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7 The Gaussian Curvature of a Smooth Sur-

face in Three-Dimensional Space

7.1 The Unit Normal Vector Field to a Smooth Surface

We consider here the properties of the normal vector field to a smooth surface
discussed in Section 4 of Gauss’s General Investigations on Curved Surfaces

The auxiliary sphere is the unit sphere about the origin in R3 that contains
the endpoints of all unit vectors (vectors of unit length). The quantities that
Gauss denotes by “cos(1)L”, “cos(2)L” and “cos(3)L” are the cosines of the
angles which the unit normal to a curved surface makes with the directions
of the coordinate axes. This unit normal is thus to be considered as a vector
with components (X, Y, Z), where

X2 + Y 2 + Z2 = 1.

Gauss considers a displacement from a point A on the curved surface to
another point A′ that is infinitesimally close to A. To understand the situa-
tion, avoiding explicit use of “infinitesimals”, it may be helpful to consider a
smooth curve θ: I → Σ in the smooth surface Σ, parameterized by arclength
s, where the values of s range over an open interval I in the real line. The
Cartesian coordinates of a point θ(s) on the curve are then (x(s), y(s), z(s)).
Now standard principles of calculus ensure that arclength along the curve
between s = s0 and s = s1 is given by the integral

s1∫
s0

√(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

ds,

and this arclengh must be equal to s1− s0. It follows from the Fundamental
Theorem of Calculus that

1 =
d

ds

∫ s

s0

√(
dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2

du

=

√(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

.

Therefore (
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

= 1.
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The quantities
dx

ds

dy

ds
and

dz

ds
are thus the components of a unit vector θ′(s)

that is the velocity vector of the smooth curve at the point θ(s). Gauss
denotes by λ the point on the unit sphere that represents the direction of
this unit tangent vector. Accordingly

λ =

(
dx

ds
,
dy

ds
,
dz

ds

)
.

Thus if, following Gauss, the angles that this tangent vector makes with the
directions of the three coordinate axes are denoted by cos(1)λ, cos(2)λ and
cos(3)λ respectively, then

dx

ds
= cos(1)λ,

dy

ds
= cos(2)λ and

dz

ds
= cos(3)λ.

Now the vector θ′(s) is in the tangent space to the smooth surface at the
point θ(s), and is therefore orthogonal to the normal vector (X, Y, Z) to the
surface. It follows that

X
dx

ds
+ Y

dy

ds
+ Z

dx

ds
= 0.

Gauss expresses this identity in the language of “differentials” as follows:

X dx+ Y dy + Z dz = 0.

7.2 Orthogonality and Differentials on Tangent Spaces

The “differentials” dx, dy and dz may be interpreted as linear functionals
on the tangent space to the surface Σ at the point p. Let TpΣ denote the
tangent space to the surface Σ at the point p. This tangent space is a two-
dimensional vector subspace of R3. Moreover a vector (bx, by, bz) belongs
to TpΣ if and only if there exists a smooth curve γ: I → Σ in the surface,
parameterized by a real variable t ranging over some open interval I in R
that contains 0, such that

bx =
dx(γ(t))

dt

∣∣∣∣
t=0

, by =
dy(γ(t))

dt

∣∣∣∣
t=0

, and bz =
dz(γ(t))

dt

∣∣∣∣
t=0

.

A linear functional θ:TpΣ→ R on the tangent space TpΣ to the surface Σ
at the point p is a linear transformation from the real vector space TpΣ to the
field R of real numbers. Linear functions can be added together and can be
multiplied by real scalars, and the set of all linear functionals on the tangent
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space TpΣ, with these operations of addition and multiplication-by-scalars is
itself a two-dimensional real vector space.

The space of linear functionals from TpΣ to R is spanned by the differ-
entials (dx)p, (dy)p and (dz)p, where

(dx)p(bx, by, bz) = bx, (dy)p(bx, by, bz) = by, (dz)p(bx, by, bz) = bz

for all tangent vectors (bx, by, bz) to the smooth surface Σ at the point p.
Now the unit normal vector (X, Y, Z) has zero scalar product with all tangent
vectors to the surface Σ at the point p. Thus if b is a tangent vector to the
surface Σ at the point p, and if b = (bx, by, bz), then

X (dx)p(b) + Y (dy)p(b) + Z (dz)p(b) = Xbx + Y by + Zbz = 0.

It follows that the linear functional

X (dx)p + Y (dy)p + Z (dz)p.

on the tangent space TpΣ to Σ on p sends all tangent vectors to Σ at p to
zero. It follows that

(X dx+ Y dy + Z dz)p:TpΣ→ R

is the zero linear transformation from TpΣ to R. The components of the
normal vector field are thus the coefficients of a linear dependence relation
satisfied by the linearly dependent linear functionals (dx)p, (dy)p and (dz)p
on the tangent space TpΣ.

Thus the equation

X dx+ Y dy + Z dz = 0

7.3 Line Integrals of the Normal Vector Field

It is also worth noting that, if line integrals along smooth curves in the sur-
face Σ are to be calculated in accordance with the usual rules of multivariate
calculus then ∫

γ

(X dx+ Y dy + Z dz) = 0

for all smooth curves γ: [a, b] → Σ in the surface Σ paramaterized by a real
variable that ranges over some closed bounded interval [a, b]. Indeed∫

γ

(X dx+ Y dy + Z dz)

=

∫ b

t=a

(
X(γ(t))

dx(γ(t))

dt
+ Y (γ(t))

dy(γ(t))

dt
+ Z(γ(t))

dz(γ(t))

dt

)
dt

= 0,
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because the unit normal (X(γ(t)), Y (γ(t), Z(γ(t))) to the surface at γ(t) is
orthogonal to the tangent vector(

dx(γ(t))

dt
,
dy(γ(t))

dt
,
dz(γ(t))

dt

)
.

Thus the identity X dx+ Y dy + Z dz is the “differential” form of the result
that establishes that

∫
γ
(X dx + Y dy + Z dz) = 0 for all smoooth curves

γ: [a, b]→ Σ within the surface Σ.

7.4 Smooth Surfaces that are the zero sets of smooth
functions

Let W be a smooth real-valued function defined over some open set Ω in R3,
and let Σ = {(x, y, z) ∈ Ω : W (x, y, z) = 0}. Suppose that the gradient(

∂W

∂x
,
∂W

∂y
,
∂W

∂z

)
of W is non-zero at each point of Σ. Then Σ is a smooth surface in R3. This
can be deduced as a consequence of the Inverse Function Theorem (or the
Implicit Function Theorem, see the Notes on Smooth Surfaces).

If γ: I → Σ is a smooth curve in the surface Σ parameterized by some
open interval I in the real line then W (γ(t)) = 0 for all t ∈ I. Differentiating
with respect to t, using the Chain Rule for differentiating compositions of
differentiable functions of several real variables, we see that

0 =
dW (γ(t))

dt
=
∂W

∂x

∣∣∣∣
γ(t)

dx(γ(t))

dt
+
∂W

∂y

∣∣∣∣
γ(t)

dy(γ(t))

dt
+
∂W

∂z

∣∣∣∣
γ(t)

dz(γ(t))

dt
.

For all t ∈ I. Thus if p = γ(t0) for some t0 ∈ 1, if b = γ′(t0), and if
b = (bx, by, bz), then

dx(γ(t))

dt

∣∣∣∣
t=t0

= bx,
dy(γ(t))

dt

∣∣∣∣
t=t0

= by,
dz(γ(t))

dt

∣∣∣∣
t=t0

= bz.

It follows that

0 =
W (γ(t))

dt

∣∣∣∣
t=0

=
∂W

∂x

∣∣∣∣
p

bx +
∂W

∂y

∣∣∣∣
p

by +
∂W

∂z

∣∣∣∣
p

bx.

