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6 Smooth Surfaces in Three-Dimensional Eu-

clidean Space

6.1 Smooth Functions

Definition Let Ω be an open set in Rn for some positive integer n, and let
ϕ: Ω→ Rm be a vector-valued function mapping Ω into Rm for some positive
integer m. The function ϕ is said to be differentiable at a point p of Ω, with
derivative (or total derivative) (Dϕ)p:Rn → Rm, where (Dϕ)p is a linear
transformation from the real vector space Rn to the real vector space Rm, if
and only if

lim
h→0

1

|h|

(
ϕ(p + h)− ϕ(p)− (Dϕ)ph

)
= 0.

(Here |h| denotes the Euclidean norm of the n-dimensional vector h, defined
such that

|h|2 = h21 + h22 + · · ·+ h2n,

where h1, h2, . . . , hn are the Cartesian components of the vector h.)

The derivative (Dϕ)p of a differentiable function ϕ: Ω→ Rm at a point p
can be represented with respect to the standard bases of the real vector spaces
Rn and Rm by an m × n matrix. The function ϕ: Ω → Rm is continuously
differentiable on Ω if the components of the m × n matrix representing the
derivative (Dϕ)p are continuous functions of p as the point p varies over the
open set Ω.

A theorem of real analysis in severable variables guarantees that a vector-
valued function defined over an open set in Rn is continuously differentiable
if and only if the partial derivatives of its components taken with respect to
the Cartesian coordinates on Ω exist and are continuous throughout Ω.

One can regard the derivative of a continuously-differentiable vector-
valued function ϕ: Ω → Rm mapping the open set Ω into Rm as being itself
a continuous vector-valued function Dϕ: Ω → Mm,n(R) mapping Ω into the
space Mm,n(R) of m × n matrices with real coefficients which sends each
point p of Ω to the m× n matrix representing the derivative (Dϕ)p of ϕ at
the point p. If this function is itself differentiable on Ω then its derivative
represents the second derivative of ϕ: Ω → Rm. The second derivative of
ϕ exists and is continuous if and only if all second-order partial derivatives
of the components of ϕ exist and are continuous throughout Ω. One can
repeat the differentiation process to seek to construct derivatives of ϕ of all
orders. A theorem of real analysis in several real variables ensures that the
mth order derivative of ϕ: Ω → Rm exists and is continuous throughout Ω
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if and only if all mth order partial derivatives of the components of ϕ exist
and are continuous throughout Ω.

Definition Let Ω be an open set in Rn. A vector-valued function ϕ: Ω→ Rm

mapping Ω into a Euclidean space R of dimension m is said to be smooth on
the open set Ω if and only if the derivatives of the function ϕ of all orders
exist throughout Ω.

Note that if the partial derivatives of a real-valued function of order k+1
are to exist for some positive integer k, the partial derivatives of order k
must be continuous. The theorems of real analysis of several real variables
described above therefore guarantee that a vector-valued function ϕ: Ω→ Rm

defined over an open set Ω in Rn is smooth on Ω if and only if the partial
derivatives of the components of ϕ of all orders exist throughout the open
set Ω.

Theorems of real analysis in several real variables guarantee that sums,
differences, products, quotients and compositions of smooth vector-valued
functions are smooth on open sets over which they are well-defined.

6.2 The Chain Rule for Differentiable Functions of Sev-
eral Real Variables

Let Ω be an open set in Rn for some positive integer n, let ϕ: Ω → Rm

be a differentiable vector-valued function mapping Ω into a Euclidean space
Rm of dimension m, and let f :ϕ(Ω) → R be a differentiable real-valued
function on ϕ(Ω). Let x1, x2, . . . xn denote Cartesian coordinates on Ω, and
let u1, u2, . . . , um denote Cartesian coordinates on ϕ(Ω). The Chain Rule for
calculating partial derivatives of compositions of differentiable functions of
several variables then ensures that the composition function f ◦ ϕ: Ω→ R is
differentiable, and if y = f(ϕ(x1, x2, . . . , xn)) for all x1, x2, . . . , xn then

∂y

∂xi

∣∣∣∣
p

=
m∑
j=1

∂y

∂uj

∣∣∣∣
ϕ(p)

∂uj
∂xi

∣∣∣∣
p

for i = 1, 2, . . . , n. Thus in order to determine the partial derivatives of y
with respect to x1, x2, . . . , xn at a point p of Ω, one applies the above identity
using partial derivatives of y with respect to u1, u2, . . . , um evaluated at the
point ϕ(p) and partial derivatives of u1, u2, . . . , um evaluated at the point p.
Suppressing the specifications of the points at which the partial derivatives
are to be evaluated yields the following more succinct equation:

∂y

∂xi
=

m∑
j=1

∂y

∂uj

∂uj
∂xi

.
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Remark The Chain Rule will not be applicable in situations where the par-
tial derivatives of the relevant functions exist throughout their domains but
the functions themselves are not differentiable. The mere existence of partial
derivatives throughout the domain of a function is not sufficient to ensure dif-
ferentiability. But if those partial derivatives are continuous throughout the
relevant domains then the functions themselves are guaranteed to be differ-
entiable and therefore the Chain Rule for calculating the partial derivatives
of a composition of such functions will be applicable.

6.3 Smooth Curvilinear Coordinate Systems on Three-
Dimensional Space

Definition Let Ω be an open set in R3, let (U, V,W ) be an ordered triple
of smooth real-valued functions on Ω, and let ϕ: Ω→ R3 be the smooth map
defined such that

ϕ(r) =
(
U(r), V (r), W (r)

)
for all r ∈ Ω. Then the ordered triple (U, V,W ) of smooth functions on Ω is
said to constitute a smooth curvilinear coordinate system with domain Ω if
ϕ(Ω) is an open set in R3 on which are defined smooth real-valued functions
ξ, η and ζ that express the Cartesian coordinates (x, y, z) of each point r of
Ω in terms of those of the corresponding point ϕ(r) of ϕ(Ω) in accordance
with the following equations:

x(r) = ξ(ϕ(r)) = ξ(U(r), V (r),W (r)),

y(r) = η(ϕ(r)) = η(U(r), V (r),W (r)),

z(r) = ζ(ϕ(r)) = ζ(U(r), V (r),W (r)).

