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5 Vector Algebra and Spherical Trigonome-

try

5.1 Vectors in Three-Dimensional Euclidean Space

A 3-dimensional vector v in the vector space R3 can be represented as a triple
(v1, v2, v3) of real numbers. Vectors in R3 are added together, subtracted from
one another, and multiplied by real numbers by the usual rules, so that

(u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3),

(u1, u2, u3)− (v1, v2, v3) = (u1 − v1, u2 − v2, u3 − v3),
t(u1, u2, u3) = (tu1, tu2, tu3)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3, and for all real numbers t. The
operation of vector addition is commutative and associative. Also 0+v = v
for all v ∈ R3, where 0 = (0, 0, 0), and v + (−v) = 0 for all v ∈ R3, where
−(v1, v2, v3) = (−v1, v2, v3) for all (v1, v2, v3) ∈ R3. Moreover

u− v = u + (−v), t(u + v) = tu + tv, (s+ t)v = sv + tv,

s(tv) = (st)v, 1v = v

for all u,v ∈ R3 and s, t ∈ R. The set of all vectors in three-dimensional
space, with the usual operations of vector addition and of scalar multiplica-
tion constitute a three-dimensional real vector space.

The Euclidean norm |v| of a vector v is defined so that if v = (v1, v2, v3)
then

|v| =
√
v21 + v22 + v23.

The scalar product u . v and the vector product u× v of vectors u and v are
defined such that

(u1, u2, u3) . (v1, v2, v3) = u1v1 + u2v2 + u3v3,

(u1, u2, u3)× (v1, v2, v3) = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3. Then

(u + v) .w = u .w + v .w, u . (v + w) = u . v + u .w,

(u + v)×w = u×w + v ×w,

(tu) . v = u . (tv) = t(u . v), (tu)× v = u× (tv) = t(u× v)

u . v = v . u, u . u = |u|2, u× v = −v × u
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for all u,v,w ∈ R3 and t ∈ R.
The unit vectors i, j,k of the standard basis of R3 are defined so that

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Then
i . i = j . j = k . k = 1,

i . j = j . i = j . k = k . j = k . i = i . k = 0,

i× i = j× j = k× k = 0,

i× j = −j× i = k, j× k = −k× j = i, i× j = −j× i = k.

5.2 Displacement Vectors

Let points of three-dimensional Euclidean space be represented in Cartesian
coordinates in the usual fashion, so that the line segments joining the origin
to the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) are orthogonal and of unit lengths.

Let A and B be points in three-dimensional Euclidean space be repre-
sented in Cartesian coordinates so that

A = (a1, a2, a3), B = (b1, b2, b3).

The displacement vector
−→
AB from A to B is defined such that

−→
AB = (b1 − a1, b2 − a2, b3 − a3).

If A, B and C are points in three-dimensional Euclidean space then

−→
AB +

−→
BC =

−→
AC.

Points A, B, C and D of three-dimensional Euclidean space are the vertices
of a parallelogram (labelled in clockwise or anticlockwise) order if and only

if
−→
AB =

−→
DC and

−→
AD =

−→
BC.

Let the origin O be the point with Cartesian coordinates. The position
vector of a point A (with respect to the chosen origin) is defined to be the

displacement vector
−→
OA.
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5.3 Geometrical Interpretation of the Scalar Product

Let u and v be vectors in three-dimensional space, represented in some Carte-
sian coordinate system by the ordered triples (u1, u2, u3) and (v1, v2, v3) re-
spectively. The scalar product u . v of the vectors u and v is then given by
the formula

u . v = u1v1 + u2v2 + u3v3.

Proposition 5.1 The scalar product u . v of non-zero vectors u and v in
three-dimensional space satisfies

u . v = |u| |v| cos θ,

where θ denotes the angle between the vectors u and v.

Proof Suppose first that the angle θ between the vectors u and v is an acute

angle, so that 0 < θ < 1
2
π. Let us consider a triangle ABC, where

−→
AB = u

and
−→
BC = v, and thus

−→
AC = u + v. Let ADC be the right-angled triangle

constructed as depicted in the figure below, so that the line AD extends AB
and the angle at D is a right angle.

�������������
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�

�
�
��

���
���

C
C
C
C
C
C
C
C
C
CC

pppppppppppp pppppppppppp

pppppppppppppppppppppppppppppppppppp pppppppppppp
pppppppppppppppp pppppppppppppppp

u
u

u

u

A

B

C

D

u

v
u + v

θ pppppppppppppppppppppp

Then the lengths of the line segments AB, BC, AC, BD and CD may be
expressed in terms of the lengths |u|, |v| and |u + v| of the displacement
vectors u, v and u + v and the angle θ between the vectors u and v by
means of the following equations:

AB = |u|, BC = |v|, AC = |u + v|,
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BD = |v| cos θ and DC = |v| sin θ.

Then
AD = AB +BD = |u|+ |v| cos θ.

The triangle ADC is a right-angled triangle with hypotenuse AC. It follows
from Pythagoras’ Theorem that

|u + v|2 = AC2 = AD2 +DC2 = (|u|+ |v| cos θ)2 + |v| sin2 θ

= |u|2 + 2|u| |v| cos θ + |v| cos2 θ + |v| sin2 θ

= |u|2 + |v|2 + 2|u| |v| cos θ,

because cos2 θ + sin2 θ = 1.
Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

u + v = (u1 + v1, u2 + v2, u3 + v3),

and therefore

|u + v|2 = (u1 + v1)
2 + (u2 + v2)

2 + (u3 + v3)
2

= u21 + 2u1v1 + v21 + u22 + 2u2v2 + v22 + u23 + 2u3v3 + v23
= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3)

= |u|2 + |v|2 + 2u . v.