Using the language of differential forms, we can write

W (γ(t))

dt

∣∣∣∣
t=0

= (dW )p(b),
x(γ(t))

dt

∣∣∣∣
t=0

= (dx)p(b),
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y(γ(t))

dt

∣∣∣∣
t=0

= (dy)p(b),
z(γ(t))

dt

∣∣∣∣
t=0

= (dz)p(b).

It then follows that

0 = (dW )p(b)

=
∂W

∂x

∣∣∣∣
p

(dx)p(b), +
∂W

∂y

∣∣∣∣
p

(dy)p(b), +
∂W

∂z

∣∣∣∣
p

(dz)p(b)

=

(
∂W

∂x
dx+

∂W

∂y
dy +

∂W

∂z
dz

)
p

(b).

for all vectors b that are tangent to the surface W = 0 at the point P.
This relation can be re-expressed as an equation

∂W

∂x
dx+

∂W

∂y
dy +

∂W

∂z
dz = 0.

satisfied by the differentials dx, dy and dz of the coordinate functions x,
y, z, on restricting these coordinate functions to the surface Σ, so that the
differentials (dx)p, (dy)p, and (dz)p at a point p are considered to be lin-
ear transformations from the tangent space TpΣ to the surface at p to the
field R of real numbers that send each tangent vector b at the point p to the
directional derivatives

(dx)p(b), (dy)p(b), (dz)p(b)

of the coordinate functions in the direction of the tangent vector b.
Moreover the gradient vector(

∂W

∂x
,
∂W

∂y
,
∂W

∂z

)
is orthogonal to the tangent spaces to the surface.

Gauss uses the notation

P =
∂W

∂x
, Q =

∂W

∂y
, R =

∂W

∂z
,

so that
dW = P dx+Qdy +Rdz

on the surface Σ, where Σ = {(x, y, z) ∈ Ω : W (x, y, z) = 0}. Then the
vector (P,Q,R) is orthogonal to the tangent space to the surface Σ at each
point of this surface. Now, in Gauss’s notation, the unit normal (X, Y, Z) to
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the surface has unit length. This vector is parallel to the vector (P,Q,R).
Therefore either

X =
P√

P 2 +Q2 +R2
, Y =

Q√
P 2 +Q2 +R2

, Z =
R√

P 2 +Q2 +R2
,

or

X =
−P√

P 2 +Q2 +R2
, Y =

−Q√
P 2 +Q2 +R2

, Z =
−R√

P 2 +Q2 +R2
.

7.5 Smoothly Parameterized Surfaces

Gauss also considers surfaces that are expressible as functions of two vari-
ables. Such a surface can be represented as the image of a function χ:D →
R3, where D is some open set in R2. The Cartesian coordinates x, y, z may
then be expressed as functions of u and v, where u and v denote Cartesian
coordinates on D, so that

χ(u, v) = (x(u, v), y(u, v), z(u, v)).

An application of the Inverse Function Theorem guarantees that the image

χ(D) is a smooth surface in R3 provided that the vectors
∂r

∂u
are

∂r

∂v
linearly

independent for all (u, v) ∈ D, where

∂r

∂u
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
,

∂r

∂v
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
at all (u, v) ∈ D (see the Notes on Smooth Surfaces). We suppose that these
vectors are indeed linearly independent for all (u, v) ∈ D, and denote the
resulting smooth surface by Σ, so that Σ = χ(D). The parameterization
of this smooth surface determines smooth real-valued functions p and q on
Σ defined such that p(χ(u, v)) = u and q(χ(u, v)) = v for all (u, v) ∈ D.
We then define the partial derivatives of x, y and z with respect to the
parameterizing variables p and q on the surface so that(

∂x

∂p

∣∣∣∣
χ(u,v)

,
∂y

∂p

∣∣∣∣
χ(u,v)

,
∂z

∂p

∣∣∣∣
χ(u,v)

)
=

∂χ(u, v)

∂u
,(

∂x

∂q

∣∣∣∣
χ(u,v)

,
∂y

∂q

∣∣∣∣
χ(u,v)

,
∂z

∂q

∣∣∣∣
χ(u,v)

)
=

∂χ(u, v)

∂v
.

Gauss uses the notation

∂x

∂p
= a,

∂y

∂p
= b,

∂z

∂p
= c,
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∂x

∂q
= a′,

∂y

∂q
= b′,

∂z

∂q
= c′.

Then
∂r

∂p
= (a, b, c),

∂r

∂q
= (a′, b′, c′).

Moreover these vectors
∂r

∂p
and

∂r

∂q
constitute a basis of the tangent space to

the surface at each point of Σ.
Let (X, Y, Z) denote the unit normal vector field along the surface that

is orthogonal to the tangent spaces at each point of the surface. Then the
vectors (X, Y, Z) and

∂r

∂p
× ∂r

∂q

must be parallel. Let

∆ =

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣ .
Then

(X, Y, Z) =
±1

∆

∂r

∂p
× ∂r

∂q
.

=
±1

∆
(a, b, c)× (a′, b′, c′)

=
±1

∆
(bc′ − cb′, ca′ − ac′, ab′ − ba′),

where
∆ =

√
(bc′ − cb′)2 + (ca′ − ac′)2 + (ab′ − ba′)2.

In particular these results can be applied in the special case where the
surface is expressed by an equation of the form z = f(x, y), where f is a
smooth function of the first two Cartesian coordinates x and y. In that case
p = x and q = y, and therefore

(a, b, c) = (1, 0, t) and (a′, b′, c′) = (0, 1, u).

t =
∂z

∂x
=
∂f(x, y)

∂x
and u =

∂z

∂y
=
∂f(x, y)

∂y
.

Suppose the direction of the unit normal (X, Y, Z) is chosen such that Z > 0.
Then the previous formulae yield

X =
−t√

1 + t2 + u2
, Y =

−u√
1 + t2 + u2

, Z =
1√

1 + t2 + u2
.
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7.6 Surface Area

We consider integrals taken over regions of a smooth surface that lie within
the domain of a local coordinate system (p, q) on a portion of the surface. We
say that such a region R has regular boundary if the boundary of the region R
within the surface Σ is such as to ensure that integral

∫
R
f(p, q) dp dq of any

continuous real-valued function f over the region R is well-defined. This
would be the case, for example, if the boundary of R is a simple closed
curve consisting of a finite number of smooth segments. But we do not enter
here into questions as to precisely what conditions should be satisfied by the
boundary of the region R to ensure that such integrals are well-defined.

Let Σ be a smooth surface in R3, let (p, q) be a smooth local coordinate
system around a given point r0 on that surface, and let the values of the
coordinate functions p and q at that given point be denoted by p0 and q0
respectively. We suppose that the surface area of a region R of the surface
contained within the domain of the local coordinate system (u, v) can be
evaluated as an integral of the form∫

R

m(p, q) dp dq,

where m(p, q) is a function of p and q, provided that the boundary of the
region R is regular. We seek to determine an expression for m(p, q) as a
function of p and q.

Let r(p, q) denote the position vector of a point on the surface as a func-
tion of the local coordinates p and q. This point can be mapped to a corre-
sponding point r(p, q) on the tangent space to the surface Σ at the point r0,
where

r(p, q) = r(p0, q0) +
∂r

∂p

∣∣∣∣
(p0,q0)

(p− p0) +
∂r

∂q

∣∣∣∣
(p0,q0)

(q − q0).

Then the smoothness of the surface Σ ensures the existence of a real constant
K0 such that

|r(p, q)− r(p, q)| ≤ K0((p− p0)2 + (q − q0)2).

for all points of the surface with local coordinates (p, q) sufficiently close to
(p0, q0).

