis, and ending with the performance of what is
re?ﬂmed in the problem, and which constituted the first step of the
analysis.
hen a theorem is submitted to analysis, the thing to be determined
is, whether the statement expressed by it be true or not. In the
analysis this statement is, in the first instance, assumed to be true;
and a series of consequences is deduced from it until some result is
obtained which either is an established or admitted truth, or-con-
tradicts an established or admitted truth. If the final result be an
established truth, the theorem proposed may be proved by retracing
the steps of the investigation, commencing with that final result, and
concluding with the proposed theorem. But if the final result con-
tradict an established truth, the proposed theorem must be false, since
it leads to a false conclusion. ' :
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These general observations on the nature of the Geometrical Ana-
lysis, and the methods of proceeding in it, will be more clearly appre-
hended after the investigations subjoined have been examined.

SECTION II.

Problems respecting right lines.

(2) Der.— A point is said to be given when its position is either
given or may be determined.

(8) DEer.— A right line is said to be given in position when it is
either actually exhibited and drawn, or may be exhibited and drawn
by previously established principles.

PRoPOSITION.

(4) To draw from a given point aright line intersecting two right lines
given in position, so that the segments between the point and the right
lines shall have a given ratio.

Let the given point be P, AB and CD the right lines given in
position, and m: n the given ratio.

Let PM: PN=m:n. If any other line, as PL,
be drawn intersecting AB and C D, and (@ paralled to
C D be drawn from N, that parallel will divide PL
similarly to P M, and therefore in the required ratio. ’[
This parallel may or may not coincide with the line
NK. First, let us suppose that it does. In that
case the two lines given in position will be parallel,
and the line PL, or any other line drawn inter-
secting them, will be cut similarly to PM, and therefore all such lines
will be cut in the required ratio. Hence it appears, that in this case
the problem is indeterminate, since every line which can be drawn in-
tersecting the given lines will equally solve it.

Secondly, if the given lines AB, C D be not parallel, let the
arallel to CD from N meet PLin G, 80 that PL: PG = m:n.
ut PL may be drawn, and the point G therefore may be deter-

mined ; and since the direction of C D is given, the direction of GN
is determined, and therefore the point N may be found. Hence, -the
solution is as follows: let any line PL be drawn. IfPL : PK =
m : n, the problem is solved. If not, let PL be cut at G, 80 that
PL:PG =m:n, and from G draw G N parallel to C D, meeting AB
in N, and through N draw PN M. Then PM:PN =PL:PG =
m:n.

(5) Cor. 1.— The same solution will apply if the line AB be a curve
of any kind.

(6) Cor. 2.—If the parallel to C D through G do not meet the line
A B, the solution is impossible. If AB be a right line, this happens
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when it is parallel to C D. And therefore we conclude in general,
that when the two right lines A B and C D are parallel, the problem
is either indeterminate or impossible.

ProPoOSITION.

(7) From two given points to draw to the same point, in a right line
given in position, two lines equally inclined to it.

Let the given points be A and B, and let CD be the line given in
position. Let P be the sought point, so that the
angle APC shall be equal to the angle BPD.

Produce the line B P beyond P, until PE is
equal to PA, and join AE. The angles BPD
and EPC are equal; but also (hyp.) BPD and
A PC are also equal, therefore the angle APC is equal to the angle
EPC. But also the sides PA and PE are equal, and the side PF is
common to the triangles APF and EPF. Therefore the angles AFP
and EFP are equal, and therefore are right angles, and also A F is
equal to EF.

But since A and CD are given, the perpendicular A F is given, and
hence the solution of the problem may be derived.

From either of the given points A draw a perpendicular A F to the
given right line C D, and produce it through F, until F E is equal to
AF, and draw the right line E B meeting the line CD in P. Draw
A P, and the lines A Pand B P are those which are required. For
since A F and F E are equal, and PF common to the triangles A F P
and EF P, and the angles AFP and EF P are equal, the angles APF
and E P F are equal. But B PD and EPF are also equal, therefore
the angles A P F and B P D are equal.

ScHor1um. — If the given points lie at different sides of the given
right line, the problem is solved by merely joining the points.

ProposITION.
(8) To inscribe a square in a triangle.

Let A B C be the triangle, and D F E the required square. Draw
the perpendicular B G, and draw A E to meet a 8 X
Ba.rallel BHto A C at H. Itis easy to see that

F: FE = GB:B H; for the triangles A FD and

ABG, AFE and ABH are respectively similar
each to each. Hence, since DFisequal to FE,GB A D« <
is also equal to B H. But G B is given in magnitude and position,
and therefore B H is given in magnitude and position. To solve the
problem, therefore, it is only necessary to draw B H and join A H, and
the point E where A H meets B C will be the vertex of the angle of
the square.
(9) Cor. 1.— It is evident that the same analysis will solve the
more general problem, ¢ To inscribe in a triangle a rectangle given in
species.” For in this case the ratio BH : B G is given, and therefore
B H is as before given in position and magnitude.
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10) Scuor. —If B H be drawn equal to B G and on the same side of
the vertex with A, then it will be necessary to pro- u-—— ¥
duce AH and CB, in order to obtain their point l— S
of intersection E. In this case, however, D F E will u “
still be a square, for the corresponding triangles will /
be similar, BG A to FDA, and HBA to EF A.

Hence GB: BH=DF:FE. A G ¢ D
(11) Cor. 2. —In the same manner the more general problem, ¢ To
inscribe a rectangle given in species,” may be extended.

ProrosiTION.

!12) Todraw a line from the vertex of a given triangle to the base, so
that it will be @ mean proportional between the segments.

Let AB C be the triangle, and let B D be a mean proportional
between AD and DC. Produce BD to E, so — el
that D E shall be equal to B D, and join C E.

Since AD:BD=ED:DC,
and the angles BD A and E D C are equal, the
triangles BD A and CDE are similar. There- *®
fore the angles E and A are equal, and are in
the same segment of a circle described on C B.
If from the centre of this circle F D be drawn,
the angle FD B will be a right angle, and the point D will there-
fore be in a circle described on F B as diameter. But the point
F is given, since it is the eentre of a circle circumscribed about the
given triangle, and the line F B is therefore given, and the circle on
it as diameter is given, and therefore the point D is given. The
solution of the problem is therefore effected by circumscribing a
circle about the given triangle, and drawing from its centre to the
angle B a radius. On that radius, as diameter, describe a circle ;
and to a point D, where this circle meets the base, draw the line
BD, and it will be a mean proportional between the segments. For
the angle BDF in a semicircle is right, therefore BD = DE ; and
therefore the square of BD is equal to the rectangle under AD and DC.

If the circle on B F intersect A C, there will be two points in the
base to which a line may be drawn, which will be a mean proportional
between the segments. If this circle touch the base, there will be
but one such line, and it may happen that the circle may not meet
the base at all, in which case the solution is impossible.

If the centre F be upon the base A C, the angle AB C will be

ight, and the point F itself is one of the points which -
ﬁve the problem; for in that case AF, BF, and CF
are equal. The other point D is the foot of a perpen-
‘dicular BD from the vertex on the base.
(18) Cor.— Hence, in a right-angled triangle, the per-
pendicular on the hypotenuse is a mean proportional between the
segments ; and it is the only line which can be drawn from the right
angle to the hypotenuse which is a mean, except the bisector of the
hypotenuse.
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ScHoL.— It has been observed by some elementary writers, that
the solution of the problem to draw a line to the base which shall be
a mean proportional between the segments, is impossible when the
vertical angle is acute. That this is erroneous, must be evident from
the preceding analysis. For let one circle be described upon the
radius of another as diameter. Let any line, as A C, be drawn not
passing through F, but intersecting the inner circle; and so that the

int of contact B and the centre F shall lie at the same side of it.

raw AB and C B, and also BD. It is evident that B D is a mean
proportional between A D and C D, and yet the angle A B C is acute,
being in a segment greater than a semicircle.

The possibility of the solution of this problem does not at all depend
on the magnitude of the vertical angle. It may be obtuse, right, or
acute, and may be equal in fact to any given angle, and yet the solu-
tion be possible.

Let it be required to determine the conditions on which the solution
is possible. If the circle on B F meet the base, the per- 5
pendicular distance of its eentre from the base must be
less than its radius; that is, less than half the radius of
the circle which circumscribes the given triangle. From
F and B draw perpendiculars FIand BHon AC,and . _
from the centre of the lesser circle G draw the perpendicular G K.
Since G F is equal to G B, GK is equal to half the sum of FI and
BH. Hence it follows, that the solution will only be possible when
half the sum of F I and B H is not greater than B (g, or when the sum
of FI and B H is not greater than BF ; that is, when the sum of the
perpendiculars on the base from the vertex and the centre of the cir-
cumscribed circle is not greater than the radius of that circle.

SECTION III.

Propositions respecting cireles.
(14) PropLEMS of contact of right lines and circles furnished the
ancients with an extensive subject for the exercise of the Geometrical
Analysis. In general three conditions are necessary to determine a
circle. In the class of problems to which we allude, one at least of
these conditions .is, that it should touch a given right line or a given
circle. The other data may be, that it should pass through one or
two given points, or that it should have a given radius or centre, or
that the locus of its centre should be a given right line or circle.
It would not be easy to enumerate all the problems of this class; but
by combining the following data for the determination of a circle, a
considerable number of them may be found.
To describe a circle,
1. Passing through a given point.
2. Passing through two given points.
* 8. Passing through three given points.
4. Touching a given right line.
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5. Touching two given right lines.

6. Touching three given right lines.

7. Touching a given circle.

8. Touching two given circles.

9. Touching three given circles.
10. Having a radius given in magnitude.
11. Having its centre on a given right line.
12. Having its centre on a given circle.