On comparing the expressions for |u + v|2 given by the above equations, we
see that u . v = |u| |v| cos θ when 0 < θ < 1

2
π.

The identity u . v = |u| |v| cos θ clearly holds when θ = 0 and θ = π.
Pythagoras’ Theorem ensures that it also holds when the angle θ is a right
angle (so that θ = 1

2
π. Suppose that 1

2
π < θ < π, so that the angle θ is

obtuse. Then the angle between the vectors u and −v is acute, and is equal
to π − θ. Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

u . v = −u . (−v) = −|u| |v| cos(π − θ) = |u| |v| cos θ

when 1
2
π < θ < π. We have therefore verified that the identity u . v =

|u| |v| cos θ holds for all non-zero vectors u and v, as required.

Corollary 5.2 Two non-zero vectors u and v in three-dimensional space are
perpendicular if and only if u . v = 0.

Proof It follows directly from Proposition 5.1 that u . v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors u and v. This is
the case if and only if the vectors u and v are perpendicular.
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Example We can use the scalar product to calculate the angle θ between
the vectors (2, 2, 0) and (0, 3, 3) in three-dimensional space. Let u = (2, 2, 0)
and v = (3, 3, 0). Then |u|2 = 22 + 22 = 8 and |v|2 = 32 + 32 = 18. It follows
that (|u| |v|)2 = 8 × 18 = 144, and thus |u| |v| = 12. Now u . v = 6. It
follows that

6 = |u| |v| cos θ = 12 cos θ.

Therefore cos θ = 1
2
, and thus θ = 1

3
π.

We can use the scalar product to find the distance between points on a
sphere. Now the Cartesian coordinates of a point P on the unit sphere about
the origin O in three-dimensional space may be expressed in terms of angles
θ and ϕ as follows:

P = (sin θ cosϕ, sin θ sinϕ, cos θ).

The angle θ is that between the displacement vector
−→
OP and the vectical

vector (0, 0, 1). Thus the angle 1
2
π−θ represents the ‘latitude’ of the point P ,

when we regard the point (0, 0, 1) as the ‘north pole’ of the sphere. The
angle ϕ measures the ‘longitude’ of the point P .

Now let P1 and P2 be points on the unit sphere, where

P1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1),

P2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2).

We wish to find the angle ψ between the displacement vectors
−→
OP1 and

−→
OP2

of the points P1 and P2 from the origin. Now |
−→
OP1| = 1 and |

−→
OP2| = 1. On

applying Proposition 5.1, we see that

cosψ =
−→
OP1 .

−→
OP2

= sin θ1 sin θ2 cosϕ1 cosϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2

+ cos θ1 cos θ2

= sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

5.4 Geometrical Interpretation of the Vector Product

Let a and b be vectors in three-dimensional space, with Cartesian compo-
nents given by the formulae a = (a1, a2, a3) and b = (b1, b2, b3). The vector
product a× b is then determined by the formula

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).
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Proposition 5.3 Let a and b be vectors in three-dimensional space R3.
Then their vector product a × b is a vector of length |a| |b| | sin θ|, where
θ denotes the angle between the vectors a and b. Moreover the vector a× b
is perpendicular to the vectors a and b.

Proof Let a = (a1, a2, a3) and b = (b1, b2, b3), and let l denote the length
|a× b| of the vector a× b. Then

l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a22b
2
3 + a23b

2
2 − 2a2a3b2b3

+ a23b
2
1 + a21b

2
3 − 2a3a1b3b1

+ a21b
2
2 + a22b

2
1 − 2a1a2b1b2

= a21(b
2
2 + b23) + a22(b

2
1 + b23) + a23(b

2
1 + b22)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)

− a21b21 − a22b22 − a23b23 − 2a2b2a3b3 − 2a3b3a1b1 − 2a1b1a2b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= |a|2|b|2 − (a . b)2

since

|a|2 = a21 + a22 + a23, |b|2 = b21 + b22 + b23, a . b = a1b1 + a2b2 + a3b3

But a . b = |a| |b| cos θ (Proposition 5.1). Therefore

l2 = |a|2|b|2(1− cos2 θ) = |a|2|b|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus l = |a| |b| | sin θ|. Also

a . (a× b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0

and

b . (a× b) = b1(a2b3 − a3b2) + b2(a3b1 − a1b3) + b3(a1b2 − a2b1) = 0

and therefore the vector a × b is perpendicular to both a and b (Corol-
lary 5.2), as required.

Using elementary geometry, and the formula for the length of the vector
product a × b given by Proposition 5.3 it is not difficult to show that the
length of this vector product is equal to the area of a parallelogram in three-
dimensional space whose sides are represented, in length and direction, by
the vectors a and b.
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Remark Let a and b be non-zero vectors that are not colinear (i.e., so
that they do not point in the same direction, or in opposite directions).
The direction of a × b may be determined, using the thumb and first two
fingers of your right hand, as follows. Orient your right hand such that the
thumb points in the direction of the vector a and the first finger points in
the direction of the vector b, and let your second finger point outwards from
the palm of your hand so that it is perpendicular to both the thumb and
the first finger. Then the second finger points in the direction of the vector
product a× b.