Any region R with regular boundary contained within a portion of the
surface close to the given point with local coordinates (p0, q0) determines a
corresponding region R of the tangent plane, consisting of those points of
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the tangent plane for which the values of the parameters p and q are local
coordinates of a point in R. Now the area area(R) of R satisfies

area(R) = m0

∫
R

dp dq,

where m0 is the area of the parallelogram in the tangent plane consisting
of those points r(p, q) for which p0 ≤ p ≤ p0 + 1 and q0 ≤ q ≤ q0 + 1.
The area of this parallelogram is the length of the vector product of the
displacement vectors generating the sides of the parallelogram. It follows
that m0 = ∆(p0, q0), where

∆(p, q) =

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣ .
We suppose that the surface area of a region R in the surface Σ with regular
boundary is defined so that the ratio of the area area(R) of R and the area
area(R) of the corresponding region R in the tangent plane approaches the
limiting value 1 as the region R shrinks down around the point with local
coordinates (p0, q0). This can be formalized by the requirement that, given
any positive real number ε, there exists a positive real number δ such that

1− ε < area(R)

area(R)
< 1 + ε

whenever the local coordinates (p, q) of all points within the region R satisfy
p0 − δ < p < p0 + δ and q0 − δ < q < q0 + δ. This requirement can only be
satisfied if

m(p0, q0) = m0 = ∆(p0, q0).

Applying this result at all points within the coordinate patch, we obtain the
result stated in the following lemma.

Lemma 7.1 Let Σ be a smooth surface in R3, let (p, q) be smooth local co-
ordinates defined over a coordinate patch on the surface Σ, and let R be a
region of the surface Σ with regular boundary (ensuring that the integral of
any continuous real-valued function of p and q over R is well-defined). Then

area(R) =

∫
R

∆(p, q) dp dq,

where

∆(p, q) =

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣ .
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The definition of ∆ ensures that if

∂r

∂p
= (a, b, c) and

∂r

∂q
= (a′, b′, c′),

then
∆ =

√
(bc′ − cb′)2 + (ca′ − ac′)2 + (ab′ − ba′)2.

This is the formula for ∆ presented in Section 4 of Gauss’s General Investi-
gations of Curved Surfaces.

7.7 Transformation of Areas under the Gauss Map

Definition Let Σ be a smooth orientable surface in three-dimensional Eu-
clidean space R3. The Gauss map ν: Σ→ S2 of the surface Σ is the smooth
map from Σ to the unit sphere S2 in R3 defined such that ν(r) is a vector of
unit length normal to the surface Σ at each point r of Σ.

The definition of the Gauss map requires that the direction of the unit
normal vector field r 7→ ν(r) be chosen so that it varies continuously (and
thus smoothly) throughout the surface. The requirement that the surface be
orientable ensures that this can be achieved. The unit normal vector field is
then determined up to multiplication by the scalar−1, reversing the direction
of all normal vectors to the surface. There are thus two possible choices for
the Gauss map of a smooth orientable surface in R3, corresponding to the
two possible orientations of that surface.

Let ν: Σ → S2 be the Gauss map of a smooth surface Σ in R3. Gauss
denotes the components of the Gauss map ν(r) by X, Y , Z, so that

ν(r) =
(
X(r), Y (r), Z(r)

)
for all r ∈ Σ.

Lemma 7.2 Let Σ be a smooth oriented surface, and let X, Y , Z be smooth
functions on Σ whose values at each point of the surface Σ are the Cartesian
components of the unit normal vector field on that surface. Let (p, q) be a
smooth local coordinate system on Σ, and let

∆(p, q) =

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣ ,
where r(p, q) denotes the position vector of the point on the surface deter-
mined by local coordinates p and q. Then

∆(p, q) =
±1

Z(p, q)

(
∂x

∂p

∂y

∂q
− ∂x

∂q

∂y

∂p

)
at points where Z(p, q) 6= 0.
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Proof Reversing the direction of the unit normal vector field, if necessary,
we may assume, without loss of generality, that Z(p, q) > 0. Now(

∂x

∂p
,
∂y

∂p
,
∂z

∂p

)
×
(
∂x

∂q
,
∂y

∂q
,
∂z

∂q

)
= (∆X,∆Y,∆Z),

where

∆ =

∣∣∣∣(∂x∂p , ∂y∂p, ∂z∂p
)
×
(
∂x

∂q
,
∂y

∂q
,
∂z

∂q

)∣∣∣∣ ,
and therefore

∆Z =
∂x

∂p

∂y

∂q
− ∂x

∂q

∂y

∂p
.

The result follows.

Consider the parallelogram in three-dimensional space whose sides are

generated by the vectors
∂r

∂p
and

∂r

∂q
and the projection of that parallelogram

onto the plane z = 0. Now(
∂x

∂p
,
∂y

∂p
,
∂z

∂p

)
×
(
∂x

∂q
,
∂y

∂q
,
∂z

∂q

)
= (∆X,∆Y,∆Z),

where ∆ is the length of the area of this parallelogram and the vector
(X, Y, Z) is normal to the parallelogram. If we project this parallelogram
onto the plane z = 0, the resultant parallelogram has sides generated by the
vectors (

∂x

∂p
,
∂y

∂p
, 0

)
and

(
∂x

∂q
,
∂y

∂q
, 0

)
.

The vector product of these two vectors is (0, 0,∆Z), and therefore the pro-
jected parallelogram has area ∆Z, Thus the ratio of the projected paral-
lelogram and the original parallelogram parallel to the tangent plane of the
surface is equal to the third component Z of the normal vector to the surface.

This result is interpreted, in Section 7 of Gauss’s General Investigations of
Curved Surfaces as follows: if an (infinitesimal) element of a smooth surface
with area dσ is projected onto the plane of the coordinates x and y, then
the area of the projection of that element is Zdσ. Gauss then observes that,
because the tangent plane to the auxiliary sphere at (X, Y, Z) is parallel to the
tangent space to the surface, the same relationship holds between the area
of a corresponding element of the auxiliary sphere and its projection onto
the plane of the coordinates x and y. (Gauss presents his arguments using
triangles rather than parallelograms, but the areas of the parallelograms are
double the areas of the corresponding triangles.)
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Now the point on the auxiliary sphere corresponding to the point (x, y, z)
of the surface has coordinates (X, Y, Z). It follows that formulae relating the
area of an element of the auxiliary sphere to that of its projection into the
plane of the coordinates x and y can be obtained from the corresponding
formulae for the smooth surface by replacing x, y and z in those formulae
by X, Y and Z respectively. It then follows that the ratio k of an “element”
of the auxiliary sphere to the corresponding “element” of the given smooth
surface is equal to the ratio between the areas of their projections onto the
plane z = 0, and is therefore given by the formula

k =

∂X

∂p

∂Y

∂q
− ∂X

∂q

∂Y

∂p
∂x

∂p

∂y

∂q
− ∂x

∂q

∂y

∂p

.

Denoting “infinitesimal” variations of X with respect to p and q by dX and
δX respectively, and denoting the corresponding “infinitesimal” variations of
Y by dY and δY , so that

dX =
∂X

∂p
dp, δX =

∂X

∂q
δq, dY =

∂Y

∂p
dp, δY =

∂Y

∂q
δq,

we arrive at the formula

k =
dX · δY − dY · δX
dx · δy − dy · δx

.

presented in Section 7 of Gauss’s General Investigations of Curved Surfaces
We now derive this result through appropriate applications of Lemma 7.1.

Proposition 7.3 Let ν: Σ → S2 be the Gauss map of a smooth surface Σ,
and let R be a region in Σ with regular boundary contained within the domain
of a smooth local coordinate system (p, q) on the surface. Then

area(ν(R)) =

∫
R

k dσ,

where the integral over R is taken with respect to surface area, and where
k(p, q) is expressed in terms of the partial derivatives of the the Cartesian
components X, Y, Z of the Gauss map of the surface by means of the formula

k(p, q) =

∂X

∂p

∂Y

∂q
− ∂X

∂q

∂Y

∂p
∂x

∂p

∂y

∂q
− ∂x

∂q

∂y

∂p

.
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Proof Let r(p, q) denote the position vector of a point on the surface Σ
determined by the local coordinates p and q, and let n(p, q) = ν(r(p, q)).
Then n(p, q) is a unit vector normal to the surface Σ at the point r(p, q), and

n(p, q) =
(
X(p, q), Y (p, q), Z(p, q)

)
.