. 18. Having a given centre.

Every combination of three which can be formed from these data
may be taken as the limiting circumstances in problems for the deter-
mination of a circle. In the invention of such problems it should,
however, be observed, that 2, 5, 8, and 13 are each to be counted
as two data, and 3, 6, 9 are each to be counted as three data. Each
of the last is, therefore, itself sufficient to determine the circle, but
each of the former ought to be combined with some one of the data
1, 4,7, 10, 11, 12.

We cannot here enter at large on this class of problems; we shall
therefore confine ourselves to a few examples.

PROPOSITION.

(15) To describe a circle passing through two given points, and touching
a right line given in position.

If the given points be at different sides of the given line, the
solution is manifestly impossible.

Let them then be A, B, at the same side of the given right line
CD. Letthe required circle be AB C, and let AB
be produced to meet the right line at D.

e square of C D is equal to the rectangle A D

x D B. But this rectangle is given, therefore the
square of C D is given, and therefore C D itself is
iven in magnitude and position, and hence the point

is given. But also the points A, B being given, therefore the
circle through these points A, B, C is given.

The solution is effected by producing A B to D, and taking DC
equal to a mean proportional between A D and D B, and then de-
scribing a circle through A, B, C.

But it may happen, that the line A B is parallel to C D, and will not
meet it when produced.

In this case draw A C and BC. The angle B C D is equal to the
angle A in the alternate segment, and also equal to the
alternate angle B. Hence the angles A and B are equal,
and therefore the sides A C and B C are equal. Draw
C E perpendicular to A B, and A E and B E are equal.
The point E is therefore given, and the perpendicular E C
is given in position, and therefore the point C is given.

0 solve the problem in this case, therefore, bisect A B at E, and
draw the perpendicular through E, intersecting C D at C. A ‘circle
passing through A, B, C will be that which is required.

A
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PROPOSITION.

(16) To describe a circle passing through a given point, and touching
two right lines given in position.

1°. Let the given right lines be parallel. In this case it is neces-
sary that the point should be between them, for otherwise the solution
would be impossible. .

Let the lines be A B, CD, and the point be P. Let A P C be the
required circle, and draw A P and —- 4 S
the diameter A C. Through P
draw P P/ parallel to the given
right lines, and describe any cir-
cle B P' D, touching the right
lines at B, D, and intersectin% ;
the parallel at P, and draw P! B. Since the circle B P’ D may be
drawn, the point P! is given, and therefore the line P’ B is given in
magnitude and position. But the triangles B D and A PC are
similar, and, since B D and A C are parallel, BP’ and A P are parallel.
Therefore the line P A is given in direction, and, since the point P is
given, it is also given in position. Hence the points A and C are
given, and therefore the circle A P C is given.

To solve the problem, therefore, describe any circle touching the
two lines, and draw the parallel through P to meet it at P. From
P! draw P! B, and draw P A parallel to it. Draw A C perpendicular
to A B, and it will be the diameter of the required circle.

2°. Let thegiven lines A B, C D intersect at E.

As before, describe A
any circle BP' D
touching the right 2
lines, and from E E ¢
draw E P intersect-
ing this circle at P’
Draw the radii G A,
GP, FB, and F P
Since G A is parallel to F B, we have

GA:FB=GE:FE.
Therefore GP:FP'=GE:FE.
Therefore GP:GE=FP':FE.
Hence the lines G P and F P/ are parallel. But F P/ is given in posi-
tion, and therefore G P is given in direction, but P is given, and
therefore G P is given in position. But the line E G bisects the
le A E C under the given lines, and is therefore given in position,
and therefore the point G where it intersects P G is given. Hence
the centre G and the radius G P of the required circle are given, and
therefore the circle itself is given.

To solve the problem, draw E P, and also E G bisecting the angle
E. Describe any circle B P D touching the given right lines, and
draw P'F. Through P draw P G parallel to P’ F, meeting the bisec-
tor EG in G. With G as centre, and G P as radius, let a circle be
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described. This circle will touch the right lines. The demonstration
is obvious.

It is evident, that in each of the preceding cases there may be two
circles drawn, which will solve the problem. This circumstance arises
from the line P P' meeting the circle B P! in two points. The prin-
ciple used in the solution of both cases is the same.

PROPOSITION.

(17) To describe a circle passing through two given points (A, B) and

touching a circle given in magnitude and position

It is evident that if one of the given points be within, and the other
without, the given circle, the solution is impossible.

Since the right line joining the centres must pass through the point
of contact, it follows that if the right line joining the given points pass
through the centre of the given circle, it must be a diameter of the
required circle, and consequently in this case the solution is only pos-
sible when one of the given points is on the circumference of the given
circle. The line joining the given points is then the diameter of the
required circle. The only cases that remain to be considered are
those in which the given points do not lie in the same right line with
the centre of the given circle, and are either both wi or both
within the given circle.

Let a right line be drawn from C the centre of the given circle, to
the point of bisection of the line A B joining the given points.

1. Let the points A, B be both wizkout the given circle, and let the
angle C D B be right.

Since C D bisects A B at right angles it passes through the centre
of the required circle. Hence P E (or P’ E’)
is a diameter. Therefore DE (or D E’) 18 B
a third proportional to P D (or P’ D) and
B D; and is therefore given. Hence the g
problem is solved by two different circles
on the diameter P E, P’ E’, one touched by
the given circle externally, and the other
internally.

2. Let the points A B be both without the given circle, and let the
mﬁ!le) C D B be acute.

rough the point of contact P draw the common tangent P O, and
produce it to meet A Bat O. Draw O C, and from O draw O E per-
pendicular of C D.

The square of P O is equal to the rectangle A O x O B, and also to
the rectangle F O X0 G. But the former is equal to :
the difference of the squares of D O and D B, and /A
the latter is equal to the difference of the squares of
COand CG. Therefore these differences are equal,
or what is the same, the difference of the squares of
O D and O C is equal to the difference of the squares
of D 3 and C G. But these latter qualities are both
given, the former being half the given line A B, and the latter being

X

A
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the radius of the given circle. Hence the difference of the squares of
D O and C O is given, and therefore also the difference of the squares
of CEand D E is given. Hence the point of section E may be deter-
nined, and thesolution of the problem thence effected.

Let the given line C D be divided at E, so that the difference of the
squares of C E and D E shall be equal to the difference of the squares
of CG and D B ; and through E draw E O perpendicalar to C D, to
meet A B produced at O. From O draw the tangent O P. A circle
described through the points A, B and P will solve the problem. The

demonstration will be easily obtained by retracing the preceding

Since two tangents may be drawn from O, there are two circles
which will solve the problem, one touching the given circle internally
and the other externally.
angle C D B be right.

Since C D bisects A B at right angles, it passes through the centre
of the required circle. Hence PE (or P'E’) is a dia- A\
tional to PD (or P’D) and BD; and is therefore l‘l‘
given. Hence the problem is solved by two different
circles on the diameters P E, P! E! in a manner ana-

4. Let the points A, B be both within the circle, and the angle
C D B acute.

Produce the line B A to meet the tangent at O. Draw O C, and

e square of P O is equal to the rectangle FO x O G, and also
to BO x O A. The former is equal to the difference of ¢
the squares of C O and C G, and the latter to the differ- [¢
ference of the former squares is equal to the difference
of the latter ; and therefore the difference of the squares
of C O and D O is equal to the difference of the squares
D O is equal to the difference of the squares of C E and D E. Hence
the difference of the squares of C E and D E is equal to the difference
of the squares of CG and D A which are given, and therefore the

Produce C D to E, so that the difference of the squares of C E and
D E is equal to the difference of the squares of C G and D A ; and
from E draw the perpendicular E O to meet B A produced to O.
points P, A, B will solve the problem. The demonstration will be
apparent by retracing the analysis.

In the solution of this problem given in some works, none of the

analysis.

8. Let the points A B be both within the given circle, and let the
meter. erefore DE (or D E’) is a third propor-

N,

logous to the first case.
perpendicular to C D produced draw O E.
ence of the squares of D O and D A. Hence the dif-
of CG and D A. But also the difference of the squares of C O and
point E is given, from which the solution is derived, as follows,
From O draw the tangents O P, and either of the circles through the
preceding cases, except the second, are included.
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PRroPOSITION.

18) Todraw the shortest tangent from a right line (A B) given in
s position, to a circle (CD)gieeninmagnitudcw&Spodh‘on.

If the right line meet the circle, it is evident that there is no limit
to the length of the tangent.

Let DE be a tangent at D. The squares of
D E and D C together are equal to the square
of CE. Whatever be the position of the points = '
D E, the length of C D is the same; and there-
fore the square of D E must increase or de-
crease with that of C E; and therefore if D E E
be a minimum, CE must alss be a minimum. Hence CE is perpendi-
cularto A B when D E is a minimum. Hence the solution is evident.

ProrosiTION.

(19) Given the three sides (¢, ¢, ¢’’) of a triangle, to determine the radius
(R) of the circumscribed circle.

Let p be the perpendicular on the side ¢’ from the opposite angle.
By the Elements we have
2R:c=¢:p.
But also ' xe:id xp=dc:p.
But¢” X p is equal to twice the area (A). l'{;nce
2R:e=¢ x ¢’:2A.
The sides being known the area is also known, and from this propor-
tion R may be found.
If the lines be given in numbers, by multiplying the means and
extremes we have
4R x A=cdc”
ce’c’
R= :
: 4A
That is, ¢ The radius of the circumscribed circle is equal to the product
of the three sides divided by four times the area.’

SECTION IV.
On Loci.