Indeed it is customary to describe points of three-dimensional space by
Cartesian coordinates (x, y, z) oriented so that if the positive x-axis and
positive y-axis are pointed in the directions of the thumb and first finger
respectively of your right hand, then the positive z-axis is pointed in the
direction of the second finger of that hand, when the thumb and first two
fingers are mutually perpendicular. For example, if the positive x-axis points
towards the East, and the positive y-axis points towards the North, then the
positive z-axis is chosen so that it points upwards. Moreover if i = (1, 0, 0)
and j = (0, 1, 0) then these vectors i and j are unit vectors pointed in the
direction of the positive x-axis and positive y-axis respectively, and i× j = k,
where k = (0, 0, 1), and the vector k points in the direction of the positive
z-axis. Thus the ‘right-hand’ rule for determining the direction of the vector
product a × b using the fingers of your right hand is valid when a = i and
b = j.

If the directions of the vectors a and b are allowed to vary continuously,
in such a way that these vectors never point either in the same direction or in
opposite directions, then their vector product a×b will always be a non-zero
vector, whose direction will vary continuously with the directions of a and b.
It follows from this that if the ‘right-hand rule’ for determining the direction
of a× b applies when a = i and b = j, then it will also apply whatever the
directions of a and b, since, if your right hand is moved around in such a
way that the thumb and first finger never point in the same direction, and if
the second finger is always perpendicular to the thumb and first finger, then
the direction of the second finger will vary continuously, and will therefore
always point in the direction of the vector product of two vectors pointed in
the direction of the thumb and first finger respectively.

Example We shall find the area of the parallelogram OACB in three-
dimensional space, where

O = (0, 0, 0), A = (1, 2, 0), B = (−4, 2,−5), C = (−3, 4,−5).

Note that
−→
OC =

−→
OA +

−→
OB. Let a =

−→
OA = (1, 2, 0) and b =

−→
OB =

7



(−4, 2,−5). Then a × b = (−10, 5, 10). Now (−10, 5, 10) = 5(−2, 1, 2), and
|(−2, 1, 2)| =

√
9 = 3. It follows that

areaOACB = |a× b| = 15.

Note also that the vector (−2, 1, 2) is perpendicular to the parallelogram
OACB.

Example We shall find the equation of the plane containing the points A, B

and C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if u =
−→
AB =

(1, 2, 0) and v =
−→
AC = (0, 1, 2) then the vectors u and v are parallel to the

plane. It follows that the vector u × v is perpendicular to this plane. Now
u × v = (4,−2, 1), and therefore the displacement vector between any two
points of the plane must be perpendicular to the vector (4,−2, 1). It follows
that the function mapping the point (x, y, z) to the quantity 4x−2y+z must
be constant throughout the plane. Thus the equation of the plane takes the
form

4x− 2y + z = k,

for some constant k. We can calculate the value of k by substituting for x,
y and z the coordinates of any chosen point of the plane. On taking this
chosen point to be the point A, we find that k = 4× 3− 2× 4 + 1 = 5. Thus
the equation of the plane is the following:

4x− 2y + z = 5.

(We can check our result by verifying that the coordinates of the points A,
B and C do indeed satisfy this equation.)

5.5 Scalar Triple Products

Given three vectors u, v and w in three-dimensional space, we can form
the scalar triple product u . (v ×w). This quantity can be expressed as the
determinant of a 3× 3 matrix whose rows contain the Cartesian components
of the vectors u, v and w. Indeed

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

and thus

u . (v ×w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1).
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The quantity on the right hand side of this equality defines the determinant
of the 3× 3 matrix  u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

We have therefore obtained the following result.

Proposition 5.4 Let u, v and w be vectors in three-dimensional space.
Then

u . (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Corollary 5.5 Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) = v . (w × u) = w . (u× v)

= −u . (w × v) = −v . (u×w) = −w . (v × u).

Proof The basic theory of determinants ensures that 3 × 3 determinants
are unchanged under cyclic permutations of their rows by change sign under
transpositions of their rows. These identities therefore follow directly from
Proposition 5.4.

One can show that the absolute value of the scalar triple product u.(v×w)
is the volume of the parallelepiped in three-dimensional space whose vertices
are the points whose displacement vectors from some fixed point O are 0,
u, v, w, u + v, u + w, v + w and u + v + w. (A parallelepiped is a solid
like a brick, but whereas the faces of a brick are rectangles, the faces of the
parallelepiped are parallelograms.)

Example We shall find the volume of the parallelepiped in 3-dimensional
space with vertices at (0, 0, 0), (1, 2, 0), (−4, 2,−5), (0, 1, 1), (−3, 4,−5),
(1, 3, 1), (−4, 3,−4) and (−3, 5,−4). The volume of this parallelepiped is
the absolute value of the scalar triple product u . (v ×w), where

u = (1, 2, 0), v = (−4, 2,−5), w = (0, 1, 1).

Now

u . (v ×w) = (1, 2, 0) . ( (−4, 2,−5)× (0, 1, 1) )

= (1, 2, 0) . (7, 4,−4) = 7 + 2× 4 = 15.

Thus the volume of the paralellepiped is 15 units.
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5.6 The Vector Triple Product Identity

Proposition 5.6 (Vector Triple Product Identity) Let u, v and w be vectors
in three-dimensional space. Then

u× (v ×w) = (u .w)v − (u . v)w

and
(u× v)×w = (u .w)v − (v .w)u.

Proof Let q = u × (v × w), and let u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1, w2, w3), and q = (q1, q2, q3). Then

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

and hence u× (v ×w) = q = (q1, q2, q3), where

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (u .w)v1 − (u . v)w1

Similarly
q2 = (u .w)v2 − (u . v)w2

and
q3 = (u .w)v3 − (u . v)w3

(In order to verify the formula for q2 with an minimum of calculation, take
the formulae above involving q1, and cyclicly permute the subcripts 1, 2 and
3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation of these
subscripts yields the formula for q3.) It follows that

q = (u .w)v − (u . v)w,

as required, since we have shown that the Cartesian components of the vec-
tors on either side of this identity are equal. Thus

u× (v ×w) = (u .w)v − (u . v)w.