In this way we can consider the local coordinates (p, q) as parameterizing
points on the auxiliary sphere S2. It follows from Lemm 7.1, applied to the
auxiliary sphere, that

area(ν(R)) =

∫
R

θ(p, q) dp dq,

where

θ(p, q) =

∣∣∣∣∂n

∂p
× ∂n

∂q

∣∣∣∣ .
Moreover the normal vector to the auxiliary sphere at n(p, q) is equal to
n(p, q) itself, and its components are therefore equal to X(p, q), Y (p, q) and
Z(p, q). It follows from Lemma 7.2 that

θ(p, q) =
±1

Z(p, q)

(
∂X

∂p

∂Y

∂q
− ∂X

∂q

∂Y

∂p

)
=
±k(p, q)

Z(p, q)

(
∂x

∂p

∂y

∂q
− ∂x

∂q

∂y

∂p

)
= k(p, q)∆(p, q)

where ∆(p, q) is the area of the parallelogram in the tangent space to the

surface generated by
∂r

∂p
and

∂r

∂q
, and k(p, q) is determined by the formula

given in the statement of the proposition. The result then follows on applying
Lemma 7.1.

Definition Let Σ be a smooth surface in R3, and let ν: Σ→ S2 denote the
Gauss map of the surface. The Gaussian curvature of Σ at a point r of Σ is
the limit of the ratio

area(ν(R))

area(R)

as the region R shrinks down to the point r.

The limiting process involved in the above definition can be made more
explicit as follows. Let k(r) denote the Gaussian curvature at a point r of
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the smooth surface Σ. Then, given any strictly positive real number ε, there
exists a strictly positive real number δ such that

k(r)− δ < area(ν(R))

area(R)
< k(r) + δ

for all regions R of the surface with regular boundary whose points all lie
within a distance δ of the point r.

The Gaussian curvature of a smooth surface at a point of that surface
has a value that is independent of any choice of coordinate system on that
surface. But, given any smooth local coordinate system (p, q) on a portion
of that surface, the Gaussian curvature can be calculated according to the
formula given in the statement of Proposition 7.3.

Corollary 7.4 Let f :D → R be a smooth real-valued function defined over
an open set D in R2, let Σ be the smooth surface in R3 defined such that

Σ = {(x, y, z) ∈ R3 : (x, y) ∈ D and z = f(x, y)},

and let (X, Y, Z) be the triple of smooth functions on Σ whose values at each
point of Σ are the components of the unit normal vector field there. Then the
Gaussian curvature k(x, y) of the surface Σ at a point (x, y, f(x, y)) of the
surface satisfies

k(x, y) =
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x
.

Proof This follows directly from Proposition 7.3 on applying that result to
the smooth local coordinate system (p, q) with p = x and q = y.

7.8 Calculation of the Gaussian Curvature

Let Σ be a surface of the form

Σ = {(x, y, z) ∈ R3 : (x, y) ∈ D and z = f(x, y)},

where D is an open set in R2 and f :D → R is a smooth real-valued function
on D. Let

t =
∂z

∂x
=
∂f

∂x
and u =

∂z

∂y
=
∂f

∂y
.

Suppose the direction of the unit normal (X, Y, Z) is chosen such that Z > 0.
Then

X =
−t√

1 + t2 + u2
, Y =

−u√
1 + t2 + u2

, Z =
1√

1 + t2 + u2
.

63



(These formula were obtained by Gauss at the end of Section 4 of General
Investigations of Curved Surface.)

Let
∂2z

∂x2
= T,

∂2z

∂x ∂y
= U,

∂2z

∂y2
= V,

so that
∂t

∂x
= T,

∂t

∂y
=
∂u

∂x
= U,

∂u

∂u
= V.

Now
X = −tZ, Y = −uZ, (1 + t2 + u2)Z2 = 1.

It follows that

∂X

∂x
= −Z ∂t

∂x
− t∂Z

∂x
= −ZT − t∂Z

∂x
,

∂X

∂y
= −Z ∂t

∂y
− t∂Z

∂y
= −ZU − t∂Z

∂y
,

∂Y

∂x
= −Z∂u

∂x
− u∂Z

∂x
= −ZU − u∂Z

∂x
,

∂Y

∂y
= −Z∂u

∂y
− u∂Z

∂y
= −ZV − u∂Z

∂y
,

0 = 2(1 + t2 + u2)Z
∂Z

∂x
+ 2Z2

(
t
∂t

∂x
+ u

∂u

∂x

)
= 2Z

(
(1 + t2 + u2)

∂Z

∂x
+ Z(tT + uU)

)
,

0 = 2(1 + t2 + u2)Z
∂Z

∂y
+ 2Z2

(
t
∂t

∂y
+ u

∂u

∂y

)
= 2Z

(
(1 + t2 + u2)

∂Z

∂y
+ Z(tU + uV )

)
.

It follows that

∂Z

∂x
=

−Z
1 + t2 + u2

(tT + uU) = −Z3(tT + uU),

∂Z

∂y
=

−Z
1 + t2 + u2

(tU + uV ) = −Z3(tU + uV ).

Therefore

∂X

∂x
= −ZT + tZ3(tT + uU)
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= Z3(−(1 + t2 + u2)T + t2T + tuU)

= Z3(−(1 + u2)T + tuU),

∂X

∂y
= −ZU + tZ3(tU + uV )

= Z3(−(1 + t2 + u2)U + t2U + tuV )

= Z3(−(1 + u2)U + tuV ),

∂Y

∂x
= −ZU + uZ3(tT + uU)

= Z3(−(1 + t2 + u2)U + tuT + u2U)

= Z3(−(1 + t2)U + tuT ),

∂Y

∂y
= −ZV + uZ3(tU + uV )

= Z3(−(1 + t2 + u2)V + tuU + u2V )

= Z3(−(1 + t2)V + tuU).

The Gaussian curvature k of the surface satisfies

k(x, y) =
∂X

∂x

∂Y

∂y
− ∂X

∂y

∂Y

∂x

(see Lemma 7.4). It follows that

Z−6k = (−(1 + u2)T + tuU)(−(1 + t2)V + tuU)

− (−(1 + u2)U + tuV )(−(1 + t2)U + tuT )

= = (1 + u2)(1 + t2)TV − tu(1 + u2)TU

− tu(1 + t2)UV + t2u2U2

− (1 + u2)(1 + t2)U2 + tu(1 + u2)TU

+ tu(1 + t2)UV − t2u2TV

=
(

(1 + t2)(1 + u2)− t2u2
)

(TV − U2)

= (1 + t2 + u2)(TV − U2) = Z−2(TV − U2).

Thus

k = Z4(TV − U2) =
TV − U2

(1 + t2 + u2)2
.

We summarize the result just obtained in the following proposition.

Proposition 7.5 Let f : Ω0 → R be a smooth real-valued function defined
over some open set Ω0 in R2, and let

Σ = {(x, y, z) ∈ R3 : (x, y) ∈ Ω0 and z = f(x, y)}.
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Then the Gaussian curvature k of the surface Σ satisfies

k =
TV − U2

(1 + t2 + u2)2
,

where

t =
∂z

∂x
, u =

∂z

∂y
, T =

∂2z

∂x2
, U =

∂2z

∂x ∂y
, V =

∂2z

∂y2
.