320) WHEN a point is required to be determined in a problem with
ata which are insufficient for its solution, the problem is said to be
indeterminate, because the position of the point cannot be found by
it. But although the position cannot be absolutely determined, yet
it may be so restricted by the conditions which are prescribed in
the problem, that it may lZe known to be on some line, the nature
of which may frequently be determined. This line is called the
locus of the point. This will easily be understood by the following
examples: Suppose that the base of a triangle were given in magni-
X 2
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tude and position, and that its area were given in magnitude, to deter-
mine its vertex. In this case, it is evident that the problem is
indeterminate, since innumerable triangles may be constructed on
each side of the given base having equal areas. But since the area is
equal to the rectangle under the perpendicular and half the base, it
follows that the perpendiculars from the vertices of all these triangles
on the base must be equal, and therefore these vertices must all lie on
parallels to the base at such a perpendicular distance that the rectan-
gle under it and half the base shall be equal to the given magnitude.

The locus of the vertex is therefore in this case two right lines
parallel to the base, and at equal perpendicular distances at opposite
sides of it.

If the base of a triangle be given in magnitude and position, and

the vertical angle be given in magnitude to determine the vertex, the
problem is evidently indeterminate; for an unlimited number of
different triangles may be constructed on the same base whose vertical
angles are equal. But the vertices of all the triangles on the same
side of the base will in this case be placed on the arc of a circle con+
taining an angle equal to the given angle. Hence the locus will be
two segments of circles containing an angle equal to the given angle,
and constructed on opposite sides of the given base.
(21) The investigation of loci is of very extensive use in the solution
of determinate problems. In cases where the determination of a point
is required from certain data, by omitting any one of the data the
point will have a locus which may be found by the remaining data.
This being successively applied to two of the data, two loci will be
found, the intersection of which will determine the point.

This may be illustrated by the examples already given. Let the
base of a triangle be given in magnitude and position, and the area
and vertical angle in magnitude, to determine the vertex. If we omit
the vertical angle, the locus is the parallels already described. If we
omit the area, the locus is the segments of the circle. The vertex
being then at the same time on both loci, must be at the intersection
of the two loci, and will therefore be at the points where the parallels
meet the circle. In general there will be, in the present case, four
such points, and consequently four triangles, but these triangles will
differ onlﬂ in position, being equal as to their sides and angles.

! The following propositions will illustrate the theory of Geometric
oci.

ProrosiTION.

(22) Given the base of a triangle, and the vertical angle, to determinethe
locus of the intersection of perpendiculars to the sides from the extre-
mities of the base.

These perpendiculars intersect at an angle supplemental or equal
to the vertical angle. The latter is given, and therefore the former.
Hence the sought locus is a segment on the base containing an angle
equal to the supplement of the vertical angle.

If the perpendiculars intersect below the base, which will happen
when one of the base angles is obtuse, the locus is a segment on the
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opposite side of the base containing an angle equal to the vertical
angle.

ProrosITION.

(28) A right line is drawn from a given point to the circumference
of a circle given in magnitude and position, to determine the of

a point which cuts it in a given ratio.

If the given point be the centre of the given circle, it is evident that
the locus sought is a concentric circle which cuts the radii
of the given one in the given ratio.

If the point P be not at the centre of the given circle .
draw P C to the centre, and draw any line PB to the
circumference. The ratio of PB : P A is given. Draw
BC, aud from A draw AD parallel to BC. Hence /

we have

PB:PA=BC:AD.
Hence the ratio BC : A D is given, and since B C is given in mag-
nitude, A D is also given in magnitude. But because of the paral-

lels,
PA:PB=PD:PC.

Hence P C is cut in a given ratio at D, and therefore the paint D is
given. Since then the point D is given and the line D A is given in
magnitude, the locus of the point A is a circle whose centre is D and
radius D A. The demonstration is evident.

The same reasoning will apply whether the point P be within, or
without, or on the circle.

PROPOSITION.

24) A circle is given in magnitude and position, and a chord passes
( rough a given point, to find the locus of the intersection of tangents
through the extremities of the chord.

Let C B A be the circle, P the given point, A B any chord

through it, and D the correspond-
ing point of the locus. raw
C%, which will evidently bisect s
B A at right angles, and we have
by the known properties of the
circle CE : CF: CD. Hence
the rectangle D C x CE is equal

to the square of the radius CF.

Draw D G perpendicular to C P produced, and the angles G and E
being right, the quadrilateral D E P G may be circumscribed by a
circle ; therefore the rectangle D C x C E is equal to the rectangle
G C x CP, and therefore the rectangle G C x C P is equal to the
square of the radius. Hence the point G is independent of the point
D, and a perpendicular from any point of the locus will meet C P
produced at the same point G. ﬁence to construct the locus, find a
third proportional to C P and the radius, and take C G equal to this
third proportional, and through G draw a perpendicular to C G. This
verpendicular will be the locus sought.

x 3
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The nearer the given point P is to the centre, the more remote
will be the locus G D, and when P coincides with the centre, C G
will become infinite, so that in this case the locus may be considered
aright line at an infinite distance.

There will be no difficulty in establishing the converse of this prin-
ciple, viz. ¢If tangents be drawn from each point in a given right
line to a given circle, the chords joining the points of contact will all
pass through a certain given point.’®

SECTION V.
Porisms.

g5) THE term porism t has been variously defined by Geometers.

appus states, that Euclid wrote three books on porisms (which have
been lost) ; but is so obscure and indistinct on the subject, that it is
impossible merely from what he has stated to determine to what spe-
cies of geometrical proposition the ancients applied this term.§ It is
certain that it was sometimes used synonymously with corollary ; thus
Euclid, in his Elements, calls the corollaries of his propositions xopio-
uata. In an elaborate diesertation on the subject of porisms, in the
Transactions of the Royal Society of Edinburgh, Playfair has, however,
succeeded in giving the word a meaning more worthy of the im-
portance which was evidently attached to this class of propositions.
The porisms of Euclid are said to be ¢collectio artificiosissima mul-
tarum rerum que spectant ad analysin difficiliorum et generalium
problematum.’

According to Playfair, a porism is ‘a problem in which the data
are so related to each other that it becomes indeterminate, and admits
of numberless solutions.’

It is easily conceived that a problem, which, in general, is deter-
minate, will, when its data are submitted to certain conditions, become
indeterminate. In such cases it becomes a porism ; and it may be
proposed in a porism to determine what condition or restriction will
render a determinate problem indeterminate.

Thus, if it be required to draw a right line through a given point,
subject to some given condition, the problem may be in general deter-
minate; and it may be possible to draw but one such right line.
But, on the other hand, such a position may be selected for the given
point, as that every line passing through it will fulfil the given con-
dition. When this position is assigned to the point, the problem
becomes a porism. The following examples will render these observ-
ations more intelligible.

* A numerous collection of Local problems will be seen in my treatise on Algebraic
Geometry. The solutions there given are, however, by the Algebraical Analysis.

+ From wopilw, I establish; or, according to some, from wépo, a transition.

t Pappus defines a porism to be something between a theorem and problem, or
that in which something is proposed to be investigated. Simpson follows Pappus, and
says, that a porism is a theorem or problem in which it is proposed to investigate o
demonstrate something. P P
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PROPOSITION.

(26) To draw a line passing through a given point, and crom
given triangle, inmchamannerthatthemmqfthef:vpend'
on it the two vertices on one side of it shall be equal to
perpendicular on it from the other vertex placed on the other
of it
t D be the given point, and A B C the €
given triangle, and let D E be the required line,
8o that A E and B G taken together are equal to
CL. Draw C H from C to the middle point H
of A B, and draw H K perpendicular to D E.
In the trapezium A E G B, the parallels A E,
H K, and B G are in arithmetical progression ;
therefore the sum of A E and B G is equal to twice HK ; but this
sum is also equal to CL. Therefore C L is equal to twice H K.
Since CL and H K are parallel the triangles HF K and CFL are

similar, and therefore
CL:HK=CF:FH.

But CL is equal to twice H K, and therefore C F is equal to twice
FH, or F H is one third of C H. Since C H is given in magnitude
and position, the point F is given. Hence the problem is solved by
drawing a line from any angle C of the triangle, bisecting the opposite
side AB, and taking on this one third of it HF. The line drawn
from the given point D through the point F will be that which is
required.

If the given point happen to be the point F itself, any line what-
ever passing through it will have the proposed property, and hence
we have the following porism: ¢ A triangle being given in position, a
point may be determined, such that any line being drawn through it,
the sum of the perpendiculars from two angles of the triangle placed
on one side of it, shall be equal to the perpendicular from the remain-
ing angle and the other side.”

The point F is evidently the centre of gravity of equal masses placed
at the three vertices, or, considered mathematically, it is the centre
of the mean distances of the three points A B C.

This porism is only a particular case of a much more general one:
¢ Any number of points being given in the same plane, a point may be
found through which any line whatever being drawn, it will pass
amongst the points in such a manner, that if perpendiculars be drawn
from them upon the line the sum of the perpendiculars at the one
side will be equal to the sum of the perpendiculars on the other side.’
In this case, as in the former, the sought point is the centre of mean
distances.

The same porism may receive another modification which general-
izes it further. ¢ Any number of points being given in the same
plane, to determine the condition under which a right line may be
drawn amongst them, so that the sum of the perpendiculars from the
points on one side shall exceed the sum of the perpendiculars from
the points on the other side by a given line.’ *

® See Algebraic Geometry, p. 34

a8

33
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In this case, it may be proved that the line must be a tangent to a
circle, whose centre is the centre of mean distances, and whose radius
is equal to the given line divided by the number of given points.

If the given points be not in the same plane, the porism may be
made still more general: ¢ Given any number of points in space, to
determine a plane passing among them, so that the sum of the perpen-
diculars from the points on one side shall exceed the sum of the per-
pendiculars from the points on the other side by a given line.’