Example Let

Ω = R3 \ {(x, y, z) ∈ R3 : x ≤ 0 and y = 0},

and let smooth real-valued functions r, θ, ϕ be defined on Ω such that

r(x, y, z) > 0, 0 < θ(x, y, z) < π, −π < ϕ(x, y, z) < π,

and

r(x, y, z) =
√
x2 + y2 + z2,

θ(x, y, z) = arccos

(
z√

x2 + y2 + z2

)
,
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ϕ(x, y, z) =


arccos

(
x√

x2 + y2

)
if y ≥ 0;,

− arccos

(
x√

x2 + y2

)
if y < 0.,

(Here arccos: [−1, 1] → [0, π] denotes the inverse of the restriction of the
cosine function to the interval [0, π].) Then r, θ and ϕ are smooth functions
on the open set Ω. Moreover

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ

where r > 0, 0 ≤ θ < π and −π < ϕ < π, and thus the Cartesian coordinates
x, y, z are expressible as smooth functions of the values of r, θ and ϕ. It fol-
lows that (r, θ, ϕ) is a smooth curvilinear coordinate system with domain Ω.
This is the spherical polar coordinate system over the open set Ω.

Lemma 6.1 Let Ω be an open set in R3, and let (U, V,W ) be a smooth
curvilinear coordinate system with domain Ω. Let

ϕ(r) =
(
U(r), V (r),W (r)

)
for all r ∈ Ω, and let ξ, η and ζ denote the smooth functions defined on ϕ(Ω)
that satisfy the equations

x = ξ(ϕ(x, y, z)),

y = η(ϕ(x, y, z)),

z = ζ(ϕ(x, y, z))

for all (x, y, z) ∈ Ω. Then

u = U(σ(u, v, w)),

v = V (σ(u, v, w)),

w = W (σ(u, v, w)).

for all (u, v, w) ∈ ϕ(Ω), where

σ(u, v, w) = (ξ(u, v, w), η(u, v, w), ζ(u, v, w)).
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Proof Let (u, v, w) ∈ ϕ(Ω). Then there exists (x, y, z) ∈ Ω such that

u = U(x, y, z), v = V (x, y, z), w = (x, y, z).

But then
x = ξ(u, v, w), y = η(u, v, w), z = ζ(u, v, w),

and therefore

u = U(ξ(u, v, w), η(u, v, w), ζ(u, v, w)) = U(σ(u, v, w)),

v = V (ξ(u, v, w), η(u, v, w), ζ(u, v, w)) = V (σ(u, v, w)),

w = W (ξ(u, v, w), η(u, v, w), ζ(u, v, w)) = W (σ(u, v, w)),

as required.

Lemma 6.2 Let Ω be an open set in R3, and let (U, V,W ) be a smooth
curvilinear coordinate system with domain Ω. Let

ϕ(r) =
(
U(r), V (r),W (r)

)
for all r ∈ Ω, and let ξ, η and ζ denote the smooth functions defined on ϕ(Ω)
that satisfy the equations

x = ξ(ϕ(x, y, z)),

y = η(ϕ(x, y, z)),

z = ζ(ϕ(x, y, z))

for all (x, y, z) ∈ Ω. Let ∂jξ, ∂jη and ∂jζ denote the partial derivatives of the
functions ξ, η and ζ respectively with respect to the jth Cartesian coordinate
on Ω for j = 1, 2, 3, and let

∂ξ

∂U
= (∂1ξ)(U, V,W ),

∂ξ

∂V
= (∂2ξ)(U, V,W ),

∂ξ

∂W
= (∂3ξ)(U, V,W ),

∂η

∂U
= (∂1η)(U, V,W ),

∂η

∂V
= (∂2η)(U, V,W ),

∂η

∂W
= (∂3η)(U, V,W ),

∂ζ

∂U
= (∂1ζ)(U, V,W ),

∂ζ

∂V
= (∂2ζ)(U, V,W ),

∂ζ

∂W
= (∂3ζ)(U, V,W ).
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Then

∂ξ

∂U

∂ξ

∂V

∂ξ

∂W

∂η

∂U

∂η

∂V

∂η

∂W

∂ζ

∂U

∂ζ

∂V

∂ζ

∂V





∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z


=

 1 0 0
0 1 0
0 0 1

 .

Proof This follows on differentiating the equations

u = U(ξ(u, v, w), η(u, v, w), ζ(u, v, w)),

v = V (ξ(u, v, w), η(u, v, w), ζ(u, v, w)),

w = W (ξ(u, v, w), η(u, v, w), ζ(u, v, w)),

applying the Chain Rule for calculating Partial Derivatives of compositions
of continuously-differentiable functions of several real variables.

6.4 Smooth Surfaces in Three-Dimensional Space

Definition Let Σ be a subset of three-dimensional Euclidean space R3. Then
Σ is a smooth surface if, given any point p of Σ, there exists a smooth
curvilinear coordinate system (U, V,W ) with domain Ω, where Ω is an open
set in R3 containing the point p, such that

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

Example Let
S2 = {(x, y, z) ∈ R3}.

Then S2 is a smooth surface in R3, in accordance with the above definition.
To verify this, let (r, θ, ϕ) be spherical polar coordinates on Ω0, where

Ω0 = {(x, y, z) ∈ R3 : y 6= 0 or x > 0},

r > 0, 0 < θ < π, −π < ϕ < π,

and
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

for all (x, y, z) ∈ Ω0. Then, given any point p of S2, there exists a rotation T
of R3 about the origin such that T (p) = (1, 0, 0). Let

Ω = {r ∈ R3 : |r− p| <
√

2},
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and let

U(r) = θ(T (r)), V (r) = ϕ(T (r)), w(r) = r(T (r))− 1

for all r ∈ Ω. Then (U, V,W ) is a smooth curvilinear coordinate system with
domain Ω, and

S2 ∩ Ω = {r ∈ Ω : W (r) = 0}.

6.5 Smooth Local Coordinate Systems on Smooth Sur-
faces

Definition Let Σ be a smooth surface in R3, let Ω be an open set in R3, and
let (U, V,W ) be a smooth curvilinear coordinate system with domain Ω. We
say that this smooth curvilinear coordinate system is adapted to the surface
Σ if

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

The definition of smooth surfaces ensures that, given any point of a
smooth surface, that point is contained in the domain of some smooth curvi-
linear coordinate system adapted to the surface.