This completes the calculation of the Gaussian curvature of a surface of
the form z = f(x, y) that concludes Section 7 of Gauss’s General Investiga-
tions of Curved Surfaces.

7.9 The Sectional Curvatures of a Smooth Surface

Let Σ be a smooth surface in R3. In Section 8 of General Investigations of
Curved Surfaces Gauss observes that a Cartesian coordinate system can be
rotated if necessary in order to ensure that the coordinate functions x, y and
z are all zero at some given point of the smooth surface, the tangent plane
to the surface at that point is the plane z = 0. Let T ◦, U◦ and V ◦ denote
the values of the functions T , U and V respectively at the given point. Then
the equation of the surface with respect to the Cartesian coordinate system
chosen as described above takes the form

z = 1
2
T ◦x2 + U◦xy + 1

2
V ◦y2 + Ω(x, y),

where Ω(x, y) is a smooth real-valued function of x and y which tends to
zero as (x, y) tends to (0, 0) fast enough to ensure the existence of positive
constants L and δ such that

|Ω(x, y)| ≤ L(x2 + y2)
3
2

whenever 0 <
√
x2 + y2 < δ. The paraboloid

z =
1

2
T ◦x2 + U◦xy + V ◦y2

is the osculating paraboloid to the surface at the origin.
Now one can rotate the Cartesian coordinate system about the z-axis, if

necessary, to ensure that U◦ = 0. The equation of the surface then becomes

z =
1

2
(T ◦x2 + V ◦y2) + Ω(x, y),
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Given a real number ϕ, the plane

{(x, y, z) ∈ R3 : x sinϕ = y cosϕ}
intersects the surface along the curve ηϕ, where

ηϕ(t) = 1
2
(T ◦ cos2 ϕ+ V ◦ cos2 ϕ)t2 + Ω(t cosϕ, t sinϕ)

for all values of the real parameter t sufficiently close to zero. Moreover there
exists a constant L such that

|Ω(t cosϕ, t sinϕ)| ≤ L|t|3

for all real numbers ϕ, and for all values of the real number t that are suf-
ficiently close to zero. The curvature κϕ of the smooth curve ηϕ at t = 0
is defined to be the rate of change of its unit tangent vector |η′ϕ(t)|−1η′ϕ(t).
Now

|η′ϕ(0)| = 1 and
d

dt
|η′ϕ(t)|

∣∣∣∣
t=0

= 0.

It follows that
κϕ = |η′′ϕ(0)| = T ◦ cos2 ϕ+ V ◦ cos2 ϕ.

This quantity κϕ is the sectional curvature of the surface in the direction of
the tangent vector (cosϕ, sinϕ, 0).

The sectional curvature κϕ of the surface at the origin in the direction of
the tangent vector (cosϕ, sinϕ, 0). is thus equal to that of the parabola

z = 1
2
(T ◦x2 + V ◦y2)

at the origin in the same direction (cosϕ, sinϕ). It is also equal to the
curvature of a circle passing through the origin in the given plane whose
centre is located at the point(

0, 0,
1

T ◦ cos2 ϕ+ V ◦ sin2 ϕ

)
.

The radius of this circle is the radius of curvature of the smooth curve ηϕ at
t − 0. This radius of curvature is thus equal to the reciprocal 1/κϕ of the
sectional curvature κϕ.

If T ◦ = V ◦ then all sectional curvatures of the surface Σ at the origin
are equal. The origin is then said to be an umbilic point of the surface.
Otherwise one of the quantities T ◦ and V ◦ is the minimum value of the
sectional curvatures at the origin, and the other is the maximum of those
sectional curvatures. The quantities T ◦ and V ◦ are referred to as the principal
curvatures of the surface at the origin, and the corresponding directions
(1, 0, 0) and (0, 1, 0) are referred to as the principal directions of curvature at
the origin. The Gaussian curvature k at the origin then satisfies the equation
k = T ◦V ◦, and is thus the product of the principal curvatures at the origin.
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7.10 The Gaussian Curvature of a Parameterized Sur-
face

[Discussion of Section 9 of Gauss’s General Investigations of Curved Surfaces
is omitted from these notes.]

Let Σ be a smooth surface in R3, and let (p, q) be a smooth local coordi-
nate system on a portion of the surface Σ. We discuss below the calculation
in Section 10 of Gauss’s General Investations of Curved Surfaces for deter-
mining the Gaussian curvature over the coordinate patch.

We denote by r(p, q) the position vector of a point on the surface de-
termined by local coordinates p and q. The normal vector (X, Y, Z) then
satisfies

(X, Y, Z) =
1

∆

(
∂r

∂p
× ∂r

∂q

)
,

where

∆ =

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣ .
Let

∂x

∂p
= a,

∂y

∂p
= b,

∂z

∂p
= c,

∂x

∂q
= a′,

∂y

∂q
= b′,

∂z

∂q
= c′,

∂2x

∂p2
= α,

∂2y

∂p2
= β,

∂2z

∂p2
= γ,

∂2x

∂p ∂q
= α′,

∂2y

∂p ∂q
= β′,

∂2z

∂p ∂q
= γ′,

∂2x

∂q2
= α′′,

∂2y

∂q2
= β′′,

∂2z

∂q2
= γ′′,

(Here the notation a′, b′, c′, α′, β′, γ′, α′′, β′′, γ′′ is used to be consistent
with the notation in Gauss’s General Investigations : these notation is not
intended to indicate that those functions that are first or second derivatives
in any sense of the functions a, b, c, α, β or γ.) Then

∂r

∂p
= (a, b, c),

∂r

∂q
= (a′, b′, c′),

X =
A

∆
, Y =

B

∆
, Z =

C

∆
,

where
A = bc′ − cb′, B = ca′ − ac′, C = ab′ − ba′
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and

∆2 = A2 +B2 + C2 = (bc′ − cb′)2 + (ca′ − ac′)2 + (ab′ − ba′)2.

The vector (A,B,C) is then orthogonal to the tangent space to the surface
at a given point of the surface, and therefore has zero scalar product with
the vectors (a, b, c) and (a′, b′, c′) that span the tangent space at that point.
It follows that

Aa+Bb+ Cc = 0 and Aa′ +Bb′ + Cc′ = 0.

Now one of the Cartesian coordinate functions may be expressed on the
surface as a smooth function of the other two around any given point r0 of
the surface. We may there suppose, without loss of generality, that there
exists a smooth real-valued function f defined over some open set in R2 such
that the surface takes the form z = f(x, y) around the point r0. Then

c =
∂z

∂p
=
∂z

∂x

∂x

∂p
+
∂z

∂y

∂y

∂p
= ta+ ub,

c′ =
∂z

∂q
=
∂z

∂x

∂x

∂q
+
∂z

∂y

∂y

∂q
= ta′ + ub′,

where

t =
∂z

∂x
, u =

∂z

∂y
.

It follows that

(A+ Ct)a+ (B + Cu)b = 0, (A+ Ct)a′ + (B + Cu)b′ = 0.

Moreover the projection onto the plane z = 0 sending (x, y, z) ∈ R3 to (x, y, 0)
maps the tangent plane to the surface at r0 surjectively onto the plane z = 0.
It follows that the vectors (a, b) and (a′, b′) span the vector space R2 and are
therefore linearly independent. The vector (A + Ct,B + Cu) therefore has
zero scalar product with all vectors in R2, and therefore A + Ct = 0 and
B + Cu = 0. Thus

∂z

∂x
= t = −A

C
and

∂z

∂y
= u = −B

C
.

Next we note that it follows from the Chain Rule for computing deriva-
tives of compositions of differentiable functions of several real variables that

∂p

∂x

∂p

∂y
∂q

∂x

∂q

∂y

 =


∂x

∂p

∂x

∂q
∂y

∂p

∂y

∂q


−1

=

(
a a′

b b′

)−1
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=
1

ab′ − a′b

(
b′ −a′
−b a

)
=

1

C

(
b′ −a′
−b a

)
,

and thus

C
∂p

∂x
= b′, C

∂p

∂y
= −a′, C

∂q

∂x
= −b, C

∂q

∂y
= a.