In this case the plane must touch a sphere whose centre is the
centre of mean distances, and whose radius is the given line divided
by the number of points.

If the sum of the perpendiculars on one side be equal to those on
-he other, the given line and the radius of the sphere vanish, and the
sphere is reduced to its centre, i. e. the centre of mean distances.
Hence, ¢ if a plane be drawn through the centre of mean distances,
the sum of the perpendiculars from the points on the one side is equal
to the sum of the perpendiculars from the points on the other side.’

ProrposITION.

(27) A circle and a straight line being given i position, a point may
be found such that ary right line drawn from it to the given line shall
be a mean pr 7 between the parts of the same line inter-
cepted between the given right line and the circumference of the given
“aircle.

Let A B be the given right line, H K F the given circle, and D the
sought point. Draw G D I perpendicular to A B through D, and
also any other line C D F. Also join C I and draw H K.

The square of C D is equal to the rectangle C E x CF; but it is
also equal to the squares of C G and G D, and the ¢
rectangle C E x C F is equal to the rectangle C K x
C 1. Hence the rectangle C K x C I is equal to the
sum of the squares of CG and G D. The square of
G D is equal to the rectangle G H x G I; therefore "
the rectangle G H x G I, together with the square
of CG, is equal to the rectangle CKxCI. Also
the square of C I is equal to the sum of the squares
of CG and GI. But the square of CI is equal to the rectangle
C K xC], together with CIxK I, and the sum of the squares of
C G and G I is equal to the square of C G, together with the rect-
angles G HxG land GIxHI. Taking away from these equals
the rectangle C K x C I, and its equivalent the rectangle GHx G I,
together with the square of G C, the remainders, the rectangles C I
xI K and GIxIH are equal. Hence we have

GI:IC=IK:IH.

Therefore, in the triangles CI G and HIK the angle I is common,

and the sides which include it are proportional, and therefore the tri-

angles are similar: but G is a right angle, and therefore H K 1is a

right angle, and therefore H I is a diameter. Since, then, H I passes

through the centre of the given circle, and is perpendicular to A B
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the given right line, it is given in position. Also GH and G I are
given in magnitude, and therefore G D, which is a mean proportional
between them, is given in magnitude, and therefore the point D is
iven in position. '
?8 There is between local theorems and porisms a close analogy.
n fact, every local theorem may be converted into a porism ; but, on
the contrary, every porism cannot be converted into a local theorem.
In local propositions the indeterminate is always a point, the position
of which is restricted, but not absolutely fixed, by the given conditions.
Such may always be expressed as a porism. But this class of propo-
sitions is more general than geometric loci; the indeterminate may
be a line, the direction of which is not restricted by the conditions, but
which is otherwise limited, as, for example, to pass through a given
point, or to touch a given circle. It may also be a plane similarly
restricted to pass through a given point, or to touch a given sphere.
Instances of these have been given in (26).

Porisms, in common with geometric loci, take their rise from the
conditions of a problem becoming indeterminate. This may happen
in two days. e number of conditions may not be sufficient, o1
among the given conditions there may exist some particular relation,
by which some one or more of them may be deduced from the others.
Thus, for the determination of a tria.nglye, three conditions are neces-
sary; and such a problem becomes manifestly indeterminate, if only
two conditions be given. But even though three be given, the pro-
blem will still be indeterminate, if any one of the three can be inferred
from the other two. For example, suppose the base of a triangle,
the point where the perpendicular intersects it, and the difference of
the square of the sides be given, the problem to determine the tri-
angle is indeterminate, because the difference of the squares of the
sides is equal to the difference of the squares of the segments of
the base, and may, therefore, be inferred from the base and the point
of section.

The geometrical circumstances by which determinate problems in
Geometry are converted into porismatic and local problems, are pre-
cisely similar to those under which the solution of an algebraical
question becomes indeterminate. In such a question there should
be as many equations as unknown quantities, and the problem is in-
determinate if there be less. But it may also be indeterminate, even
if the number of equations be equal to that of the unknown quantities,
and will be so when any one of the equations can be deduced from the
others. It may in general be observed, both in geometrical and alge-
braical problems, that the number of independent conditions should be
equal to the number of quantities sought, and should neither be more
nor less. If they be more, the results may be inconsistent, and if they
be less, the solution will be indeterminate.



No. I1.
ON THE THEORY OF PARALLEL LINES.

THe theory of parallel lines has always been considered as the re-
proach of Geometry. The beautiful chain of reasoning by which
the truths of this science are connected here wants a link, and we are
reluctantly compelled to assume as an aziom what ought to be matter
of demonstration. The most eminent geometers, ancient and modern,
have attempted without success to remove this defect; and after the
labours of the learned for 2000 years have failed to improve or super-
sede it, Euclid’s theory of parallels maintains its superiority. We
shall here endeavour to explain the nature of the difficulty which
attends this investigation, and shall give some account of the theories
which have been proposed as improvements on, or substitutes for, that
of Euclid. .

Of the properties by which two right lines described upon the same
plane are related, there are several which characterise two parallel
lines and distinguish them from lines which intersect. If any one of
such properties be assumed as the definition of parallel lines, all the
others should flow demonstratively from it. As far, therefore, as the
strict principles of logic are concerned, it is a matter of indifference
which of the properties be taken as the definition. In the choice of a
definition, however, we should be directed also by other circumstances.
That property is obviously to be preferred from which all the others
follow with greatest ease and clearness. It is also manifest that,
cateris paribus, that property should be selected which is most con-
formable to the commonly received notion of the thing defined.
These circumstances should be attended to in every definition, and the
exertion of considerable skill is necessary almost in every case. But
in the selection of a definition for parallel lines there is a difficulty of
another kind. It has been found, that whatever property of parallels
be selected as the basis of their definition, the deduction of all the’
other properties from it i; impracticable. Under these circumstances
the only expedient which presents itself is to assume, besides the
property selected for the definition, another property as an axiom.
This is what every mathematician who has attempted to institute a
theory of parallel lines has done. Some, it is true, bave professed to
dispense with an axiom, and to derive all the properties directly from
their definition. But these, with a single exception, which we shall
mention hereafter, have fallen into an illogicism inexcusable in geo-
meters. We find invariably a petitio principii, either incorporated
in their definition, or lurking in some complicated demonstration.
A rigorous dissection of the reasoning never fails to lay bare the
sophism.

Of the pretensions of those who avowedly assume an axiom it is
easy to judge. When Euclid’s axiom is removed from the disad-
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vantageous position which it has hitherto maintained, put in its natural
place, and the terms in which it is expressed somewhat changed, I
think it will be acknowledged that no proposition which has ever yet
been offered as a substitute for it is so nearly self-evident. But it is
not alone in the degree of self-evidence of his axiom, if we be per-
initted the phrase, that Euclid's theory of parallels is superior to
those theories which are founded on other axioms. The superior
simplicity of the structure which he has raised upon it is still more
conspicuous. When you have once admitted Euclid’s axiom, all his
theorems flow from that and his definition, as the most simple and
obvious inferences. In other theories, after conceding an axiom much
further removed from self-evidence than Euclid’s, a labyrinth of com-
plicated and indirect demonstration remains to be threaded, requiring |
much subtlety and attention to be assured that error and fallacy do
not lurk in its mazes. '

Euclid selects for his definition that property in virtue of which
parallel lines, though indefinitely produced, can never intersect. This
is, perhaps, the most ordinary idea of parallelism. Almost every
other property of parallels requires some consideration before an
uninstructed mind assents to it ; but the possibility of two such lines
intersecting is repugnant to every notion of parallelism.

en the possible existence of the subject of a definition is not self-
evident, or presumed and declared to be so, it ought to be proved so.
This is the case with Euclid’s definition of parallels. How, it may be
asked, does it appear that two right lines can be drawn upon the same
plane so as never to intersect though infinitely produced? Euclid
meets this objection in his 27th proposition, where he shows that if
two lines be inclined at equal alternate angles to a third, the supposed
ossibility of their intersection would lead to a manifest contradiction.
g‘hus it appears, that through a given point one right line a¢ least may
always be drawn parallel to a given right line. But it still remains to
be®shown, that no more than one parallel can be drawn through the
same point to the same right line. And here the chain of proof is
broken. Euclid was unable to demonstrate, that every other line
except that which makes the alternate angles equal will necessarily
intersect the given right line if both be sufficiently produced. He
accordingly found himself compelled to place the deficient link among
his axioms.

I have always conceived that the objections which have been urged
against the twelfth axiom have arisen from the place assigned to it in
the Elements. Standing as it does on the threshold of the first book,
it is contemplated without reference to those propositions with which
it is or ought to be immediately connected, which prepare the mind
of the student for its reception, and which seem almost indispensable
to render the very terms in which it is expressed intelligible. This
axiom, as we have stated, is only assumed in the demonstration of the
2uth proposition. In the 28th it is proved that if BEF (see fig.
Prop. XXVII. Book I.) and D FE be together equal to two right
angles, EB is parallel to F D. The axiom declares that no other right
line through E can be parallel to FD; for it is plain, that any other
line must make with E F an angle which together with D F E is less or
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greater than two right angles. The twelfth axiom may therefore be
expressed in any of the following ways : —

¢ Two diverging right lines cannot be both parallel to the same right

} line.’

¢ If a right line intersect one of two parallel right lines it must also
intersect the other.’

¢ Only one right line can be drawn through a given point parallel to

a given right line.’ :
The axiom expressed by the first of these ways appears to me to be
as unobjectionable as any of those which have been received without
dispute. Playfair, in his edition of Euclid, and before him Ludlam,
expresses the axiom nearly in this way, but he does not seem to be
aware that it is the same axiom as that of Euclid; for he says in his
preface that a new azxiom is introduced in place of the 12th. In fact,
it is the same axiom otherwise expressed.