On replacing u, v and w by w, u and v respectively, we find that

w × (u× v) = (w . v)u− (w . u)v.

It follows that

(u× v)×w = −w × (u× v) = (u .w)v − (v .w)u,

as required.
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Remark When recalling these identities for use in applications, it is often
helpful to check that the summands on the right hand side have the correct
sign by substituting, for example, i, j and i for u, v and w, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Thus, for example, (i × j) × i = k × i = j and (i.i)j − (j.i)i = j. This helps
check that the summands on the right hand side of the identity (u×v)×w =
(u .w)v − (v .w)u have been chosen with the correct sign (assuming that
these summands have opposite signs).

We present below a second proof making use of the following standard
identity.

Proposition 5.7 Let εi,j,k and δi,j be defined for i, j, k ∈ {1, 2, 3} such that

εi,j,k =


1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)};
−1 if (i, j, k) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)};

0 otherwise.

and

δi,j =

{
1 if i = j;
0 otherwise.

Then
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m

for all i, j,m ∈ {1, 2, 3}.

Proof Suppose that j = k. Then εi,j,k = 0 for i = 1, 2, 3 and thus the left
hand side is zero. The right hand side is also zero in this case, because

δj,mδk,n − δj,nδk,m = δj,mδk,n − δk,nδj,m = 0

when j = k. Thus
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m = 0 when j = k.

Similarly
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m = 0 when m = n. Next suppose

that j 6= k and m 6= n but {j, k} 6= {m,n}. In this case the single value
of i in {1, 2, 3} for which εi,j,k 6= 0 does not coincide with the single value

of i for which εi,m,n 6= 0, and therefore
3∑

i=1

εi,j,k εi,m,n = 0. Moreover either

j 6∈ {m,n}, in which case δj,m = δj,n = 0 and thus δj,mδk,n − δj,nδk,m = 0, or
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else k 6∈ {m,n}, in which case δk,m = δk,n = 0 and thus δj,mδk,n−δj,nδk,m = 0.

It follows from all the cases considered above that
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n −

δj,nδk,m = 0 unless both j 6= k and {j, k} = {m,n}. Suppose then that j 6= k
and {j, k} = {m,n}. Then there is a single value of i for which εi,j,k 6= 0.
For this particular value of i we find that

εi,j,k εi,m,n =

{
1 if j 6= k, j = m and k = n;
−1 if j 6= k, j = n and k = m.

It follows that, in the cases where j 6= k and {j, k} = {m,n},

3∑
i=1

εi,j,k εi,m,n =


1 if j 6= k, j = m and k = n,
−1 if j 6= k, j = n and k = m,

0 otherwise,

= δj,mδk,n − δj,nδk,m,

as required.

Second Proof of Proposition 5.6 Let p = v × w and q = u × p =
u× (v ×w), and let

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3),

p = (p1, p2, p3) and q = (q1, q2, q3).

The definition of the vector product ensures that pi =
3∑

j,k=1

εi,j,kvjwk for

i = 1, 2, 3, where εi,j,k and δi,j are defined for i, j, k ∈ {1, 2, 3} as described
in the statement of Proposition 5.7. It follows that

qm =
3∑

n,i=1

εm,n,i unpi =
3∑

n,i,j,k=1

εm,n,iεi,j,k unvjwk

=
3∑

n,j,k=1

3∑
i=1

εi,m,nεi,j,k unvjwk

=
3∑

n,j,k=1

(δj,mδk,n − δj,nδk,m)unvjwk

=
3∑

n,k=1

δk,n vmunwk −
3∑

n,j=1

δj,n unvjwm = vm

3∑
k=1

ukwk − wm

3∑
j=1

ujvj

= (u .w)vm − (u . v)wm
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for m = 1, 2, 3, and therefore

u× (v ×w) = q = (u .w)v − (u . v)w,

as required.

Remark The identity

αS . α′α′′ − α′S.α′′α = V(V . αα′ . α′′)

occurs as equation (12) in article 22 of William Rowan Hamilton’s On Quater-
nions, or on a new System of Imaginaries in Algebra, published in the Philo-
sophical Magazine in August 1846. Hamilton noted in that paper that this
identity “will be found to have extensive applications.”

In Hamilton’s quaternion algebra, vectors in three-dimensional space are
represented as pure imaginary quaternions and are denoted by Greek letters.
Thus α, α′ and α′′ denote (in Hamilton’s notation) three arbitrary vectors.
The product of two vectors α′ and α′′ in Hamilton’s system is a quaternion
which is the sum of a scalar part S . αα′ and a vector part V.αα′. (The scalar
and vector parts of a quaternion are the analogues, in Hamilton’s quaternion
algebra, of the real and imaginary parts of a complex number.) Now a
quaternion can be represented in the form s + u1i + u2j + u3k where s, u1,
u2, u3 are real numbers. The operations of quaternion addition, quaternion
subtraction and scalar multiplication by real numbers are defined so that
the space H of quaternions is a four-dimensional vector space over the real
numbers with basis 1, i, j, k. The operation of quaternion multiplication is
defined so that quaternion multiplication is distributive over addition and is
determined by the identities

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

that Hamilton formulated in 1843. It then transpires that the operation of
quaternion multiplication is associative. Hamilton described his discovery of
the quaternion algebra in a letter to P.G. Tait dated October 15, 1858 as
follows:—

. . . P.S.—To-morrow will be the 15th birthday of the Quater-
nions. They started into life, or light, full grown, on [Monday] the
16th of October, 1843, as I was walking with Lady Hamilton to
Dublin, and came up to Brougham Bridge, which my boys have
since called the Quaternion Bridge. That is to say, I then and

13



there felt the galvanic circuit of thought close; and the sparks
which fell from it were the fundamental equations between i, j,
k; exactly such as I have used them ever since. I pulled out on
the spot a pocket-book, which still exists, and made an entry, on
which, at the very moment, I felt that it might be worth my while
to expend the labour of at least ten (or it might be fifteen) years
to come. But then it is fair to say that this was because I felt
a problem to have been at that moment solved—an intellectual
want relieved—which had haunted me for at least fifteen years
before.