Let Σ be a smooth surface in R3, and let (U, V,W ) be a smooth curvilinear
coordinate system with domain Ω that is adapted to the surface Σ. Suppose
that Σ∩Ω 6= ∅. Let u: Σ∩Ω→ R and v: Σ∩Ω→ R denote the restrictions of
the functions U and V to the Σ∩Ω. Then the functions u and v parameterize
the portion of the surface Σ represented by Σ ∩ Ω. The ordered pair (u, v)
of real-valued functions on Σ ∩ Ω is referred to as a smooth local coordinate
system for the surface Σ whose domain Σ ∩ Ω is a subset of Σ open in Σ.

Let (Û , V̂ , Ŵ ) be another smooth curvilinear coordinate system with do-
main Ω̂ which is also adapted to the surface Σ, where Σ∩Ω∩ Ω̂ 6= ∅, and let
û: Σ ∩ Ω̂ → R and v̂: Σ ∩ Ω̂ → R denote the restrictions of Û and V̂ respec-
tively to Σ∩ Ω̂. Then Û , V̂ , Ŵ are expressible as smooth functions of U, V,W
and vice versa over the open set Ω ∩ Ω′. It follows that û, v̂ are expressible
as smooth functions of u, v, and also u, v are expressible as smooth functions
of û, v̂, over the intersection Σ ∩ Ω ∩ Ω̂ of the relevant domains.

Definition A smooth atlas for a smooth surface Σ in three-dimensional Eu-
clidean space is a collection of smooth local coordinate systems on Σ whose
domains cover Σ. The smooth local coordinate systems belonging to a given
atlas are called charts

Remark Let us regard the surface of the Earth as a smooth surface. This
surface is of course curved. An atlas, such as one finds on bookshelves at
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home, or at the local library, is a collection of charts. Each chart represents
some portion of the Earth’s surface, determining a local coordinate system
represented by horizontal and vertical displacements on the relevant printed
page of the atlas. The charts within such an atlas should cover all areas of
the Earth’s surface, including the polar regions and the oceans.

6.6 Smooth Functions on Smooth Surfaces

Let Σ be a smooth surface, let (U, V,W ) be a smooth curvilinear coordinate
system with domain Ω adapted to the surface Σ, and let (Û , V̂ , Ŵ ) be an-
other smooth curvilinear coordinate system with domain Ω̂ adapted to the
surface Σ, where Σ ∩ Ω ∩ Ω̂ 6= ∅.

Let f : Σ → R be a continuous real-valued function defined throughout
the surface Σ. The function f is a differentiable function of smooth local
coordinates u and v if and only if there exists a differentiable function F of
two real variables, defined at (u(p), v(p)) for all p ∈ Σ ∩ Ω, such that

f(p) = F (u(p), v(p))

for all p ∈ Σ ∩ Ω. Let ∂1F and ∂2F denote the partial derivatives of the
function F with respect to its first and second arguments respectively. The
partial derivatives of f with respect to the functions u and v constituting the
smooth local coordinate system are then defined so that

∂f

∂u

∣∣∣∣
p

= (∂1F )(u(p), v(p)),

∂f

∂v

∣∣∣∣
p

= (∂2F )(u(p), v(p))

for all p ∈ Σ∩Ω. We thus obtain real-valued functions
∂f

∂u
and

∂f

∂v
on Σ∩Ω

whose values at any point p of Σ ∩ Ω are
∂f

∂u

∣∣∣∣
p

and
∂f

∂v

∣∣∣∣
p

respectively.

The smooth dependence of the local coordinates u, v on local coordinates
û, v̂, and of û, v̂ on u, v, ensures that f is a differentiable function of u and
v on Σ ∩Ω ∩ Ω̂ if and only if if and only if it is a differentiable function of û
and v̂, in which case it follows from the Chain Rule that

∂f

∂u
=

∂f

∂û

∂û

∂u
+
∂f

∂v̂

∂v̂

∂u
,

∂f

∂v
=

∂f

∂û

∂û

∂v
+
∂f

∂v̂

∂v̂

∂v
,
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and

∂f

∂û
=

∂f

∂u

∂u

∂û
+
∂f

∂v

∂v

∂û
,

∂f

∂v̂
=

∂f

∂u

∂u

∂v̂
+
∂f

∂v

∂v

∂v̂
.

Definition A continuous function f : Σ → R on a smooth surface Σ is said
to be k-times continuously differentiable (or Ck) if, given any smooth local
coordinate system (u, v) defined over an open region of the surface, the re-
striction of the function f to that open region is expressible as a k-times
continuously differentiable function of the smooth local coordinates u and v.

Definition A continuous function f : Σ → R on a smooth surface Σ is said
to be smooth if, given any smooth local coordinate system (u, v) defined over
an open region of the surface, the restriction of the function f to that open
region is expressible as a smooth function of the smooth local coordinates u
and v.

In order to verify that a function is smooth around a point p of a smooth
surface Σ, it suffices to verify that f is expressible as a smooth function of the
coordinate functions u and v of at least one smooth local coordinate system
(u, v) defined over an open region that contains the point p. Indeed the
results described above ensure that if f is expressible as a smooth function of
the coordinate functions of at least one such smooth local coordinate system
(u, v) around the point p, then it is expressible as a smooth function of
the coordinate functions of any other such smooth local coordinate system
around the point p.

Thus a continuous real-valued function f : Σ→ R on a surface Σ is smooth
throughout Σ if and only if, for every chart in some smooth atlas for the sur-
face, the function can be expressed as a smooth function of local coordinates
determined by the chart throughout the domain of the chart.

6.7 Derivatives of Functions along Curves in Surfaces

Proposition 6.3 Let Σ be a smooth surface in R3, let f : Σ→ R be a differ-
entiable function on Σ, let γ: I → Σ be a smooth curve in the surface Σ
parameterized by an open interval I, let t0 ∈ I, and let p = γ(t0) and
b = γ′(t0), where γ′(t0) denotes the velocity vector to the curve t 7→ γ(t)
at t = t0, and let b = (bx, by, bz). Let (U, V,W ) be a smooth curvilinear
coordinate system with domain Ω, where p ∈ Ω and

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0},
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let Ω(u,v) = Σ ∩ Ω, and let u and v be the smooth real-valued functions on
Ω(u,v) that are the restrictions to the surface of the smooth functions U and
V . Then

df(γ(t))

dt

∣∣∣∣
t=t0

=
∂f

∂u

∣∣∣∣
p

du(γ(t))

dt

∣∣∣∣
t=t0

+
∂f

∂v

∣∣∣∣
p

dv(γ(t))

dt

∣∣∣∣
t=t0

,

where

du(γ(t))

dt

∣∣∣∣
t=t0

= bx
∂U

∂x

∣∣∣∣
p

+ by
∂U

∂y

∣∣∣∣
p

+ bz
∂U

∂z

∣∣∣∣
p

,

dv(γ(t))

dt

∣∣∣∣
t=t0

= bx
∂V

∂x

∣∣∣∣
p

+ by
∂V

∂y

∣∣∣∣
p

+ bz
∂V

∂z

∣∣∣∣
p

.