Proclus objects to Euclid’s axiom, that it is less entitled to be con-
sidered self-evident, because the converse of it (XXVIII. Book I.)
confessedly requires proof. Are we hence to infer that Proclus
considered no proposition to be self-evident, unless its converse be
also self-evident? If this were admitted, I fear it would be fatal
to some of the axioms which Proclus himself, in common with the
rest of the world, has received. Neither the second nor third ‘of
Euclid’s axioms respecting equal magnitudes could by this rule be
admitted as such; for, so far from their converses being self-evident,
they are not even true. Proclus would seem to have attributed to an
axiom the quality of a definition, which must always be what logicians
call a reciprocal proposition ; but axioms are universal affirmative pro-
Fositions not necessarily reciprocal, and, therefore, notoriously, not
ogically, convertible.

I shall not attempt to go into the particular details of the various
theories of parallels which have been proposed, nor even to enumerate
them. I shall, however, mention some of those which, from the
eminence of their authors, if from nothing else, must command
attention.

Clavius rejects Euclid’s axiom, and proposes the following as a
substitute for it: ¢ A line drawn upon a plane from every point of
which perpendiculars on a right line in the same plane are equal, is
itself a right line.” From this proposition, assumed as an axiom by a
most complex and embarrassing process, he shows that the properties
of parallels may be deduced.

olfius, Boscovich, and Thomas Simson, change the definition of
parallels, and substitute for it the following: ¢Two right lines are
parallel when perpendiculars from every point in one upon the other
are equal.” This definition is sophistical, and really assumes the axiom
of Clavius. 2'Alembert, with more acuteness, proposes to define
parallels to be ¢right lines, one of which has fwo points equally
distant from the other.’ But the difficulty of demonstrating that the
:)ll]wr p(l)lin;s are equally distant, he acknowledges still to remain un-

iminished.
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Thomas Simson, inhis second edition, proposesthe following axiom :

If perpendiculars from two points of a straight line upon another

straight line in the same plane be unequal, the two lines will meet
if indefinitely produced on the side of the least distance.’

Robert Simson proposes the following axiom : ¢ That a straight line
cannot first come nearer to another straight line, and then go further
from it without meeting it.” The meaning of which is, that if from
any tliree points in one right line perpendiculars be drawn to another,
they will either be equal, or the intermediate perpendicular will be
greater than one of the extreme perpendiculars and less than the
other.

Varignon, Bezout, and others, propose the following definition as a
substitute for Euclid’s : ¢ Two right lines in the same plane are parallel
when they are equally inclined in the same direction to a third right
line.” By this either of two things is meant; that the parallels are
equally inclined to one particular line intersecting them, or that they
are equally inclined to every line intersecting them. If it be taken in
the former sense it is insufficient, and if in the latter it is sophistical.
If they be equally inclined to one particular line, it remains to be
proved that they are also equally inclined to every other intersecting
line, .which in fact is, and alwat{s has been, the whole difficulty of the
question. If it be meant that they are equally inclined to every inter-
secting line, it is a sophism, in which a theorem is presented in the
garb of a definition.

Professor Leslie retains Euclid’s definition in substance, though
somewhat changed in expression. By a singular oversight, he has
appended to the enunciation of Euclid’s 29th proposition demonstra-
tions of his 27th and 28th, thus leaving the 20th without a proof.

From these specimens the success of the various attempts to mend
Euclid’s theory of parallels may be estimated. We must, however,
make honourable exception of Legendre. His system, considered as a
part of the most elementary mathematical treatise, is certainly liable to
objection ; but the objection is of a very different characterfrom those
which lie against all the others. ZLegendre assumes no axiom, makes
no change in Euclid’s definition, and admits no latent assumption or
other fallacy in his reasoning. After his first theorem, which is the
82d proposition of Euclid, his demonstrations are as simple as those
of Euclid, and even attended with superior advantages. To compre-
hend his first demonstration, however, requires a greater familiarity
with the language and principles of analysis than students commencing
the elements of geometry generally possess. It is to be regretted that
a system must therefore be ahandoned which is in other respects
incomparably the best, and, indeed, the only one which is altogether
free from objections on the score of validity.

In the last edition of his Eléments de Geométrie, LEGENDRE has
given two demonstrations of Euclid’'s 82d proposition, one in the text
and the other in the notes. The former is founded on geometrical
princi?les, but involves a process of division #n infinitum which is
scarcely consistent with the rigour, and which certainly is misplaced
among the earliest and most elementary investigations of geometry
Besides, the demonstration is otherwise prolix and tedious. It is as
follows, being the 18th proposition of Legendre’s first book.
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In every triangle the sum of the three angles is equal to two right angles

a K B B B D
[ d
P —

Let A B C be the proposed triangle in which we shall suppose that A B
is the greatest side, and B C the least ; and, therefore, the angle C the
greatest angle, and the angle A the least. From A draw a right
line A I to the middle point of B C, and produce it beyond I until
A C'= A B; and produce A B until A B’ isequal to twice AI. The
sum of the angles of the triangle A B Cis then equal to the sum of the
angles of the triangle A B’C’. Let the angle B' A C'be called A. To
prove this take A K = AT, and draw C' K.

In the triangle C’A K and B A I the angle at Ais common, and the
sides A C', A K are respectively equal to A B, AI; therefore C'K=BI
and the angle AC' K=AB C and AK C’ = A1 B. Also thetriangle
B’ C'K is equal to the triangle A CI; for the sum of the two adjacent
angles AK C’and C' K B! isequal to two right angles to which the sum
of the angles A I C and A I B is also equal. From these equals sub-
tracting the equal angles A KC’ and AIB, the angle C'K B' will
remain equal to A IC. These equal angles are contained by sides
respect:ivel)v equal, C’K =1B = CIland K B’ = AK = A ], since by
const. AB"=2 AT =2 AK. Therefore the triangles B'C’K,ACI
are equal ; therefore C' B’ = A C and the angle B'C’'K = AC B and
KB'C'=CAL

The angle C’ is therefore composed of two angles equal to B and C
of the triangle A B C, and therefore C’ =B + C. AlsotheangleAin
A B Cis composed of the angle A’ in the triangle A B’ C,and of CA I,
which is equal to B’ in the same triangle. Hence A = A’ + B’ and
therefore A +B 4 C=A’4B’+C’. Moreover, since by hyp. AC< A B,
and therefore C' B’< A C/, it follows that in the triangle A C' B’ the
angle A, expressed by A/, is less than B’; and as the sum of the two
is equal to A, it follows that A’< § A.

If the same construction be applied to the triangle A B’ C’ to form
the triangle A B" C", whose angles may be expressed by A”, B, C%,
we shall, in like manner, prove that C'=C’'4+B’, A’=A"+B"; and,
therefore, A’ + B’ 4+ C' = A” 4+ B” + C”. Hence the sum of the
angles of each of these three triangles is the same, and likewise
A< A'; and therefore A" < 3 A.

The construction of triangles related in this manner being indefin-
itely continued, we may obtain a triangle a b ¢, the sum of whose
angles shall be the same as in the proposed triangle A B C, and in
which the angle a shall be less than any assigned term in the decreas-
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ing series § A, } A, } A, &c. The construction may thus be con-
tinued until the angle a becomes less than any given angle.

If by means of the triangle a ¢ another triangle a’ §” ¢’ of the series
be constructed, the sum of the angles a” and ¥ will be equal to a, and
will, therefore, be less than any given angle; and hence the sum of
the three angles a’d'¢’ will be reduced almost to the single angle ¢".

To obtain the precise measure of this sum produce the side a’¢’
towards d’, and let 2/ be the external angle supplemental to ¢’. Thus
if D be a right angle ¢’ = 2 D — &'; therefore the sum of the angles
a0, is 2D + a' + b"— 2’. But we can conceive that the triangle
a’c’ ¥ varies in such a manner with respect to its angles and sides as to
represent the successive triangles which would proceed from the same
construction indefinitely continued, and which must ap,proach more
and more towards that limit at which the angles a’ and &’ will become
nothing. In this limit the right line a’¢’ 4" becomes identified with
a’b’, the three points a'b’c’ being finally in one right line. The
angles &’ and &' become nothing when a” becomes nothing, and the
quantity 2D + &’ + b’ — &', which measures the sum of the three
angles of the triangle a’ ¢’ ¥/, is reduced to 2D. Therefore, &ec.

uch is the demonstration of the 82d proposition, which Legendre
has found himself compelled to place in his Elements in the place of
the proof expressed in a few lines in p. 43. He observes in his note
that the demonstration which he has given in the text is, perhaps, the
most simple and most direct which can be found of a nature purely
elementary.

The following elegant demonstration is founded on the principles of
analysis, and given by Legendre in his note :—

By superposition, it can be shown immediately, and without any
preliminary propositions, that ¢wo triangles are equal when they have
two angles and an interjacent side in each equal. Let us call this
side p, the two adjacent angles A and B, the third angle C. This
third Angle C, therefore, is entirely determined, when the angles A
and B, with the side p, are known ; for if several different angles C
might correspond to the three given magnitudes A, B, p, there would
be several different triangles, each having two angles and the inter-
jacent side equal, which is impossible; hence the angle C must be a
determinate function of the three quantities A, B, p, which we shall
express thus, C = ¢: (A, B, p).

t the right angle be equal to unity, then the angles A, B, C will
be numbers incltided between 0 and 2; and since C = ¢ : (A, B, p),
the line p cannot enter into the function ¢. For we have already seen
that C must be entirely determined by the given quantities A, B, p
alone, without any other line or angle whatever. But the line p is
heterogeneous with the numbers A, B, C; and if there existed any
equation between A, B, C, p, the value of p might be found from it in
terms of A, B, C; whence it would follow that p is equal to a number,
which is absurd: hence p cannot enter into the function ¢, and we
have simply C= ¢ : (A, B).*

® Aguinst this demonstration it has been objected, that if it were applied word for
word to spherical triangles, we should find that two angles being known, are sufficient
to determine the third, which is not the case in that species of triangles. The answer



820 APPENDIX II.

This formula already proves, that if two angles of one triangle are
equal to two angles of another, the third angle of the former must
also be equal to the third of the latter ; and this granted, it is easy to
arrive at the theorem we have in view.