Differentiating the identities t = −A/C and u = −B/C with respect to p
and q, we find that

∂t

∂p
=

1

C2

(
A
∂C

∂p
− C∂A

∂p

)
,

∂t

∂q
=

1

C2

(
A
∂C

∂q
− C∂A

∂q

)
,

∂u

∂p
=

1

C2

(
B
∂C

∂p
− C∂B

∂p

)
,

∂u

∂q
=

1

C2

(
B
∂C

∂b
− C∂B

∂q

)
.

It follows that

C3 ∂t

∂x
= C3 ∂t

∂p

∂p

∂x
+ C3 ∂t

∂q

∂q

∂x

=

(
A
∂C

∂p
− C∂A

∂p

)
b′ −

(
A
∂C

∂q
− C∂A

∂q

)
b

C3 ∂t

∂y
= C3 ∂t

∂p

∂p

∂y
+ C3 ∂t

∂q

∂q

∂y

= −
(
A
∂C

∂p
− C∂A

∂p

)
a′ +

(
A
∂C

∂q
− C∂A

∂q

)
a

C3∂u

∂x
= C3 ∂t

∂p

∂p

∂x
+ C3 ∂t

∂q

∂q

∂x

=

(
B
∂C

∂p
− C∂B

∂p

)
b′ −

(
B
∂C

∂q
− C∂B

∂q

)
b

C3∂u

∂y
= C3 ∂t

∂p

∂p

∂y
+ C3 ∂t

∂q

∂q

∂y

= −
(
B
∂C

∂p
− C∂B

∂p

)
a′ +

(
B
∂C

∂q
− C∂B

∂q

)
a

Now

∂A

∂p
= c′β + bγ′ − cβ′ − b′γ,
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∂A

∂q
= c′β′ + bγ′′ − cβ′′ − b′γ′,

∂B

∂p
= a′γ + cα′ − aγ′ − c′α,

∂B

∂q
= a′γ′ + cα′′ − aγ′′ − c′α′,

∂C

∂p
= b′α + aβ′ − bα′ − a′β,

∂C

∂q
= b′α′ + aβ′′ − bα′′ − a′β′,

and therefore

A
∂C

∂p
− C∂A

∂p
= αAb′ + β′Aa− α′Ab− βAa′

− βCc′ − γ′Cb+ β′Cc+ γCb′,

A
∂C

∂q
− C∂A

∂q
= α′Ab′ + β′′Aa− α′′Ab− β′Aa′

− β′Cc′ − γ′′Cb+ β′′Cc+ γ′Cb′,

B
∂C

∂p
− C∂B

∂p
= αBb′ + β′Ba− α′Bb− βBa′

− γCa′ − α′Cc+ γ′Ca+ αCc′,

B
∂C

∂q
− C∂B

∂q
= α′Bb′ + β′′Ba− α′′Bb− β′Ba′

− γ′Ca′ − α′′Cc+ γ′′Ca+ α′Cc′.

The quantities T , U and V have been defined such that

T =
∂2z

∂x2
=
∂t

∂x
, U =

∂2z

∂x ∂y
=
∂t

∂y
=
∂u

∂x
, V =

∂2z

∂y2
=
∂u

∂u
.

On using the identities Aa+ Bb+ Cc = 0 and Aa′ + Bb′ + Cc′ = 0, we find
that

C3T = αAb′2 + β′Aab′ − α′Abb′ − βAa′b′

− βCc′b′ − γ′Cbb′ + β′Ccb′ + γCb′2,

− α′Abb′ − β′′Aab+ α′′Ab2 + β′Aa′b

+ β′Cbc′ + γ′′Cb2 − β′′Cbc− γ′Cbb′,
= αAb′2 − βAa′b′ − βCc′b′ + γCb′2 − 2α′Abb′

+ β′Aab′ + β′Aba′ + β′Ccb′ + β′Cbc′
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− 2γ′Cbb′ + α′′Ab2 − β′′Aab− β′′Cbc+ γ′′Cb2

= αAb′2 + βBb′2 + γCb′2

− 2α′Abb′ − 2β′Bbb′ − 2γ′Cbb′

+ α′′Ab2 + β′′Bb2 + γ′′Cb2.

Similarly

C3U = −αAa′b′ − β′Aaa′ + α′Aa′b+ βAa′2

+ βCa′c′ + γ′Ca′b− β′Ca′c− γCa′b′,
+ α′Aab′ + β′′Aa2 − α′′Aab− β′Aaa′

− β′Cac′ − γ′′Cab+ β′′Cac+ γ′Cab′,

= −αAa′b′ + βAa′2 + βCa′c′ − γCa′b′ + α′Aba′ + α′Aab′

− β′Aaa′ − β′Cca′ − β′Aaa′ − β′Cac′

+ γ′Cab′ + γ′Cba′ − α′′Aab+ β′′Aa2 + β′′Cac− γ′′Cab
= −αAa′b′ − βBa′b′ − γCa′b′

+ α′A(ab′ + ba′) + β′B(ab′ + ba′) + γ′C(ab′ + ba′)

− α′′Aab− β′′Bab− γ′′Cab,

and

C3V = −αBa′b′ − β′Baa′ + α′Bba′ + βBa′2

+ γCa′2 + α′Ca′c− γ′Caa′ − αCa′c′,
+ α′Bab′ + β′′Ba2 − α′′Bab− β′Baa′

− γ′Caa′ − α′′Cac+ γ′′Ca2 + α′Cac′

= −αBa′b′ − αCa′c′ + βBa′2 + γCa′2 + α′Bba′ + α′Ca′c

+ α′Bab′ + α′Cac′,−β′Baa′ − β′Baa′ − γ′Caa′ − γ′Caa′

− α′′Bab− α′′Cac+ β′′Ba2 + γ′′Ca2

= αAa′2 + βBa′2 + γCa′2

− 2α′Aaa′ − 2β′Baa′ − 2γ′Caa′

+ α′′Aa2 + β′′Ba2 + γ′′Ca2.

Let

Aα +Bβ + Cγ = D,

Aα′ +Bβ′ + Cγ′ = D′,

Aα′′ +Bβ′′ + Cγ′′ = D′′.
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Then

C3T = Db′2 − 2D′bb′ +D′′b2,

C3U = −Da′b′ +D′(ab′ + ba′)−D′′ab,
C3V = Da′2 − 2D′aa′ +D′′a2.

It follows that

C6TV = D2a′2b′2 + 4D′2aba′b′ +D′′2a2b2

− 2DD′a′b′(ab′ + ba′)− 2D′D′′ab(ab′ + ba′)

+DD′′(a2b′2 + b2a′2),

C6U2 = D2a′2b′2 +D′2(a2b′2 + b2a′2 + 2aba′b′) +D′′2a2b2

− 2DD′a′b′(ab′ + ba′)− 2D′D′′ab(ab′ + ba′)

+ 2DD′′aa′bb′,

and therefore

C6(TV − U2) = (DD′′ −D′2)(a2b′2 + b2a′2 − 2aba′b′)

= (DD′′ −D′2)(ab′ − ba′)2

= (DD′′ −D′2)C2.

Now the Gaussian curvature k of the surface satisfies

k =
TV − U2

(1 + t2 + u2)2
.

(see Proposition 7.5). Also

1 + t2 + u2 = 1 +
A2

C2
+
B2

C2
=

1

C2
(A2 + b2 + C2).

It follows that

k =
C4(TV − U2)

(A2 +B2 + C2)2
=

DD′′ −D′2

(A2 +B2 + C2)2
.