Let quaternions q and r be defined such that q = s + u1i + u2j + u3k and
r = t + v1i + v2j + v3k, where s, t, u1, u2, u3, v1, v2, v3 are real numbers. We
can then write q = s+ α and r = t+ β, where

α = u1i+ u2j + u3k, β = v1i+ v2j + v3k.

Hamilton then defined the scalar part of the quaternion q to be the real
number s, and the vector part of the quaternion q to be the quaternion α
determined as described above. The Distributive Law for quaternion multi-
plication and the identities for the products of i, j and k then ensure that

qr = st+ S . αβ + sβ + tα + V . αβ,

where
S . αβ = −(u1v1 + u2v2 + u3v3)

and
V . αβ = (u2v3 − u3v2)i+ (u3v1 − u1v3)j + (u1v2 − u2v1)k.

Thus the scalar part S . α′α′′ of the quaternion product α′α′′ represents the
negative of the scalar product of the vectors α′ and α′′, and the vector part
V.α′α′′ represents the vector product of the quaternion αα′. Thus Hamilton’s
identity can be represented, using the now customary notation for the scalar
and vector products, as follows:—

−α(α′ . α′′) + α′(α′′ . α) = (α× α′)× α′′.

Hamilton’s identity of 1846 (i.e., equation (12) in article 22 of On quater-
nions) is thus the Vector Triple Product Identity stated in Proposition 5.6.

Corollary 5.8 Let u, v and w be vectors in R3. Then

(u× v)× (u×w) = (u.(v ×w))u.

14



Proof Using the Vector Triple Product Identity (Proposition 5.6) and basic
properties of the scalar triple product Corollary 5.5, we find that

(u× v)× (u×w) = (u.(u×w))v − (v.(u×w))u

= (u.(v ×w))u,

as required.

5.7 Lagrange’s Quadruple Product Identity

Proposition 5.9 (Lagrange’s Quadruple Product Identity) Let u, v, w and
z be vectors in R3. Then

(u× v) . (w × z) = (u .w)(v . z)− (u . z)(v .w).

Proof Using the Vector Triple Product Identity (Proposition 5.6) and basic
properties of the scalar triple product Corollary 5.5, we find that

(u× v) . (w × z) = z.((u× v)×w)

= z.((u .w)v − (v .w)u)

= (u .w)(v . z)− (u . z)(v .w),

as required.

Remark Substituting i, j, i and j for u, v, w and z respectively, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

we find that (i×j).(i×j) = k.k = 1 and (i.i)(j.j)−(i.j)(j.i) = 1−0 = 1. This
helps check that the summands on the right hand side have been allocated
the correct sign.

Second Proof of Proposition 5.9 Let

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3), z = (z1, z2, z3),

and let εi,j,k and δi,j be defined for i, j, k ∈ {1, 2, 3} as described in the
statement of Proposition 5.7. Then the components of u× v are the values

of
3∑

j,k=1

εi,j,kvjwk for i = 1, 2, 3. It follows from Proposition 5.7 that

(u× v) . (w × z) =
∑

i,j,k,m,n

εi,j,k εi,m,n ujvkwmzn

=
∑

j,k,m,n

(δj,mδk,n − δj,nδk,m)ujvkwmzn

=
∑
j,k

(ujvkwjzk − ujvkwkzj)

= (u .w)(v . z)− (u . z)(v .w),
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as required.

5.8 Orthonormal Triads of Unit Vectors

Let e and f be unit vectors (i.e., vectors of length one) that are perpendicular
to each other, and let g = e× f . It follows immediately from Proposition 5.3
that |g| = |e| |f | = 1, and that this unit vector g is perpendicular to both e
and f . Then

e . e = f . f = g . g = 1

and
e . f = f . g = g . e = 0.

On applying the Vector Triple Product Identity (Proposition 5.6) we find
that

f × g = f × (e× f) = (f . f) e− (f . e) f = e,

and
g × e = −e× g = −e× (e× f) = −(e . f) e + (e . e) f = f ,

Therefore

e× f = −f × e = g, f × g = −g × f = e, g × e = −e× g = f ,

Three unit vectors, such as the vectors e, f and g above, that are mutually
perpendicular, are referred to as an orthonormal triad of vectors in three-
dimensional space. The vectors e, f and g in any orthonormal triad are
linearly independent. It follows from the theory of bases and dimension in
finite-dimensional vector spaces that that any vector in three-dimensional
space may be expressed, uniquely, as a linear combination of the form

pe + qf + rg.

Any Cartesian coordinate system on three-dimensional space determines
an orthonormal triad i, j and k, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

The scalar and vector products of these vectors satisfy the same relations
as the vectors u, v and w above. A vector represented in these Cartesian
components by an ordered triple (x, y, z) then satisfies the identity

(x, y, z) = xi + yj + zk.
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5.9 Some Applications of Vector Algebra to Spherical
Trigometry

Let S2 be the unit sphere

{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

in three-dimensional Euclidean space R3. Each point of S2 may be repre-
sented in the form

(sin θ cosϕ, sin θ sinϕ, cos θ).