First, let A B C be a triangle right-angled at A ; from a
the point A draw A D perpendicular to the hypotenuse.

- The angles B and D of the triangle A B D are equal to

the angles B and A of the triangle B A C; hence, from

what has just been proved, the third angle BA Dis ® >
equal to the third C. For a like reason, the angle D A C = B, hence
BAD + DAC,orBAC =B 4 C; but the angle B A C is right;
hence the two acute angles of a right-angled triangle are together equal
to a right angle.

Now, let B A C be any triangle, and B C a side of it not less than
either of the other sides; if from the opposite angle A the perpen-
dicular A D is let fall on B C, this perpendicular will fall within the
triangle A B C, and divide it into two right-angled triangles B A D,
D Ag. But in the right-angled triangle B A D, the two angles B A D,
A B D are together equal to a right angle; in the right-angled triangle
D AC, the two D A C, A CD are also equal to a right angle; hence
all the four taken together, or, which amounts to the same thing, all
the three, B A C, ABC, ACB,are together equal to two right angles ;
hence in every triangle, the sum of its three angles is equal to two right
angles.

It thus appears that the theorem in question does not depend, when
considered @ priori, upon any series of propositions, but may be de-
duced immediately from the principle of homogeneity ; a principle
which must display itself in a relation subsisting between all quantities
of whatever sort. Let us continue the investigation, and show that,
from the same source, the other fundamental theorems of geometry
mal{ likewise be derived.

etaining the same denominations as above, let us further call the
side opposite the angle A by the name of m, and the side opposite B
by that of n. The quantity m must be entirely determined by the

quantities A, B, p alone; hence m is a function of A B, p, a.nd_';; is one

also; so that we may putl' = J: (A, B, p). But Z is a number
as well as A and B; hence the function J cannot conﬁ.in the line p,
and we shall have simply = ¥ : (A,B),orm =p{:(A B). Hence
also, in like manner, n = p 4 (B A).

is, that in spherical triangles there exists one element more than in plane triangles,
the radius of the sphere, namely, which must not be omitted in our reasoning. Letr
be the radius ; instead of C = ¢ (A, B, p), we shall now have C = ¢ (A, B, p, r),

or by the law of homogeneity, simply C -Q(A, B,-:.—’-). But since the ratio -
r

1s & number, as well as A, B, C, there is nothing to hinder -£ from entering the
r
function ¢, and, consequently, we have no right to iufer from it, that C = ¢ (A, B).
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Now, let another triangle be formed with the same angles' A, B, C,
and with sides m’, n’, p’, respectively opposite to them. Since A and
B are not changed, we shall still, in this new triangle, have m’= lf 4
(A,B),and #'=p’: (A, B). Hencem: m'=n:n'=p: p'. Hence
tn equiangular triangles, the sides opposite the equal angles are pro-

tional.

The proposition concerning the square of the hypotenuse is a con-
sequence of that concerning equiangular triangles. Here then are
three fundamental propositions of geometry, —that concerning the
three angles of a triangle, that concerning equiangular triangles, and
that concerning the square of the hypotenuse, which may be very
simply and directly deduced from the consideration of functions. In
the same way, the propositions relating to similar figures and similar
solids may be demonstrated with great ease.

Let ABCD E be any polygon. Having taken any
side A B, upon A B as a base, form as many triangles
ABC, ABD, &c. as there are angles C,D, E, &c. lying
outof it. Put the base A B=p; let A and B represent
the two angles of the triangle A B C, which are adjacent
to the side A B; A’ and B’ the two angles of the triangle
A B D, which are adjacent to the same side A B, and so
on. The figure ABC D E will be entirely determined,
if the side p with the angles A, B, A’, B, A”, B, &c.
are known, and the number of data will in all amount to n 2—5,n
being the number of the polygon’s sides. This being granted, any
side or line x, any how drawn in the polygon, and from the data alone
which serve to determine this polygon, will be a function of those

given quantities; and since Z must be a number, we may suppose
y 4

Z=y:(AB,A,B, &) orz = p{ (A, B, A, B, &c.), and the

function | will not contain p. If with the same angles, and another
side p’, a second polygon be formed, the line 2’ corresponding er
homologous to = will have for its value 2= p’} : (A, B, A’, B, &¢.);
hence x:x’=p: p’. Figures thus constructed might be defined as
similar figures ; hence in similar figures the homologous lines are pro-
tional. 'Thus, not only the homologous sides and the homologous
diagonals, but also any lines terminating the same way in the two
figures, are to each other as any other two homologous lines whatever.
Let us name the surface of the first polygon S; the surface is

homogeneous with the square p*; hence —; must be anumber, con -

taining nothing but the angles A, B, A’, B, &c.; so that we shali have
S=p*¢: (A, B, A%, B’, &c.); for the same reason, S’ being the surface
of the second polygon, we shall have S'=p?¢: (A, B, A’, B/, &c.z
Hence S: S8'=p*: p™; hence the surfaces of similar figures are to eac
other as the squares of their homologous sides.

Let us now proceed to polyedrons. We may take it for granted,
that a face is determined by means of a given side p, and of the
several given angles, A, B, C, &c. Next, the vertices of the solid

Y
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angles which lic out of this face will be determined each by means of
three given quantities, which may be regarded as so many angles; so
that the whole determination of the polyedron depends on one side, p-
and several angles A B C, &c. the number of which varies according
to the nature of the polyedron. This being granted, a line which
joins to no vertices, or more generally, any line x drawn in a deter-
minate manner in the polyedron, and from the data alone which serve
to comstruct it, will be a function of the given quantities p, A, B, C,

&ec.; and since Z must be a number, the function equal to X will

p

contain nothing but the angles A, B, C, &c. and we mayputz =p p:
(A, B,C, &c.) The surface of the solid is homogeneous to p?; hence
that sarface may be represented by p? 4 : (A, B, C, &c.); its solidit
is homogeneous with p3 and may be represented by p11: (A, B, C, &c.g
the functions designated by J and I being independent of p.

Suppose a second solid tobe formed with the sameangle A, B, C, &c.,
and a side p’ different from p; and that the solids so formed are
called similar solids. The line which in the former solid was p 2,
(A, B, C, &¢.), or simply p ¢, will in this new solid become p'®; the
surface which was p?{ in the one, will now become pZ | in the other;
and, lastly, the solidity which was p3II in the one, will now become
p? I in the other. Hence, first, in similar solids, the homologous lines
are proportional ; secondly, their surfaces are as the squares of the
homologous sides; thirdly, their solidities are as the cubes of those same
sides.
The same principles are easily applicable to the circle. Let ¢ be the
circumference, and s the surface of the circle whose radiuvs is r ; since
there cannot be two unequal circles with the same radius, the quantities

2 .8 . . -
; ana po must be determinate functions of »; but as these quantities

are numbers, the expression of them cannot contain »; and thus we

shall have ¢ = a, and _‘i =4p, « and B being constant numbers.
r 7
Let ¢’ be the circumference, and s’ the surface of another circle whose
s, 8'
radius is v’ ;: we shall, as before, have %, = a, andp =g8. Hence

e:¢ =r:r,and s:8 = r2: 72; hence the circumferences of circles
are to each other as their radii, and the surfaces are as the squares of
those radii. .

Let us now examine a sector whose radius is 7. A being the angle
at the ocentre, let z be the arc which terminates the sector, and y the
surface of that sector. Since the sector is entirely determined when r
and A are known, x and y must be determinate functions of r and A ;

hence — and —"Lz are also similar functions. But.Z is a number, as
r r r

well as’% ; hence those quantities cannot contain r, and are simply

functions of A; so that we have ;:c{’:A,a.nd-‘:/-Ez =44+ : A, Let
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a" and y’ be the arc, and the surface of another sector, whose angle is
A, and radius 7’ ; we shall eall these two sectors similar : and since

the angle A is the same in both, we shall have T = 9.4, and

rl
-'/7; =4 :A. Hencez:2'=r:r,andy:y =r': r*; hence similar
r
arcs, or the arcs of similar sectors, are to each other as their radii ; ana
the sectors themselves are as the squares of the radii.

By the same method we could evidently show, that spheres are as
the cubes of their radii.

In all this we have supposed that surfaces are measured by the
product of two lines, and solids by the product of three; a truth which
it is easy to demonstrate by analysis, in like manner. Let us exa-
mine a rectangle, whose sides are p and g; its surface, which must be
a function of p and g, we shall represent by ¢: (p, ¢)- If we examine
another rectangle, whose dimensions are p + p’ and ¢, this rectangle is
evidently composed of two others, of one having p and ¢ for its dimen-
sioms, of another having »’ and ¢; so that we may put ¢ : (p + p’, ¢)
=¢:(»q)+ 9:(P5q) Let p’ = p; we shall bave p (2 p, ¢
=20(pgq) Letp =2p; we shall have ¢ (8p, ¢) =9 (p: ¢
+0(2pq) =380(pg) Letp = 3p; we shall have ¢ (4, ¢)
=9(pq) +7(8p q) =40 (pg) Hence generally, if £ is any

whole number, we shall have ¢ (% p, ¢) =%k ¢ (p, ¢) or o (P q)

= ‘P_(%f”_"); from which it follows that 222 is such a function of

p as no{)to be changed by substituting in place of p any multiple of
it # p. Hence this function is independent of p, and cannot include

e(»9q)
q

any thing except ¢. But for the same reason must be iude-

pendent of ¢ ; hence 2(p.g) includes neither p nor ¢, and must there-
fore be limited to a constant quantity @. Hence we shall have
¢ (p» ¢) = ap q; and as there is nothing to prevent us from taking
a = 1, we shall have ¢ (p,¢) = pq; thus the surface of a rectangle
is equal to the product of its two dimensions.