Proposition 7.6 Let Σ be a smooth surface in R3 and let (p, q) be a smooth
local coordinate system on a portion of Σ. Let r(p, q) represent the position
vector of a point of Σ as a smooth function of the local coordinates p and q,
let

∂r

∂p
× ∂r

∂q
= (A,B,C),
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where A, B and C are smooth functions on the surface Σ, and let

D =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂p2
,

D′ =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂p ∂q
,

D′′ =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂q2
.

Then the Gaussian curvature k of the surface satisfies

k =
DD′′ −D′2

(A2 +B2 + C2)2
.

This concludes the discussion of Section 11 of Gauss’s General Investiga-
tions of Curved Surfaces.

7.11 Determining Gaussian Curvature from Metric Co-
efficients

We recall the definitions of the following real-valued functions that are deter-
mined by partial derivatives of the position vector r of a point on a smooth
surface Σ with respect to smooth local coordinates (p, q) defined over a co-
ordinate patch on that surface:

(a, b, c) =
∂r

∂p
, (a′, b′, c′) =

∂r

∂q
,

(α, β, γ) =
∂2r

∂p2
, (α′, β′, γ′) =

∂2r

∂p ∂q
, (α′′, β′′, γ′′) =

∂2r

∂q2
,

(A,B,C) =
∂r

∂p
× ∂r

∂q
, ∆ =

√
A2 +B2 + C2,

X =
A

∆
, Y =

B

∆
, Z =

C

∆
.

D = Aα +Bβ + Cγ =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂p2
,

D′ = Aα′ +Bβ′ + Cγ′ =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂p ∂q
,

D′′ = Aα′′ +Bβ′′ + Cγ′′ =

(
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂q2
.
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Moreover

A = (bc′ − cb′), B = (ca′ − ac′), C = (ab′ − ba′).

Gauss, in Section 11 of General Investigations of Curved Surfaces, introduces
further functions:

E = a2 + b2 + c2 =

∣∣∣∣∂r

∂p

∣∣∣∣2 ,
F = aa′ + bb′ + cc′ =

∂r

∂p
.
∂r

∂q
,

G = a′2 + b′2 + c′2 =

∣∣∣∣∂r

∂q

∣∣∣∣2 ,
m = aα + bβ + cγ =

∂r

∂p
.
∂2r

∂p2
,

m′ = aα′ + bβ′ + cγ′ =
∂r

∂p
.
∂2r

∂p ∂q
,

m′′ = aα + bβ + cγ =
∂r

∂p
.
∂2r

∂q2
,

n = aα + bβ + cγ =
∂r

∂q
.
∂2r

∂p2
,

n′ = aα′ + bβ′ + cγ′ =
∂r

∂q
.
∂2r

∂p ∂q
,

n′′ = aα + bβ + cγ =
∂r

∂q
.
∂2r

∂q2
.

Now it follows from Lagrange’s Quadruple Product Identity (Proposi-
tion 5.9) that ∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣2 =

∣∣∣∣∂r

∂p

∣∣∣∣2 ∣∣∣∣∂r

∂q

∣∣∣∣2 − (∂r

∂p
.
∂r

∂q

)2

.

It follows that
∆2 = A2 +B2 + C2 = EG− F 2.

(Gauss uses ∆ in Section 11 of the General Investigations to denote the
quantity whose square root was labelled ∆2 in Section 4 of the General In-
vestigations. In what follows, we continue to use the notation ∆2 for the
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quantity that Gauss denotes by ∆ in Section 11.) This identity can also
be verified by direct computation (and indeed the relevant computation was
carried through in the proof of Proposition 5.3).

Then  A B C
a b c
a′ b′ c′

 α
β
γ

 =

 D
m
n

 .

Now ∣∣∣∣∣∣
A B C
a b c
a′ b′ c′

∣∣∣∣∣∣ = A(bc′ − cb′) +B(ca′ − ac′) + C(ab′ − ba′)

= A2 +B2 + C2 = ∆2,

and the standard procedure for inverting a 3×3 matrix then establishes that A B C
a b c
a′ b′ c′

−1 =
1

∆2

 A Cb′ −Bc′ Bc− Cb
B Ac′ − Ca′ Ca− Ac
C Ba′ − Ab′ Ab−Ba

 .

It follows that

∆2α = AD + (Cb′ −Bc′)m+ (Bc− Cb)n,
∆2β = BD + (Ac′ − Ca′)m+ (Ca− Ac)n,
∆2γ = CD + (Ba′ − Ab′)m+ (Ab−Ba)n.

Now

Cb′ −Bc′ = ab′2 − ba′b′ − ca′c′ + ac′2

= a(a′2 + b′2 + c′2)− a′(aa′ + bb′ + cc′)

= aG− a′F,
Bc− Cb = c2a′ − acc′ − abb′ + b2a′

= (a2 + b2 + c2)a′ − a(aa′ + bb′ + cc′)

= a′E − aF.

It follows that

AD = ∆2α + (a′F − aG)m+ (aF − a′E)n

= ∆2α + a(nF −mG) + a′(mF − nE).

Similarly

BD = ∆2β + b(nF −mG) + b′(mF − nE),

CD = ∆2γ + c(nF −mG) + c′(mF − nE).
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These three identities combine to yield the following vector identity:((
∂r

∂p
× ∂r

∂q

)
.
∂2r

∂p2

)
∂r

∂p
× ∂r

∂q
=

∣∣∣∣∂r

∂p
× ∂r

∂q

∣∣∣∣2 ∂2r∂p2
+ (nF −mG)

∂r

∂p

+ (mF − nE)
∂r

∂q
.

This identity can be expressed in the form

∂2r

∂p2
−
(
ν(r) .

∂2r

∂p2

)
ν(r) +

nF −mG
∆2

∂r

∂p
+
mF − nE

∆2

∂r

∂q
= 0,

where

ν(r) =

(
A

∆
,
B

∆
,
C

∆

)
.

Moreover ν(r) is a unit normal vector to the surface, and

∂r

∂p
× ∂r

∂q
= ∆ ν(r).

We can therefore verify the identity obtained by Gauss using vector methods
as described below.

Let

S =
∂2r

∂p2
−
(
ν(r) .

∂2r

∂p2

)
ν(r) +

nF −mG
∆2

∂r

∂p
+
mF − nE

∆2

∂r

∂q
.

Now

ν(r) .
∂r

∂p
= 0 and ν(r) .

∂r

∂q
= 0,

because the vector ν(r) is orthogonal to the tangent space to the surface at

a given point, whilst
∂r

∂p
and

∂r

∂q
are parallel to that tangent space. It follows

that

ν(r) . S = ν(r) .
∂2r

∂p2
−
(
ν(r) .

∂2r

∂p2

)
ν(r) . ν(r) = 0.

Also

∂r

∂p
. S =

∂r

∂p
.
∂2r

∂p2
+
nF −mG

∆2

∣∣∣∣∂r

∂p

∣∣∣∣2 +
mF − nE

∆2

∂r

∂p
.
∂r

∂q

= m+
nF −mG

∆2
E + +

mF − nE
∆2

F

= m− EG− F 2

∆2
m = 0,
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∂r

∂q
. S =

∂r

∂q
.
∂2r

∂p2
+
nF −mG

∆2

∂r

∂p
.
∂r

∂q
+
mF − nE

∆2

∣∣∣∣∂r

∂q

∣∣∣∣2
= n+

nF −mG
∆2

F + +
mF − nE

∆2
G

= n− EG− F 2

∆2
n = 0.

It follows that S = 0. This completes the verification of Gauss’s identities

AD = ∆2α + a(nF −mG) + a′(mF − nE),

BD = ∆2β + b(nF −mG) + b′(mF − nE),

CD = ∆2γ + c(nF −mG) + c′(mF − nE).

using vector methods.
The vector (α′, β′, γ′) satisfies the matrix identity A B C

a b c
a′ b′ c′

 α′

β′

γ′

 =

 D′

m′

n′

 .