Let I, J and K denote the points of S2 defined such that

I = (1, 0, 0), J = (0, 1, 0), K = (0, 0, 1).

We take the origin O of Cartesian coordinates to be located at the centre
of the sphere. The position vectors of the points I, J and K are then the
standard unit vectors i, j and k.

It may be helpful to regard the point K as representing the “north pole”
of the sphere. The “equator” is then the great circle consisting of those
points (x, y, z) of S2 for which z = 0. Every point P of S2 is the pole of a
great circle on S2 consisting of those points of S2 whose position vectors are
orthogonal to the position vector p of the point P .

Let L and L′ be distinct points of S2 with position vectors r and r′

respectively. We denote by sinLL′ and cosLL′ the sine and cosine of the
angles between the lines joining the centre of the sphere to the points L and
L′.

Lemma 5.10 Let L and L′ be points on the unit sphere S2 in R3, and let r
and r′ denote the displacement vectors of those points from the centre of the
sphere. Then

r . r′ = cosLL′

and
r× r′ = sinLL′ nL,L′ ,

where nL,L′ is a unit vector orthogonal to the plane through the centre of the
sphere that contains the points L and L′.

Proof The displacement vectors r and r′ of the points L and L′ from the
centre of the sphere satisfy |r| = 1 and |r′| = 1 (because the sphere has unit
radius). The required identities therefore follows from basic properties of the
scalar and vector products stated in Proposition 5.1 and Proposition 5.3.
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Lemma 5.11 Let V and W be planes in R3 that are not parallel, and let nV

and vW be the unit vectors orthogonal to the planes V and W , and let α be
the angle between those planes. Then

nV . nW = cosα,

and
nV × nW = sinαu,

where u is a unit vector in the direction of the line of intersection of the
planes V and W .

Proof The vectors nV and nW are not parallel, because the planes are not
parallel, and therefore nV × nW is a non-zero vector. Let t = |nV × nW |.
Then nV × nW = tu, where u is a unit vector orthogonal to both nV and
nW . This vector u must be parallel to both V and W , and must therefore be
parallel to the line of intersection of these two planes. Let v = u × nV and
w = u × nW . Then the vectors v and w are parallel to the planes V and
W respectively, and both vectors are orthogonal to the line of intersection
of these planes. It follows that angle between the vectors v and w is the
angle α between the planes V and W .

Now the vectors v, w, nV and nW are all parallel to the plane that is
orthogonal to u, the angle between the vectors v and nV is a right angle, and
the angle between the vectors w and nW is also a right angle. It follows that
the angle between the vectors nV and nW is equal to the angle α between
the vectors v and w, and therefore

nV . nW = v .w = cosα,

nV × nW = v ×w = sinαu.

These identities can also be verified by vector algebra. Indeed, using
Lagrange’s Quadruple Product Identity, we see that

v .w = (nV × u) . (nW × u)

= (nV . nW )(u . u)− (nV . u)(u . nW )

= nV . nW ,

because u . u = |u|2 = 1 nV . u = 0 and nW . u = 0. Thus nV . nW = cosα.
Also nV × nW is parallel to the unit vector u, and therefore

v ×w = (nV × u)× (nW × u) = (u× nV )× (u× nW )

= (u.(nV × nW ))u = nV × nW .
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(see Corollary 5.8). It follows that

|nV × nW | = |v ×w| = sinα,

and therefore
nV × nW = sinαu,

as required.

Proposition 5.12 (Cosine Rule of Spherical Trigonometty) Let L, L′ and
L′′ be distinct points on the unit sphere in R3, let α be the angle at L between
the great circle through L and L′ and the great circle through L and L′′. Then

cosL′L′′ = cosLL′ · cosLL′′ + sinLL′ · sinLL′′ · cosα.

Proof The angle α at L between the great circle LL′ and the great circle
LL′′ is equal to the angle between the planes through the origin that intersect
the unit sphere in those great circles, and this angle is in turn equal to
the angle between the normal vectors nL,L′ and nL,L′′ to those planes, and
therefore nL,L′ . nL,L′′ = cosα (see Lemma 5.11). Let r, r′ and r′′ denote the
displacement vectors of the points L, L′ and L′′ respectively from the centre
of the sphere. Then

r× r′ = sinLL′ nL,L′ , r× r′′ = sinLL′′ nL,L′′ .

It follows that

(r× r′).(r× r′′) = sinLL′ · sinLL′′ · cosα.

But it follows from Lagrange’s Quadruple Product Identity that Proposi-
tion 5.9 that

(r× r′) . (r× r′′) = (r . r)(r′ . r′′)− (r . r′′)(r′ . r).

But r.r = |r|2 = 1, because the point r lies on the unit sphere. Therefore

(r× r′) . (r× r′′) = (r′ . r′′)− (r . r′)(r . r′′) = cosL′L′′ − cosLL′ cosLL′′.

Equating the two formulae for (r× r′) . (r× r′′), we find that

cosL′L′′ = cosLL′ · cosLL′′ + sinLL′ · sinLL′′ · cosα,

as required.
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Second Proof Let r, r′ and r′′ denote the displacement vectors of the points
L, L′ and L′′ respectively from the centre O of the sphere. Without loss of
generality, we may assume that the Cartesian coordinate system with origin
at the centre O of the sphere has been oriented so that

r = (0, 0, 1),

r′ = (sinLL′, 0, cosLL′),

r′′ = (sinLL′′ cosα, sinLL′′ sinα, cosLL′′).