Proof The differentiability of the function f ensures the existence of a dif-
ferentiable function F of two real variables, defined at (u(r), v(r)) for all
r ∈ Ω(u,v). Let ∂1F and ∂2F denote the partial derivatives of F with respect
to its first and second arguments respectively. Then the definition of the
partial derivative of f with respect to the local coordinates (u, v) ensures
that

∂f

∂u

∣∣∣∣
p

= (∂1F )(u(p), v(p)),
∂f

∂v

∣∣∣∣
p

= (∂2F )(u(p), v(p)).

The Chain Rule for differentiating compositions of differentiable functions of
several real variables ensures that

df(γ(t))

dt

∣∣∣∣
t=t0

= (∂1F )(u(p), v(p))(u ◦ γ)′(t0)

+ (∂2F )(u(p), v(p))(v ◦ γ)′(t0)

=
∂f

∂u

∣∣∣∣
p

du(γ(t))

dt

∣∣∣∣
t=t0

+
∂f

∂v

∣∣∣∣
p

dv(γ(t))

dt

∣∣∣∣
t=t0

.

The functions u and v are defined only over an open region on the surface,
but they are the restrictions to that surface of the smooth functions U and V
that are the first two components of a smooth curvilinear coordinate system
(U, V,W ) adapted to the surface Σ whose domain Ω is an open set in R3. It
follows that

du(γ(t))

dt

∣∣∣∣
t=t0

=
dU(γ(t))

dt

∣∣∣∣
t=t0

=
∂U

∂x

∣∣∣∣
p

dx(γ(t))

dt

∣∣∣∣
t=t0

+
∂U

∂y

∣∣∣∣
p

dy(γ(t))

dt

∣∣∣∣
t=t0
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+
∂U

∂z

∣∣∣∣
p

dz(γ(t))

dt

∣∣∣∣
t=t0

= bx
∂U

∂x

∣∣∣∣
p

+ by
∂U

∂y

∣∣∣∣
p

+ bz
∂U

∂z

∣∣∣∣
p

.

Similarly
dv(γ(t))

dt

∣∣∣∣
t=t0

= bx
∂V

∂x

∣∣∣∣
p

+ by
∂V

∂y

∣∣∣∣
p

+ bz
∂V

∂z

∣∣∣∣
p

.

The result follows.

6.8 Tangent Spaces to Smooth Surfaces

Definition Let γ: I → R3 be a smooth curve parameterized by an open
interval I in R, (so that γ(t) is defined for all t ∈ I and is a smooth function
of t). The velocity vector γ′(t0) at t = t0 is defined for any t0 ∈ I such that

γ′(t0) =
d(γ(t))

dt

∣∣∣∣
t=t0

.

Proposition 6.4 Let Σ be a smooth surface in three-dimensional Euclidean
space R3, let p be a point of Σ, and let (U, V,W ) be a smooth curvilinear
coordinate system with domain Ω, where p ∈ Ω and

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

Let b ∈ R3 be a vector in R3 with components (bx, by, bz). Then the vector b
is the velocity vector at t = 0 of some smooth curve γ: I → Σ in the surface Σ,
where 0 ∈ I and γ(0) = p, if and only if

bx
∂W

∂x

∣∣∣∣
p

+ by
∂W

∂y

∣∣∣∣
p

+ bz
∂W

∂z

∣∣∣∣
p

= 0.

Proof Suppose that b = γ′(0) for some smooth γ: I → Σ in the surface Σ
for which 0 ∈ I and γ(0) = p. Then

∂(x(γ(t)))

dt

∣∣∣∣
t=0

= bx,

∂(y(γ(t)))

dt

∣∣∣∣
t=0

= by,

∂(z(γ(t)))

dt

∣∣∣∣
t=0

= bz.
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Now W (γ(t)) = 0 for all t ∈ I. It follows from the Chain Rule for
differentiating compositions of differentiable functions of several real variables
that

bx
∂W

∂x

∣∣∣∣
p

+ by
∂W

∂y

∣∣∣∣
p

+ bz
∂W

∂z

∣∣∣∣
p

= 0.

Conversely suppose that the equation

bx
∂W

∂x
+ by

∂W

∂y
+ bz

∂W

∂z
= 0

is satisfied at the point p. Let Jp be the invertible 3 × 3 matrix with real
coefficients that is the value of the Jacobian matrix

∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z


at the point p. Then

Jp

 bx
by
bz

 =

 h
k
0

 ,

where

h = bx
∂U

∂x

∣∣∣∣
p

+ by
∂U

∂y

∣∣∣∣
p

+ bz
∂U

∂z

∣∣∣∣
p

and

k = bx
∂V

∂x

∣∣∣∣
p

+ by
∂V

∂y

∣∣∣∣
p

+ bz
∂V

∂z

∣∣∣∣
p

.

The Cartesian coordinate functions x, y, z are expressible as smooth func-
tions of U, V,W in a neighbourhood of the point p. It follows that there exists
a strictly positive real number δ0 and a smooth curve γ: (−δ0, δ0)→ R3 char-
acterized by the requirements that γ(t) ∈ Ω,

U(γ(t)) = ht, V (γ(t)) = kt and W (γ(t)) = 0

for all real numbers t satisfying |t| < δ0. Let γ′(t) = (cx, cy, cz). Then

h =
∂(U(γ(t)))

dt

∣∣∣∣
t=0
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= cx
∂U

∂x

∣∣∣∣
p

+ cy
∂U

∂y

∣∣∣∣
p

+ cz
∂U

∂z

∣∣∣∣
p

,

k =
∂(V (γ(t)))

dt

∣∣∣∣
t=0

= cx
∂V

∂x

∣∣∣∣
p

+ cy
∂V

∂y

∣∣∣∣
p

+ cz
∂V

∂z

∣∣∣∣
p

,

0 =
∂(W (γ(t)))

dt

∣∣∣∣
t=0

= cx
∂W

∂x

∣∣∣∣
p

+ cy
∂W

∂y

∣∣∣∣
p

+ cz
∂W

∂z

∣∣∣∣
p

.