The solution of this matrix equation leads to identities

AD′ = ∆2α + a(n′F −m′G) + a′(m′F − n′E),

BD′ = ∆2β + b(n′F −m′G) + b′(m′F − n′E),

CD′ = ∆2γ + c(n′F −m′G) + c′(m′F − n′E).

These identities correspond to the vector identity

∂2r

∂p ∂q
−
(
ν(r) .

∂2r

∂p ∂q

)
ν(r) +

n′F −m′G
∆2

∂r

∂p
+
m′F − n′E

∆2

∂r

∂q
= 0.

Moreover this vector identity can be verified by establishing that the scalar

product of the left hand side with each of the vectors ν(r),
∂r

∂p
and

∂r

∂q
is

equal to zero.
Now Aα′′ +Bβ′′ + Cγ′′ = D′′. It follows that

DD′′ = ∆2(αα′′ + ββ′′ + γγ′′)

+ (aα′′ + bβ′′ + cγ′′)(nF −mG)

+ (a′α′′ + b′β′′ + c′γ′′)(mF − nE)

= ∆2(αα′′ + ββ′′ + γγ′′) +m′′(nF −mG) + n′′(mF − nE).
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Similarly Aα′ +Bβ′ + Cγ′ = D′, and therefore

D′2 = ∆2(α′2 + β′2 + γ′2)

+ (aα′ + bβ′ + cγ′)(n′F −m′G)

+ (a′α′ + b′β′ + c′γ′)(m′F − n′E)

= ∆2(α′2 + β′2 + γ′2) +m′(n′F −m′G) + n′(m′F − n′E).

It follows that

DD′′ −D′2 = ∆2(αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2)
+m′′(nF −mG) + n′′(mF − nE)

−m′(n′F −m′G)− n′(m′F − n′E)

= ∆2(αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2)
+ (n′2 − nn′′)E + (mn′′ − 2m′n′ + nm′′)F

+ (m′2 −mm′′)G.

Now

∂E

∂p
= 2a

∂a

∂p
+ 2b

∂b

∂p
+ 2c

∂c

∂p

= 2(aα + bβ + cγ) = 2m,

∂E

∂q
= 2a

∂a

∂q
+ 2b

∂b

∂q
+ 2c

∂c

∂q

= 2(aα′ + bβ′ + cγ′) = 2m′,

∂F

∂p
= a

∂a′

∂p
+ a′

∂a

∂p
+ b

∂b′

∂p
+ b′

∂b

∂p
+ c

∂c′

∂p
+ c′

∂c

∂p

= aα′ + bβ′ + cγ′ + a′α + b′β + c′γ = m′ + n,

∂F

∂q
= a

∂a′

∂q
+ a′

∂a

∂q
+ b

∂b′

∂q
+ b′

∂b

∂q
+ c

∂c′

∂q
+ c′

∂c

∂q

= aα′′ + bβ′′ + cγ′′ + a′α′ + b′β′ + c′γ′ = m′′ + n′,

∂G

∂p
= 2a′

∂a′

∂p
+ 2b′

∂b′

∂p
+ 2c′

∂c′

∂p

= 2(a′α′ + b′β′ + cγ′) = 2n′,

∂G

∂q
= 2a′

∂a′

∂q
+ 2b′

∂b′

∂q
+ 2c′

∂c′

∂q

= 2(a′α′′ + b′β′′ + c′γ′′) = 2n′′.

It follows, as noted by Gauss in the General Investigations that

m = 1
2

∂E

∂p
, m′ = 1

2

∂E

∂q
, m′′ =

∂F

∂q
− 1

2

∂G

∂p
,
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n =
∂F

∂p
− 1

2

∂E

∂q
, n′ = 1

2

∂G

∂p
, n′′ = 1

2

∂G

∂q
.

Also
∂α′

∂p
=
∂α

∂q
,

∂β′

∂p
=
∂β

∂q
,

∂γ′

∂p
=
∂γ

∂q

and
∂a

∂p
= α,

∂b

∂p
= β,

∂c

∂p
= γ,

∂a

∂q
= α′,

∂b

∂q
= β′,

∂c

∂q
= γ′,

∂a′

∂p
= α′,

∂b′

∂p
= β′,

∂c′

∂p
= γ′,

∂a′

∂q
= α′′,

∂b′

∂q
= β′′,

∂c′

∂q
= γ′′,

and therefore

∂n

∂q
− ∂n′

∂p
=

∂

∂q
(a′α + b′β + c′γ)− ∂

∂p
(a′α′ + b′β′ + c′γ′)

= αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2,
∂m′′

∂p
− ∂m′

∂q
=

∂

∂p
(aα′′ + bβ′′ + cγ′′)− ∂

∂q
(aα′ + bβ′ + cγ′)

= αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2.

It follows that

αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2

=
∂n

∂q
− ∂n′

∂p

=
∂2F

∂p ∂q
− 1

2

∂E

∂q2
− 1

2

∂G

∂p2
.

Now the Gaussian curvature k of the surface satisfies

k =
DD′′ −D′2

(A2 +B2 + C2)2

Proposition 7.6. Moreover A2 +B2 + C2 = EG− F 2 = ∆2. It follows that

4(EG− F 2)2k = 4(DD′′ −D′2)
= 4E(n′2 − nn′′) + 4F (mn′′ − 2m′n′ + nm′′) + 4G(m′2 −mm′′)
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+ 4(EG− F 2)(αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2)

= E

((
∂G

∂p

)2

− 2
∂F

∂p

∂G

∂q
+
∂E

∂q

∂G

∂q

)
+ F

(∂E
∂p

∂G

∂q
− ∂E

∂q

∂G

∂p
+ 4

∂F

∂p

∂F

∂q

− 2
∂F

∂p

∂G

∂p
− 2

∂F

∂q

∂E

∂q

)
+G

((
∂E

∂q

)2

− 2
∂E

∂p

∂F

∂q
+
∂E

∂p

∂G

∂p

)

− 2(EG− F 2)

(
∂E

∂q2
− 2

∂2F

∂p ∂q
+
∂G

∂p2

)
.

[Note that there is a typographical error in the Project Gutenberg edition of
Gauss’s General Investigations of Curved Surfaces, where the left hand side
of the above inequality is given as 4(EG − F 2)k. This error is not in the
translation as published by Princeton University Press in 1902.]

Proposition 7.7 Let Σ be a smooth surface in R3 and let (p, q) be a smooth
local coordinate system on a portion of Σ. Let r(p, q) represent the position
vector of a point of Σ as a smooth function of the local coordinates p and q,
and let

E =

∣∣∣∣∂r

∂p

∣∣∣∣2 ,
F =

∂r

∂p
.
∂r

∂q
,

G =

∣∣∣∣∂r

∂q

∣∣∣∣2 .
Then the Gaussian curvature k of the surface is expressible in terms of the
functions E, F , G and their partial derivatives of first and second order with
respect to the local coordinates p and q by means of the following formula:

4(EG− F 2)2k = E

(
∂E

∂q

∂G

∂q
− 2

∂F

∂p

∂G

∂q
+

(
∂G

∂p

)2
)

+ F
(∂E
∂p

∂G

∂q
− ∂E

∂q

∂G

∂p
− 2

∂E

∂q

∂F

∂q

+ 4
∂F

∂p

∂F

∂q
− 2

∂F

∂p

∂G

∂p

)
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+G

(
∂E

∂p

∂G

∂p
− 2

∂E

∂p

∂F

∂q
+

(
∂E

∂q

)2
)

− 2(EG− F 2)

(
∂E

∂q2
− 2

∂2F

∂p ∂q
+
∂G

∂p2

)
.
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