In the very same manner, we could show that the solidity of a
right-angled parallelopipedon, whose dimensions are p, g, r, is equal
to the product of p ¢ 7 of its three dimensions.

We may observe, in conclusion, that the doctrine of functions, which
thus affords a very simple demonstration of the fundamental proposi-
tions of geometry, has already been employed with success in demon-
strating the fundamental principles of Mechanics. See the Memoirs
of Turin, vol. ii.

Y 2



No. 111.
ON TRANSVERSALS.

(1) A vuiNg, whether right or curved, which intersects a system of
other lines, right or curved, is called a ¢transversal. The importance
and fertility of the properties of lines thus related was first shown b
CARNOT, in his Géométrie de Position ; and the theory of transversals
has since been more fully developed, rendered more elementary, and
illustrated by practical application by several writers. It is not our
purpose here to enter upon this subject in detail, nor to present it in
its most general form. It will be sufficient to explain some of its
leading principles in the case in which the transversals are right lines,
and to show by a few examples its utility in practical operations.

Those who desire to pursue the subject further are referred to
CARNoT'S Géométrie de Position; an Essay by the same mathe-
matician sur la Théorie des Transversales, Paris, 1806 ; Solutions peu
connus de différens Problémes de Géométrie pratique, par SERVOIS ;
and Application de la Théorie des Transversales, par C.J.BRIANCHON,
Paris, 1818.

The following theorem may be considered as the basis of the theory
of transversals :

THEOREM.

(2) If a transversal cross the sides of a triangle (produced when neces-
:;:_1/), each side will Zvc bl:oo ;e;yznzut: ; thethaide: being A, B, C, let
segments respectively be a ', ¢, ¢’ the segments a, b, ¢ bein
intercepted between the transversal T T and the thmmtim,andtlz
remaining segments &', b, ¢ being also intercepted between the trans-
versal and the three vertices ; then it will follow that the product of the
segments a, b, ¢ will be equal to the product of the segments &', b’ c'.
From the vertex formed by .
the sides A and B draw a
parallel to the third side C,
and let the part of this parallel
. between the vertex and the >
transversal be p. By this pa- o
rallel the triangle included by \/_Y\'/\
the sides @ ¢’ is similar to that !
included by a’ p. Also the triangle included by &’ ¢ is similar to that
included by b p. The following proportions may therefore be inferred:
a:a =¢:p.
b:0'=p:ec
c:c=¢c:c.

* In studying this Appendix the student should actend to the definition of seg.
ments, El. (298).



APPENDIX HI. 325
s

Multiplying the homologous terms we obtain,
abe:a’b’c=cpeipee
abe=abc

1f the transversal be pa-
rallel to a side C, the seg- .~
ments ¢ ¢ become infinite,
their difference C being
finite. They are therefore
to be considered as equal
Dividing the one product
by ¢, and the other by ¢,
we obtain a b =a’ &, which
is equivalent to EL. Prop.II.,
Book VI.

(3) ScHor.—1tis evident \
that the transversal must
either intersect two sides and the production of the third side, or mus.
intersect the productions of all the sides. The sides necessarily pro-
duced are therefore either one or three, an odd number. The sides
actually crossed are either none or two, an even number.
(4) Cor.l.—ab:a’b =(:c, thatis, the rectangles under the
alternate segments of any two sides of the triangle are as the segments
of the third side.
(5) Cor.2.—If the transversal be supposed to revolve round the
point O, where it meets C produced, the rectangles under the alter-
nate segments of the other sides will be constantly in the same ratio.
6) Cor.3.—Ifa=a’,thenbc=1"4'c,orb:4 =c¢':¢c, and v. v.
ence, if the transversal bisect any side A, the segments of the other
sides, between the transversal and the side A, are proportional to those
between the transversal and the vertex formed by B and C.

In this case the sides B and -C are cut proportionally by the trans-
versal, and yet T T is not parallel to A. See El. Prop. II., Book VI.
In that proposition it is supposed, though not expressly stated, that
the transversal is drawn so as to cross both sides, between the vertex
and base, or to cross them both beyond the vertex. The case in
which it crosses one between the vertex and base, and the other
beyond the vertex, was not contemplated. The result obtained in this
rase, however, has an obvious analogy to that which forms the subject
of the second proposition of the sixth book. By that proposition it
appears, that if the transversal cuts the sides A B proportionally (as in
the first figure, where it crosses both sides, or in the second, where
it crosses their productions), it will be parallel to the third side C, and
the point O of external section will be removed to an infinite distance,
the segments being equal. Again, if it cut the sides BC proportionally,
as in the first figure, crossing one side B, and the production of the
other C, then it will bisect the third side A, dividing it into equal
segments, The case of bisection is related to internal section in the
same manner as section at an infinite distance to external section.
See El (526). . L
(7) The iheorem (2) expresses a property of four intersecting lines
any three of which may be considered as forming a triangle, to which
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the fourth is a transversal. Hence, if the part of the transversal T T
which is intercepted between A and B be D, that between BandC, 4,
and that between C and A, &, we have the following relations:
abe=a'b'¢c AcD=CaD
Bad=Ab'd Cbd’=BcD
These, however, are not independent properties, since any one ot
them may be inferred from the other three.

THEOREM

(8) If three transversals be drawn through the vertices of a triangle, so
as to intersect the sides severally, and cross each other at the same point
O, the segments of the sides will have the property expressed in (2).

Let the sides and segments be expressed as in
(2). Let the parts of the transversals between
O, and the sides A, B, C, be , 8, 9, and those be-
tween O and the opposite vertices be ', 8, "
The triangle included by the sides A ¢’ is crossed
by the transversal which is drawn to A from the
opposite vertex of the proposed triangle. Hence
by (2) we have

ayC=aye by =5bCy
va’yC:6Cy —avde:b'c’y
cvdib=ac:bc - .cabe=a’b'c.

This theorem will be equally true whether the point O, where the
transversals intersect, be within the triangle or without it.

It is evident that when the point O is within the triangle, the trans-
versal cuts the sides internally; and if it be without the triangle, two
gides are cut externally, and the third internally.

(9) CoRr.l.—a:a =bc :bec. That is, the segments of any one
side are as the rectangles under the alternate segments of the remain-
ing sides.

(10) Cor. 2.—If the transversals crossing B and C be supposed
gradually to change their position, while that which meets A remains
fixed, the rectangles under the alternate segments of B aand C will
have a constant ratio, scil. that of the segments of A.

(11) Cor.8.—If a=ad, b ¢ =bc, and v.v.; that is, if lines be
drawn from the extremities of the base of a triangle to the sides, cross-
ing the bisector of the base at the same point, the rectangles under
the alternate segments of the sides will be equal, and v. v.

(12) Cor. 4.— If two of the transversals bisect the sides, the third
will bisect the base. Hence the three bisectors of the sides of a
triangle meet at the same point.

(18) Cor. 5.— The theorem (8) is reciprocal, and furnishes the
criterion which decides when three lines, drawn from the vertices of
a triangle, have a common point of intersection. It is easy to apply it
to the cases of the bisectors of the angles and perpendiculars from the
vertices to the opposite sides.

(14) Cor. 6. —If one of the transversals be parallel to the base C,
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the segments of the base become infinite, their difference, C, being
finite, and are therefore equal. Hence they may be expunged from
buth equal products, and we obtain ab=a’d, or a:a" =5": 5,
Prop. 11. Book VI.) .
&5) Cor.7.— The test established by this proposition, by which
the transversals will have a common intersection, will be found to apply
to transversals, from the vertices to the points, where the inscribed
circle touches the sides.

THEOREM.

( l%]f transversals bedrawn through
vertices A B C of a triangle,
intersecting at the same point, o,
and other transversals cross each
pair of sides at the same points as
the former, meeting the third sides
at the points O O’ O, every line in
the figure which is divided at two
points by other lines is cut harmo-
nically.

By (7) and (8) applied to the tri-
angle A B C, crossed by the trans-
versal O a, and the three which
intersect at o, we have

OA.Bc.Ca=0C.Ac.Ba. Ab.Bc.Ca=5C.Ac.Ba.

These equal products having the multipliers Be, Ca, and A ¢, Ba
common, the remaining ones are proportional ; that is,

OA:0C=Ab:6C,or0OA..0b..0C.

(We shall express harmonical progression by the sign .. between
the ruccessive terms.)

By a similar reasoning each of the following inferences may be made:

OA.O0b ..O0C } Oc..Om.Oa } Ap.Ao.Aa }

0’A..0%¢. O'B ¢+ 05.0n..0a } Bm..Bo. Bb
0”B..0"a..0”C J 0”c..0"p..0"b Cn.Co.Cec
(17) Der.—If the opposite sides (B ¢, a 0, and B a, c0) of a quadri-
lateral figure be produced, until they respectively intersect (at A and
C), the figure thus formed is called @ complete quadrilateral.
(18) Cor. 1. — A complete quadrilateral has six vertices (B, ¢, o,
a, A, C), and, since the right lines meeting any pair of vertices are
diagonals, it has three diagonals (ac, B o, A C).
319) It follows from (16) that in a complete quadrilateral each
iagonal is cut harmonically by the other two.
20) Cor. 2.—The three points O O’ O” are on the same right line.
or, since the three lines O C, 0” C, O’B are cut harmonically, we

have
OB:0’C =Ba:aC
OC:0A =Cb:h A
c:c B.
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By multiplying the homologous terms we have
OB.OC.0O’'A:0”C.0A.0OB=Ba.Cb.Ac:aC.b5A.cB.