It follows that

Jp

 cx
cy
cz

 =

 h
k
0

 = Jp

 bx
by
bz

 .

Now the Jacobian matrix Jp is invertible, because (U, V,W ) is a smooth
curvilinear coordinate system around the point p. It follows that cx

cy
cz

 =

 bx
by
bz

 ,

and therefore γ′(0) = b. The result follows.

Definition Let Σ be a smooth surface in R3, let p be a point of Σ, and let b
be a vector in R3. The vector b is said to be a tangent vector to the surface
at the point b if and only if

b =
d(γ(t))

dt

∣∣∣∣
t=0

,

where γ: I → Σ is a smooth curve wholly contained in the surface Σ and
parameterized by an open interval I that contains zero.

Let Σ be a smooth surface in R3, and let p be a point of Σ. It follows
from Proposition 6.4 that the tangent vectors to the surface at the point p
constitute a vector subspace TpΣ of R3.

Definition Let Σ be a smooth surface in R3. The tangent space TpΣ to
the surface Σ at the point p is the two-dimensional vector subspace of R3

consisting of those vectors b in R3 that are expressible in the form

b =
d(γ(t))

dt

∣∣∣∣
t=0

,
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where γ: I → Σ is some smooth curve in the surface Σ for which 0 ∈ I and
γ(0) = p.

Lemma 6.5 Let Σ be a smooth surface in R3, let p be a point of Σ, and let
TpΣ be the tangent space to the surface Σ at the point p. Let (U, V,W ) be a
smooth curvilinear coordinate system with domain Ω which is adapted to the
surface Σ, so that Ω is an open set in R3 and

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

Then

TpΣ =

{
(bx, by, bz) ∈ R3 : bx

∂W

∂x

∣∣∣∣
p

+ by
∂W

∂y

∣∣∣∣
p

+ bz
∂W

∂z

∣∣∣∣
p

= 0

}
.

Proof The result follows immediately from Proposition 6.4 and the defini-
tion of the tangent spaces to a smooth surface.

The tangent plane to a smooth surface Σ at a point p is the flat plane
that best approximates to the surface at the point Σ. It is said to touch the
surface at the point p.

6.9 Differentials of Smooth Functions on Surfaces

The language of differential forms was initially developed by the differential
geometer Élie Cartan from 1899 onwards. One significant benefit gained
from the development of the theory of differential forms and the exterior
derivative is that this theory provided a language and a conceptual framework
in which to reinterpret, within the framework of (standard) analysis and
modern differential geometry, much of the work of earlier mathematicians
who had published their work in a form that made frequent use of “infinitely
small” or “infinitesimally small’ quantities.

For example, an ellipsoid with principle axes of lengths 2a, 2b and 2c
may be represented, with suitable choice of Cartesian coordinates, by the
equation

x2

a2
+
y2

b2
+
z2

c2
= 1.

Differentiating this equation in the manner that was customary throughout
the eighteenth and nineteenth centuries leads to equation

2x

a2
dx+

2y

b2
dy +

2z

c2
dz = 0.
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This would then be an relation between the “infinitesimal” quantities dx, dy
and dz.

We now discuss how to interpret such identities without appealing to
notions of “infinitesimal” quantities, but instead associating to each differen-
tiable real-valued function on a surface a corresponding linear functional each
tangent space to the surface that represents the derivative of the function.

Let Σ be a smooth surface in R3, let p be a point on the surface, and let
TpΣ be the tangent space to the surface Σ at p. Then there exists a smooth
curvilinear coordinate system (U, V,W ) with domain Ω for which p ∈ Ω and

Σ ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0},

The curvilinear coordinate functions then restrict to functions u and v that
together constitute a smooth local coordinate system (u, v) defined over the
open region Σ(u,v) of the surface, where Σ(u,v) = Σ ∩ Ω.

Let b be a tangent vector to the smooth surface Σ at the point p, and let
b = (bx, by, bz). Then there exists a smooth curve γ: I → Σ in the surface Σ
parameterized by an open interval I for which 0 ∈ I, p = γ(0) and b = γ′(0).
It then follows from Proposition 6.3 that

df(γ(t))

dt

∣∣∣∣
t=0

=
∂f

∂u

∣∣∣∣
p

du(γ(t))

dt

∣∣∣∣
t=0

+
∂f

∂v

∣∣∣∣
p

dv(γ(t))

dt

∣∣∣∣
t=0

,

for all differentiable real-valued functions f defined around the point p, where

du(γ(t))

dt

∣∣∣∣
t=0

= bx
∂U

∂x

∣∣∣∣
p

+ by
∂U

∂y

∣∣∣∣
p

+ bz
∂U

∂z

∣∣∣∣
p

,

dv(γ(t))

dt

∣∣∣∣
t=0

= bx
∂V

∂x

∣∣∣∣
p

+ by
∂V

∂y

∣∣∣∣
p

+ bz
∂V

∂z

∣∣∣∣
p

.

It follows from this that the value of
df(γ(t))

dt

∣∣∣∣
t=0

is completely determined

by the velocity vector γ′(0) of the curve γ when that curve passes through
the point p and by the partial derivatives of the function f with respect to
the smooth local coordinates u and v. Thus if γ̃: I → Σ is a smooth curve
in the surface Σ parameterized by an open interval I, and if p = γ̃(0) and
b = γ̃′(0), then

d(f(γ̃(t)))

dt

∣∣∣∣
t=0

=
df(γ(t))

dt

∣∣∣∣
t=0

.

Thus the value of
df(γ(t))

dt

∣∣∣∣
t=0

is the same for all smooth curves t 7→ γ(t) in

the surface that pass through the point p when t = 0 with velocity vector b.
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Therefore, given any differentiable real-valued function f defined around the
point p, and given any tangent vector b at the point p, there exists a well-
defined real number (df)p(b) with the property that

df(γ(t))

dt

∣∣∣∣
t=0

= (df)p(b)

for all smooth curves t 7→ γ(t) in the surface that pass through the point p
when t = 0 with velocity vector b. Moreover the formulae quoted above from
the statement of Proposition 6.3 ensure that

(df)p(b) =
∂f

∂u

∣∣∣∣
p

(du)p(b) +
∂f

∂v

∣∣∣∣
p

(dv)p(b),

where

(du)p(b) = bx
∂U

∂x

∣∣∣∣
p

+ by
∂U

∂y

∣∣∣∣
p

+ bz
∂U

∂z

∣∣∣∣
p

,

(dv)p(b) = bx
∂V

∂x

∣∣∣∣
p

+ by
∂V

∂y

∣∣∣∣
p

+ bz
∂V

∂z

∣∣∣∣
p

.