Then |r′| = 1 and |r′′| = 1. It follows that

cosL′L′′ = r′ . r′′ = cosLL′ · cosLL′′ + sinLL′ · sinLL′′ · cosα,

as required.

Theorem 5.13 (Gauss) If L, L′, L′′ and L′′′ denote four points on the
sphere, and α the angle which the arcs LL′, L′′L′′′ make at their point of
intersection, then we shall have

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′ = sinLL′ · sinL′′L′′′ · cosα.

Proof Let r, r′, r′′ and r′′′ denote the displacement vectors of the points
L, L′, L′′ and L′′′ from the centre of the sphere. It follows from Lagrange’s
Quadruple Product Identity (Proposition 5.9) that

(r . r′′)(r′ . r′′′)− (r . r′′′)(r′ . r′′) = (r× r′) . (r′′ × r′′′).

Now it follows from the standard properties of the scalar and vector products
recorded in the statement of Lemma 5.10 that r . r′′ = cosLL′′ etc., r ×
r′ = sinLL′ nL,L′ and r′′ × r′′′ = sinL′′L′′′ nL′′,L′′′ , where nL,L′ is a unit
vector orthogonal to the plane through the origin containing the points L
and L′, and nL′′,L′′′ is a unit vector orthogonal to the plane through the
origin containing the points L′′ and L′′′. Now nL,L′ . nL′′,L′′′ = cosα, where
cosα is the cosine of the angle α between these two planes (see Lemma 5.11).
This angle is also the angle, at the points of intersection, between the great
circles on the sphere that represent the intersection of those planes with the
sphere. It follows that

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′

= (r . r′′)(r′ . r′′′)− (r . r′′′)(r′ . r′′)

= (r× r′) . (r′′ × r′′′)

= sinLL′ · sinL′′L′′′ · (nL,L′ . nL′′,L′′′)

= sinLL′ · sinL′′L′′′ · cosα,

as required.
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Second Proof (This proof follows fairly closely the proof given by Gauss
in the Disquisitiones Generales circa Superficies Curvas, published in 1828.)
Let the point O be the centre of the sphere, and let P be the point where the
great circle passing through LL′ intersects the great circle passing through
L′′L′′′. The angle α is then the angle between these great circles at the
point P . Let the angles between the line OP and the lines OL, OL′, OL′′

and OL′′′ be denoted by θ, θ′, θ′′, θ′′′ respectively (so that cosPL = cos θ
etc.). It then follows from the Cosine Rule of Spherical Trigonometry (Propo-
sition 5.12) that

cosLL′′ = cos θ cos θ′′ + sin θ sin θ′′ cosα,

cosLL′′′ = cos θ cos θ′′′ + sin θ sin θ′′′ cosα,

cosL′L′′ = cos θ′ cos θ′′ + sin θ′ sin θ′′ cosα,

cosLL′′′ = cos θ′ cos θ′′′ + sin θ′ sin θ′′′ cosα

(see Lemma 5.10). From these equations it follows that

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′

= cosα(cos θ cos θ′′ sin θ′ sin θ′′′ + cos θ′ cos θ′′′ sin θ sin θ′′

− cos θ cos θ′′′ sin θ′ sin θ′′ − cos θ′ cos θ′′ sin θ sin θ′′′)

= cosα(cos θ sin θ′ − sin θ cos θ′)(cos θ′′ sin θ′′′ − sin θ′′ cos θ′′′)

= cosα · sin(θ′ − θ) · sin(θ′′′ − θ′′)
= cosα · sinLL′ · L′′L′′′,

as required.

Remark In his Disquisitiones Generales circa Superficies Curvas, published
in 1828, Gauss proved Theorem 5.13, using the method of the second of the
proofs of that theorem given above, and used it to deduce that if L, L′ and
L′′ are three points on the unit sphere in R3 with Cartesian coordinates

L = (x, y, z), L′ = (x′, y′, z′), L′′ = (x′′, y′′, z′′),

and if
∆ = xy′z′′ + x′y′′z + x′′yz′ − xy′′z′ − x′yz′′ − x′′y′z,

then ∆ = cosNL′′ · sinLL′, where N is a pole of the great circle passing
through L and L′ (i.e., a point on the surface whose displacement vector from
the sphere is orthogonal to the plane through the centre O of the sphere that
contains the points L and L′). Now if the displacement vectors of the points
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L, L′ and L′′ from the centre of the sphere are r, r′ and r′′ respectively then
r × r′ = sinLL′ nL,L′ , where the vector nL,L′ is orthogonal to the vectors r
and r′ and has unit length. We let N be the point on the surface of the sphere
whose displacement vector from the centre of the sphere is nL,L′ . Then N is
a pole of the great circle passing through L and L′. It follows from this that
cosNL′′ = ± sin p, where p is the angle between the line OL′′ joining the
centre O of the sphere to L′′ and the plane through the origin that contains
L and L′. It follows that

∆ = r′′ . (r× r′) = r . (cosLL′ nL,L′) = cosNL′′ · cosLL′ = ± sin p cosLL′.

Now Gauss’s paper was published nearly two decades before William
Rowan Hamilton started publishing papers concerning vectors, using a form
of vector notation that he developed in his theory of quaternions, that in-
cluded standard vector identities such as those satisfied by the scalar triple
product, the Vector Triple Product identity and Lagrange’s Quadruple Prod-
uct Identity.