But the last two products are equal (8), and therefore

OB.OC.0'A=0"C.0A.OB.

This is a property of a transversal through OO crossing the three

sides A B, B C, A C (2), and therefore this transversal must cross B A
at O’; that is, O’ is on the right line passing through O and O”.
(21) Cor. 8.—If a triangle a b ¢ have its vertices on the sides ot
another triangle A B C, the lines A a, B 4, C ¢ which join the opposite
angles having a common intersection, and the points O, O', O", of
intersection of each pair of opposite sides lie in the same right line.
(22) Cor. 4.— And conversely, if the points of intersection of tne
opposite sides of the two triangles be on the same right iine, the right
lines which join the opposite vertices will have a common intersection.
(28) Cor. 5.—If the right line joining the points a, ¢, where two of
the three transversals meet the sides of the triangle, be produced until
a O is an harmonical third to @ m and a ¢, the point O will be on the
third side C A produced. In like manner if B o be produced until B %
be an harmonical third to Bm and B o, the point b will be on the side
CA. And a similar inference may be applied to each of the nire
lines which form the figure.
(24) Cor.6.—If O C be cut harmonically at A and &, and on the
transversal O a, O m be taken equal to the harmonical mean between
O cand O g, the point m will be on the line B 4, and the same may be
proved of the other lines of the figure.

THEOREM.

25) If two points C and F be given in position, and an indefinite right
( liZw & N parallel to C F being drawnf’z series of points P,J;i”, P'?gc.
be assumed upon it at equal distances,and right lines diverging from F
pass through these points P, P', P", &c., every transversal to this system
of right lines which is drawn from C will be divided by them, so that
the segments measured from C to the diverging lines successively shall

be in harmonical progression.
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Draw any transversal C A. Then
Ca..Ca ..Ca"..Ca"..&e.
From a" draw a" m parallel to F C or M N, and from % draw % p
parallel to F m.
Because F C and a"m are parallel, we have
FC:a"m=Fa:am.
But since P’ P'==P" P', and a” m is parallel to PP, a* n=n m,
and since n p is parallel to a m, we have am=2np. Hence
- Fa:am=Fa:2np=aa':2a p.
glso FC:a"m=Ca:ad".
*.» Ca:aa’=aa :2d'p.
Since a”a is bisected at p,2a’ p is the difference of the segments a a,
o’ a”’. Hence by conversion we have
Ca:Ca”"=ad:aa”;
*.*Ca..Ca'..Ca";
and in the same manner it may be proved that Ca'..C a"..Ca" &c.
Hence
Ca..Cd'..Cda"..Ca". . &c.
Cb..CH..CH”..Ca”.. &c.
(26) Comr.1.—It is evident that the same will be true of transversals
drawn from any point on the right line F C.
(27) DEr.—A system of right lines diverging from a point F, which
intercept equal parts upon a line crossing them in a given direction,
may be called an kermontc percil, and the point from which they
diverge the harmonic focus. We shall call the right line F C, drawn
through the harmonic focus parallel to the lines which are equally
divided by the harmonic pencil the karmonic axis, and the lines which
diverge from F rays.
(28) CoRr. 2.— An indefinite number of harmonic pencils may cor-
respond to the same harmonic axis, since any point on the axis may
be taken as the harmonic focus.
(29) Cor.8.—If Cd!, Ca”, and C ¥ C 5", respectively, two conse-
cutive terms of two series of lines in harmonical progression measured
from C, terminate in the sides of a given angle P'% P?, then all the
terms of the series, both successive and antecedent, will also terminate
in right lines which intersect in the same point F, and which intercept
equal ‘parts upon any parallel to C F.
(80) Cor. 4. — The two sides of a triangle and the bisector of its
base are rays of an harmonic pencil, whose axis is a parallel to the base
through the vertex.
(81) Cor.5.— Any three right lines diverging from the same point
being given, the harmonic pencil of which they are rays may be con-
structed by drawing a right line, so that the part intercepted by the
extreme rays may be bisected by the intermediate ray. A pa.mli’:l to
this line through the vertex is the axis of the pencil.

THEOREM.

(82) If a right line C A be divided at a, d', a", a', &e. so that the
segments measured successirely from a certain point C to the several

z
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points of division be tn harmonical progression, any right lines drawn
through the several points of division converging to the same point F
will form an harmonic pencil whose axis is the line C F.

This theorem, which is the converse of (25), may be proved by
retracing the reasoning by which that proposition was established: or,
more shortly, as follows: lgraw M N parallel to F C, and the diverging
lines will divide it into equal segments; for if P P’ be not equal to P’ P,
take P' % equal to PP, and draw Fk By (25) FP, FP, F% are
rays of an harmonic pencil ; therefore Ca..Ca'..C r. But also
Ca..Ca’..Ca"; hence C a"=C r, which is absurd.

(88) Cor.—The two sides of an angle and its bisector are rays of
an harmonic pencil, of which the bisector of the supplemental or
external angle is the axis. EL (534).

TuEOREM.

(84) If two right lines F P, FP",diverging from a given point F, inter-
sect two other right lines f p, f p", diverging from another given point
J» and the lines a ¢, a”’ ¢c,and F f being drawn, right lines F b, f b’
JSrom the given points F f, be also drawn through the intersection b’ of
the lines a ¢, a” ¢, the two systems of right lines which diverge from
the given points F f, will be harmonic pencils, of 1which the right line

F f is the common axis.

f/

In the triangle ¢” F ¢ the transversals ¢” a, ¢ a”, F ¢’ intersect at the
same point. Hence (16) Fa’..F ¥'..F¢. Therefore (32) fd, f¥, f¢
are rays of an harmonic pencil whose axis is fF. In like manner in
the triangle fa” ¢*, the transversais f5", a” ¢, a ¢” intersect at the same
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point &. Hence (32), F¢, F ¢!, F¢” are rays of an harmonic pencil
whose axis is F.f.
(85) Cor. 1.— And conversely, if Fc¢’ and f5” be the intermediate
rays of two harmonic pencils whose extreme rays are F ¢, F ¢%, and
f ¢, fa”, Ff being their common axis, their intersection must coincide
‘with that of the diagonal lines a ¢” and a*c.
(36) ScHoL.—If two harmonic pencils have a common axis, the
mutual intersections a’, ¥, ¢” and a', ¥, ¢ of the successive rays of
the one pencil with those of the other will lie in the same right line,
(87) Cor.2.—If, while the rays of the pencil F remain fixed, the
rays fp and fp” turn round f as a pivot, whether they keep the
same inclination to each other or not, the intersection of the diagonal
lines a” ¢ and a ¢” will be continually on the intermediate ray F P~ of
the fixed pencil.
S?S) Cogr. 3.—If fd" be any trarfsversal from f crossing the rays of
the pencil F, the intersections o'o of the two systems @“¢, a ¢, a
a"d, ad’ of diagonal lines will be upon a right line passing through
f. For in the complete quadrilateral % o & o', the diagonal a” a is cut
harmonically by the other diagonals % &' and o o’ ; but also a” a is cut
at a' and f harmonically by the rays of the pencil F and its axis.
Hence o0 o' must cross a” a at f.

39) CoRr.4.— Since o’ o f is cut harmonically, it follows that % a”,

a’yand % a are rays of an harmonic pencil whose axis is £ {' And
in the same manner any pair of diagonal lines form with the line F P/
rays of an harmonic pencil whose axis is the line drawn from f to
the intersection of the diagonals.

THEOREM.
(40) If'F, f be the foci of two harmonic pencils whose common axis is
Fj;theme,ralpointsqfintersechoantherayswillbe placed on two
systems of right lines converging to two determinate points F', f”, on the
common axis ¥ f, and these systems will themselves be harmonic pencils.

Faz, Fa!, Fa" and f'x, fy, fz being each three rays of two har-
monic pencils whose common axis is F £, the points z, 3, 2 must be
in the same right line (36). And in the same manner

v,y 2" . ...

2, y’, z”, see e

YpZyeeee
must be severally in the same right line. Also the several series of
intersection.
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y,a"u .. ..
pau,....
z, ', &c. &ec.

These lines must also respectively meet F f at the same point.
For through any point of intersection » draw a parallel to F f. The
parts of this parallel intercepted by the rays of each pencil bemg
equal (27), the ratio «p : u p’ will be the same wherever the parall
be drawn. The triangle p « 2' is similar to F.f" 2/, and p'u 2' to f'f &'

Hence P=Ff
puuz' = S,
ud:pu=fa:ff,

cpuzpu=Ffl:ff.

Hence Ff': ff'is a constant ratio, and therefore the point f”is
given. All the diagonals y z’, x 2¥, u 2, &c. therefore intersect each
other at that point f which divides F f énternally, in the ratio of the
parts of a parallel to F f intercepted by the rays of the one pencil, to
the parts intercepted by the rays of the other.

In the same manner it may be proved that the diagonals »' , »” y,
u" z, &c. intersect at a point F' which cuts F f externally in the same
ratio.

Since the parts of transversals diverging from F cut off by the
several lines diverging from F, f are in harmonical progression, these
lines form harmonie pencils (32).

THE END.

Loxnon:

A. and G. A. SPOTTISWOODE,
New.street. Square.
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