It follows that (df)p:TpΣ → R is a linear transformation from the tangent
space TpΣ to the field R of real numbers.

Definition Let Σ be a smooth surface in R3, and let f : Σ→ R be a smooth
real-valued function defined throughout Σ. The differential df of the func-
tion f is the correspondence that associates to each point p of Σ the linear
functional (df)p:TpΣ → R on the tangent space TpΣ to the surface at the
point p characterized by the property that

(df)p(γ′(t0)) =
df(γ(t))

dt

∣∣∣∣
t=t0

for all smooth curves γ: I → Σ in the surface Σ for which t0 ∈ I and γ(t0) = p.

Lemma 6.6 Let Σ be a smooth surface in R3, and let (u, v) be smooth local
coordinates defined over an open region Σ(u,v) of the surface. Then

df =
∂f

∂u
du+

∂f

∂v
dv

throughout Σ(u,v).
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Proof Let p be a point belonging to the domain Σ(u,v) of the smooth lo-
cal coordinate system (u, v), and let b be an element of the tangent space
TpΣ to the surface Σ at the point p. As previously noted, it follows from
Proposition 6.3 that

(df)p(b) =
∂f

∂u

∣∣∣∣
p

(du)p(b) +
∂f

∂v

∣∣∣∣
p

(dv)p(b).

The result follows.

The Cartesian coordinate functions x, y and z on R3 restrict to smooth
functions on the surface Σ whose differentials at the point p are determined
in the following lemma.

Lemma 6.7 Let Σ be a smooth surface in R3, let p be a point of Σ, let TpΣ
be the tangent space to the surface Σ at the point p, and let b ∈ TpΣ, where
b = (bx, by, bz). Then

(dx)p(b) = bx, (dy)p(b) = by and (dz)p(b) = bz.

Proof Let b = γ′(0), where γ: I → Σ is a smooth curve in Σ paramaterized
by an open interval I that contains zero. It then follows from the differentials
of the coordinate functions x, y and z on the surface Σ that

(dx)p(b) =
dx(γ(t))

dt

∣∣∣∣
t=0

= bx,

(dy)p(b) =
dy(γ(t))

dt

∣∣∣∣
t=0

= by,

(dz)p(b) =
dz(γ(t))

dt

∣∣∣∣
t=0

= bz,

as required.

Lemma 6.8 Let Σ be a smooth surface in R3, let p be a point of Σ, and let
TpΣ be the tangent space to the surface Σ at the point p. Let f̃ : Ω → R be
a smooth function defined over an open set Ω in R3, where p ∈ Ω, and let
f : Σ ∩ Ω → R be the restriction of the smooth function f̃ to the surface Σ.
Then the differentials of f and the restrictions of the coordinate functions x,
y, z, to the surface satisfy the identity

df =
∂f̃

∂x
dx+

∂f̃

∂y
dy +

∂f̃

∂z
dz

at all points of Σ ∩ Ω.
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Proof Let b be an element of the tangent space TpΣ to the surface Σ at the
point p. Then there exists a smooth curve γ: I → Σ such that p = γ(t0) and
b = γ′(t0). Let b = (bx, by, bz). It then follows from Lemma 6.7 that

(df)γ(t0)(γ
′(t0)) =

d

dt

(
f(γ(t))

)∣∣∣∣
t=t0

=
d

dt

(
f̃(γ(t))

)∣∣∣∣
t=t0

= bx
∂f̃

∂x

∣∣∣∣∣
γ(t0)

+ by
∂f̃

∂y

∣∣∣∣∣
γ(t0)

+ bz
∂f̃

∂z

∣∣∣∣∣
γ(t0)

=
∂f̃

∂x

∣∣∣∣∣
γ(t0)

(dx)p +
∂f̃

∂y

∣∣∣∣∣
γ(t0)

(dy)p +
∂f̃

∂z

∣∣∣∣∣
γ(t0)

(dz)p.

The result follows.

6.10 Directional Derivatives of Smooth Functions along
Tangent Vectors

Let f : Σ → R be a smooth function defined on a smooth surface Σ. We
shall give the definition of the directional derivative of the function f along
a tangent vector to the surface. The definition is justified by the following
sequence of results.

Definition Let f : Σ → R be a smooth function defined on a smooth sur-
face Σ, let p be a point of the surface, and let b be a vector belonging to
the tangent space TmathbfpΣ to the surface Σ at the point p. The directional
derivative (∂bf)p of f along the vector b at the point p is defined so that

(∂bf)p = (df)p(b).

It follows from the definition of the differential df of f on the surface Σ
(and from the discussion preceding that definition) that, given any smooth
curve γ: I → Σ paramaterized by an open interval I that satisfies γ(t) = p
and γ′(t0) = b for some t0 ∈ I, the derivative of f along the curve γ satisfies

df(γ(t))

dt

∣∣∣∣
t=t0

= (df)p(b) = (∂bf)p.

Proposition 6.9 Let Σ be a smooth surface, let p be a point of Σ, let b be a
tangent vector to the surface at the point b, and let f be a smooth function on
the surface defined around the point p. Let (u, v) be a smooth local coordinate
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system for the surface Σ whose domain Σ(u,v) is an open neighbourhood of p
in Σ. Then

(∂bf)p = bu
∂f

∂u

∣∣∣∣
p

+ bv
∂f

∂v

∣∣∣∣
p

.

where
bu = (∂bu)p and bv = (∂bv)p.

Proof It follows from Lemma 6.6 that

(∂bf)p = (df)p(b) =
∂f

∂u

∣∣∣∣
p

(du)p(b) +
∂f

∂v

∣∣∣∣
p

(dv)p(b)

= bu
∂f

∂u

∣∣∣∣
p

+ bv
∂f

∂v

∣∣∣∣
p

,

as required.

Let b be a tangent vector to a smooth surface Σ at a point p of that
surface. Then

∂b(rf + sg)p = r(∂bf)p + s(∂bg)p.

for all smooth real-valued functions f and g on the surface defined around
the point p. The Product Rule for differentiation ensures that

∂b(f.g)p = g(p)(∂bf)p + f(p)(∂bg)p,

where f.g denotes the product of the smooth real-valued functions f and g.
Moreover if the functions f and g are equal throughout some open set in Σ
that contains the point p, then (∂bf)p = (∂bg)p.