Gauss deduced the identity ∆ = cosNL′′ · sinLL′ in the Disquisitiones
Generales super Superficies Curvas using the following method. Let I, J and
K be the points on the surface of the sphere where the coordinate axes cut
the sphere, so that, taking the origin of Cartesian coordinates at the centre
of the sphere,

I = (1, 0, 0), J = (0, 1, 0) and K = (0, 0, 1).

It then follows from an earlier theorem (Theorem 5.13 above) proved by
Gauss in the Disquisitiones Generales that

cosLI · cosL′J − cosLJ · cosL′I = sinLL′ · sin IJ · cosα = sinLL′ · cosα,

where α is the angle between the equatorial great circle passing through I
and J and the great circle containing L and L′ at the points of intersection
of these two circles. Now the points K and N are the poles of these two
circles, and the angle between the great circles is equal to the angle between
the poles of those great circles. It follows that cosα = cosNK. Also

cosLI = x, cosLJ, y, L′I = x′, L′J = y′.

It follows that xy′ − yx′ = sinLL′ · nz, where nz = cosNK. Similarly
yz′ − zy′ = sinLL′ · nx and xy′ − yz′ = sinLL′ · nz, where nx = cosNI and
ny = cosNJ .

∆ = (nxx
′′ + nyy

′′ + nzz
′′) · sinLL′ = cosNL′′ · sinLL′,

which is the identity to be proved.
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Proposition 5.14 (Gauss) Let L, L′ and L′′ be three distinct points on the
unit sphere that do not all lie on any one great circle of the sphere, and let
p be the angle which the line from the centre of the sphere to the point L′′

makes with the plane through the centre of the sphere that contains the points
L and L′. Then

sin p = sinL · sinLL′′ = sinL′ · sinL′L′′,

where sinL denotes the sine of the angle between the arcs LL′ and LL′′ at L
and sinL′ denotes the sine of the angle between the arcs L′L′′ and L′L at L′.

Proof Let r, r′ and r′′ denote the diplacement vectors of the points L, L′

and L′′ from the centre of the sphere. A straightforward application of the
Vector Triple Product Identity shows that

(r× r′)× (r× r′′) = (r.(r′ × r′′))r.

(see Corollary 5.8). Now r × r′ = sinLL′ nL,L′ , where nL,L′ is a unit vector
orthogonal to the plane spanned by L and L′. Similarly r×r′′ = sinLL′′ nL,L′′ ,
where nL,L′′ is a unit vector orthogonal to the plane spanned by L and L′.
Moreover the vector nL,L′×nL,L′′ is orthogonal to the vectors nL,L′ and nL,L′′ ,
and therefore is parallel to the line of intersection of the plane through the
centre of the sphere containing L and L′ and the plane through the centre
of the sphere containing L and L′′. Moreover the magnitude of this vector is
the sine of the angle between them. It follows that nL,L′ ×nL,L′′ = ± sinL r.
We note also that r.(r′× r′′) = r′′.(r× r′). (see Corollary 5.5.) Putting these
identities together, we see that we see that

sinLL′ · sinLL′′ · sinL = ±r . (r′× r′′) = ±r′′ . (r× r′) = ± sinLL′ · r′′ . nL,L′ .

Now the cosine of the angle between the unit vector r′′ and the unit vector
nL,L′ is the sine sin p of the angle between the vector r′′ and the plane through
the centre of the sphere that contains the points L and L′. It follows that
r′′ . nL,L′ = sin p, and therefore

sinLL′ · sinLL′′ · sinL = ± sinLL′ · sin p.

Now the angles concerned are all between 0 and π, and therefore their sines
are non-negative. Also sinLL′ 6= 0, because L and L′ are distinct and are
not antipodal points on opposite sides of the sphere. Dividing by sinLL′, we
find that

sinL · sinLL′′ = sin p.
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Interchanging L and L′, we find that

sinL′ · sinL′L′′ = sin p,

as required.

Corollary 5.15 (Sine Rule of Spherical Trigonometry) Let L, L′ and L′′ be
three distinct points on the unit sphere that do not all lie on any one great
circle of the sphere. Then

sinL′L′′

sinL
=

sinLL′′

sinL′
,

where sinL denotes the sine of the angle between the arcs LL′ and LL′′ at L
and sinL′ denotes the sine of the angle between the arcs L′L′′ and L′L at L′.

Proposition 5.16 (Gauss) Let L, L′, L′′ be points on the unit sphere in R3,
and let the point O be at the centre of that sphere. Then the volume V of the
tetrahedron with apex O and base LL′L′′ satisfies

V = 1
6

sinL · sinLL′ · sinLL′′

= 1
6

sinL′ · sinLL′ · sinL′L′′

= 1
6

sinL′′ · sinLL′′ · sinL′L′′

where sinLL′, sinLL′′ and sinL′L′′ are the sines of the angles between the
lines joining the indicated points to the centre of the sphere, and where sinL,
sinL′ and sinL′′ are the sines of angles of the geodesic triangle LL′L′′ whose
vertices are L and L′ and L′′ and whose sides are the arcs of great circles
joining its vertices.

Proof This tetrahedron may be described as the tetrahedron with baseOLL′

and apex L′′. Now the area of the base of the tetrahedron is sinLL′, and the
height is sin p, where p is the perpendicular distance from the point L′′ to
the plane passing through the centre of the sphere that contains the points L
and L′. The volume V of the tetrahedron is one sixth of the area of the base
of the tetrahedron multiplied by the height of the tetrahedron. On applying
Proposition 5.14 we see that

V = 1
6

sin p · sinLL′ = 1
6

sinL · sinLL′ · sinLL′′.

The remaining equalities can be derived by permuting the order of the ver-
tices L, L′ and L′′.
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