Theorem 6.10 Let Σ be a smooth surface in R3 and let p be a point of Σ.
Let L be an operator that associates to each smooth real-valued function f on
the surface defined around the point p a real number L[f ] so as to satisfy the
following conditions:—

(i) if f and g are smooth real-valued functions on the surface defined
around the point p, and if the functions f and g are equal through-
out some open set in Σ that contains the point p, then L[f ] = L[g];

(ii) L[rf + sg] = rL[f ] + sL[g] for all real numbers r and s and for all
smooth real-valued functions f and g on the surface defined around the
point p;

43



(iii) L[f.g] = g(p)L[f ] + f(p)L[g] for all smooth real-valued functions f
and g on the surface defined around the point p, where f.g denotes the
product of the functions f and g.

Then there exists a tangent vector b to the surface Σ at the point p such that
L[f ] = (∂bf)p.

Proof Let (u, v) be smooth local coordinates on the surface around the
point p, where (u, v) = (0, 0) at the point p itself, and let f be a smooth
real-valued function on the surface defined around the. point p. Then there
exists a positive number δ0 and a smooth real-valued function F of two-real
variables, defined throughout the open disk of radius δ0 R2 centered on the
point (0, 0), such that f(p′) = F (u(p′), v(p′)) for all points p′ on the surface
for which u2 + v2 < δ20. Let

Gj(s1, s2) =

∫ 1

0

∂F

∂sj

∣∣∣∣
(ts1,ts2)

dt

for j = 1, 2. Then

Gj(0, 0) =
∂F

∂sj

∣∣∣∣
(0,0)

for j = 1, 2, and

F (s1, s2) = F (0, 0) +

∫ 1

t=0

d

dt
(F (ts1, ts2)) dt

= F (0, 0) + s1G1(s1, s2) + s2G2(s1, s2)

for all (s1, s2) ∈ R2 satisfying s21 + s22 < δ20. It follows that f = f(p) + u.g1 +
v.g2 around the point p, where gj = Gj(u, v) for j = 1, 2. Moreover

g1(p) =
∂f

∂u

∣∣∣∣
p

, and g2(p) =
∂f

∂v

∣∣∣∣
p

.

If we apply the operator L to the constant function with value 1, we find
that

L[1] = L[1.1] = L[1] + L[1],

and therefore L[1] = 0. It follows that L[c] = 0 for any constant function c.
Also the smooth local coordinate system (u, v) has been chosen such that
u(p) = 0 and v(p) = 0. It follows that

L[f ] = L[u.g1] + L[v.g2]

= g1(p)L[u]u(p)L[g1] + g2(p)L[v] + v(p)L[g2]

= g1(p)L[u] + g2(p)L[v]

= L[u]
∂f

∂u

∣∣∣∣
p

+ L[v]
∂f

∂v

∣∣∣∣
p

.
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Let γ: (−δ1, δ1) → Σ be defined on the open interval (−δ1, δ1), for some
sufficiently small positive real number δ1, such that u(γ(t)) = but and v(γ(t)) =
bvt for |t| < δ1, where bu = L[u] and bv = L[v]. It follows from Proposition 6.9
that

(∂bf)p = bu
∂f

∂u

∣∣∣∣
p

+ bv
∂f

∂v

∣∣∣∣
p

= L[u]
∂f

∂u

∣∣∣∣
p

+ L[v]
∂f

∂v

∣∣∣∣
p

= L[f ]

for all smooth real-valued functions f on the surface defined around the
point p. The result follows.

6.11 Smooth Surfaces and the Inverse Function Theo-
rem

We now state a result that is essentially the three-dimensional case of the
Inverse Function Theorem of real analysis.

Theorem 6.11 (Inverse Function Theorem in Three Dimensions) Let
p be a point in three-dimensional Euclidean space R3, let U , V and W
be smooth functions defined throughout some open neighbourhood Ω0 of the
point p in R3, and let ϕ: Ω0 → R3 be the smooth vector-valued function on
Ω0 with components U , V and W , so that

ϕ(x, y, z) = (U(x, y, z), V (x, y, z), W (x, y, z))

for all (x, y, z) ∈ Ω0. Suppose that the Jacobian matrix

∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z


is invertible at the point p. Then there exists an open neighbourhood Ω of the
point p contained in Ω0 and smooth real-valued functions ξ, η and ζ defined
around ϕ(p), such that ϕ(Ω) is an open set in R3, the functions ξ, η and ζ
are defined throughout ϕ(Ω), and

x = ξ(U, V,W ), y = η(U, V,W ) and z = ζ(U, V,W )

at all points (x, y, z) of Ω.
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Corollary 6.12 Let U , V , W be smooth real-valued functions defined through-
out some neighbourhood of a point p in R3. Suppose that the Jacobian matrix

∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z


is invertible at the point p. Then there exists an open neighbourhood Ω of
the point p such that the restriction of the smooth real-valued functions U ,
V , W to the open set Ω determines a smooth curvilinear coordinate system
with domain Ω.

Proof The existence of the open neighbourhood Ω of the point p over which
the requirements for a smooth curvilinear coordinate system are satisfied fol-
lows directly from the three-dimensional Inverse Function Theorem (Theo-
rem 6.11).

Proposition 6.13 Let p be a point of R3 with Cartesian coordinates (x0, y0, z0),
and let W be a smooth real-valued function defined over an open neighbour-

hood of the point p in R3. Suppose that W = 0 and
∂W

∂z
6= 0 at the point p.

Then there exists an open neighbourhood Ω of p and a smooth function f of
two real variables, defined around (x0, y0) in R2, for which

{(x, y, z) ∈ Ω : W (x, y, z) = 0} = {(x, y, z) ∈ Ω : z = f(x, y)}.

Proof Let U(x, y, z) = x and V (x, y, z) = y for all real numbers (x, y, z).
Then ∣∣∣∣∣∣∣∣∣∣∣∣∣

∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

∂W

∂x

∂W

∂y

∂W

∂z

∣∣∣∣∣∣∣∣∣∣∣
=
∂W

∂z
6= 0

throughout some open neighbourhood of the point p. It follows from Corol-
lary 6.12 that there exists some open neighbourhood Ω1 of the point p such
that the restrictions of the smooth functions U , V and W to Ω1 are the
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components of a smooth curvilinear coordinate system with domain Ω1. Let
ϕ: Ω1 → R3 be defined such that

ϕ(x, y, z) = (U(x, y, z), V (x, y, z), W (x, y, z))

for all (x, y, z) ∈ Ω1. Then the definition of smooth curvilinear coordi-
nate systems ensures that ϕ(Ω1) is an open set in R3 containing the point
(x0, y0, 0). There therefore exists some positive number δ such that

{(u, v, w) ∈ R3 : |u− u0| < δ, |v − v0| < δ and |w| < δ} ⊂ ϕ(Ω1).

Let

Ω = {(x, y, z) ∈ Ω : |x− x0| < δ, |y − y0| < δ and |W (x, y, z)| < δ}.

We may then suppose, without loss of generality, that the domain of definition
of the smooth real-valued functions U , V , W is this open set Ω. Then
(U, V,W ) is a smooth curvilinear coordinate system with domain Ω, and
therefore there exist smooth real-valued functions ξ, η and ζ defined on ϕ(Ω)
such that x = ξ(ϕ(x, y, z)), y = η(ϕ(x, y, z)) and z = ζ(ϕ(x, y, z)) for all
x, y, z ∈ Ω. Let

D = {(x, y) ∈ R2 : |x− x0| < δ and |y − y0| < δ},

and let f(x, y) = ζ(x, y, 0). If (x, y, z) ∈ Ω satisfies W (x, y, z) = 0 then

z = ζ(U(x, y, z), V (x, y, z),W (x, y, z)) = ζ(x, y, 0) = f(x, y).

To complete the proof, we must also show that if (x, y, z) ∈ Ω satisfies
z = f(x, y) then W (x, y, z) = 0. Now w = W (σ(u, v, w)) for all (u, v, w) ∈
ϕ(Ω), where

σ(u, v, w) = (ξ(u, v, w), η(u, v, w), ζ(u, v, w) )

(see Lemma 6.1). Also ξ(x, y, 0) = x, η(x, y, z) = y and ζ(x, y, 0) = f(x, y).
It follows that

0 = W (ξ(x, y, 0), η(x, y, 0), ζ(x, y, 0)) = W (x, y, f(x, y)).

for all (x, y) ∈ D. Thus if (x, y, z) ∈ Ω and z = f(x, y) then W (x, y, z) = 0,
as required.

Remark Proposition 6.13 is a particular case of the Implicit Function The-
orem.
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Corollary 6.14 Let W be a smooth real-valued function defined over some
open set Ω in R3, and let

Σ = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

Suppose that the gradient (
∂W

∂x
,
∂W

∂y
,
∂W

∂z

)
of W is non-zero at each point of Σ. Then Σ is a smooth surface in R3.

Proof Given any point p, at least one of the partial derivatives
∂W

∂x
,
∂W

∂y
,

∂W

∂z
is non-zero at the point p. We show that Σ is a smooth surface through-

out some open neighbourhood of the point p. We may assume, without loss

of generality, that
∂W

∂z
6= 0 at the point p. It follows from Proposition 6.13

that there exists an open subset Ω̃ of Ω and a smooth function f :D → R,
where (x, y) ∈ D for all (x, y, z) ∈ Ω̃, such that

Σ ∩ Ω̃ = {(x, y, z) ∈ Ω̃ : z = f(x, y)}.

Let Ũ(x, y, z) = x, Ṽ (x, y, z) = y and W̃ (x, y, z) = z − f(x, y) for all
(x, y, z) ∈ Ω. Then (Ũ , Ṽ , W̃ ) is a smooth coordinate system with domain
Ω̃. Moreover

Σ ∩ Ω̃ = {(x, y, z) ∈ Ω̃ : W̃ (x, y, z) = 0}.
It follows that Σ is a smooth surface throughout some open neighbourhood
of the point p, as required.

Proposition 6.15 Let χ:D → R3 be a smooth function defined over an
open set D in R2 that expresses the Cartesian coordinates (x, y, z) of an
image point in R3 as smooth functions of Cartesian coordinates u and v on
D. Let (u0, v0) be a point of D. Suppose that the vectors(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
and

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
are linearly independent when u = u0 and v = v0. Then there exists a smooth
curvilinear coordinate system (U, V,W ) with domain Ω, where Ω is an open
set in R3 containing the point χ(u0, v0), such that

U(χ(u, v)) = u and V (χ(u, v)) = v

for all (u, v) ∈ D ∩ χ−1(Ω) and

χ(D) ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.
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Proof Let (p, q, r) be a vector in R3 chosen so that the three vectors(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
,

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
and (p, q, r)

are linearly independent when u = u0 and v = v0. Let

ψ(u, v, w) = χ(u, v) + (wp,wq, qr).

for all u, v ∈ D and w ∈ R. Letting (x, y, z) = ψ(u, v, w), we see that

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

 =



∂x

∂u

∂x

∂v
p

∂y

∂u

∂y

∂v
q

∂z

∂u

∂z

∂v
r

 6= 0

when u = u0, v = v0 and w = 0. It then follows from the three-dimensional
Inverse Function Theorem (Theorem 6.11) that there exists an open set D0

in R2, where (u0, v0) ∈ D0 and D0 ⊂ D, and a positive real number δ0 such
that the smooth map ψ maps D0 × (−δ0, δ0) onto an open set Ω in R3 on
which are defined smooth real-valued functions U , V , W such that

u = U(ψ(u, v, w)), v = V (ψ(u, v, w)), w = W (ψ(u, v, w))

for all (u, v) ∈ D0 and for all real numbers w satisfying |w| < δ0. Then
D0 = D ∩ χ−1(Ω) and χ(u, v) = ψ(u, v, 0) for all (u, v) ∈ D0. It follows that

U(χ(u, v)) = u, V (χ(u, v)) = v and W (χ(u, v)) = 0

for all (u, v) ∈ D ∩ χ−1(Ω). It follows that

χ(D) ∩ Ω ⊂ {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

Now let (x, y, z) be a point of Ω for which W (x, y, z) = 0. Then there
exist (u, v) ∈ D0 and a real number w satisfying |w| < δ0 for which (x, y, z) =
ψ(u, v, w). Then

w = W (ψ(u, v, w)) = W (x, y, z) = 0,

and thus (x, y, z) = χ(u, v). Thus

χ(D) ∩ Ω = {(x, y, z) ∈ Ω : W (x, y, z) = 0}.

This completes the proof.
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