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8 The Hyperbolic Plane

8.1 Metric Tensors on Subsets of the Euclidean Plane

Let Σ be a smooth surface in R3 and let (p, q) be a smooth local coordinate
system on a portion of Σ. Let r(p, q) represent the position vector of a point
of Σ as a smooth function of the local coordinates p and q, and let

E =

∣∣∣∣∂r

∂p

∣∣∣∣2 ,
F =

∂r

∂p
.
∂r

∂q
,

G =

∣∣∣∣∂r

∂q

∣∣∣∣2 .
Proposition 7.7 shows that the Gaussian curvature k of the surface is ex-
pressible in terms of the functions E, F , G and their partial derivatives of
first and second order with respect to the local coordinates p and q by means
of the following formula:

4(EG− F 2)2k = E

(
∂E

∂q

∂G

∂q
− 2

∂F

∂p

∂G

∂q
+

(
∂G

∂p

)2
)

+ F
(∂E
∂p

∂G

∂q
− ∂E

∂q

∂G

∂p
− 2

∂E

∂q

∂F

∂q

+ 4
∂F

∂p

∂F

∂q
− 2

∂F

∂p

∂G

∂p

)
+G

(
∂E

∂p

∂G

∂p
− 2

∂E

∂p

∂F

∂q
+

(
∂E

∂q

)2
)

− 2(EG− F 2)

(
∂E

∂q2
− 2

∂2F

∂p ∂q
+
∂G

∂p2

)
.

The local coordinates (p, q) are defined over some open subset of smooth
surface Σ, and their values represent points in an open subset D of the
plane R2. There is then a smooth map χ:D → Σ that maps a corresponding
point of the smooth surface. Thus if (u, v) is the standard Cartesian coordi-
nate system on R2 then the corresponding coordinate functions p and q on
the surface Σ are related to u and v through the equations p(χ(u, v)) = u
and q(χ(u, v)) = v. Moreover the definition of partial derivatives of functions
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on the surface Σ with respect to p and q are defined so that

∂f

∂p

∣∣∣∣
χ(u0,v0)

=
∂(f ◦ χ)

∂u

∣∣∣∣
(u0,v0)

∂f

∂p

∣∣∣∣
χ(u0,v0)

=
∂(f ◦ χ)

∂u

∣∣∣∣
(u0,v0)

.

One can then define a “metric” on the subset D of the plane, induced by the
embedding of D as a smooth surface Σ in R3 through the map χ:D → R3

so that the length of a smooth curve γ: [a, b] → D in D parameterized by a
closed interval [a, b] with respect to the induced metric on D is equal to∫ b

a

∣∣∣∣d(χ(γ))

dt

∣∣∣∣ dt,
where ∫ b

a

∣∣∣∣d(χ(γ))

dt

∣∣∣∣ dt =

∫
a,b

√
E

(
dp

dt

)2

+ 2F
dp

dt

dq

dt
+G

(
dp

dt

)2

dt.

The dependence of the various quantities occurring in the integrand on the
various mappings and local coordinate systems involved can be expressed
more fully as follows:—

E

(
dp

dt

)2

= E(χ(γ(t)))

(
dp(χ(γ(t)))

dt

)2

,

F
dp

dt

dq

dt
= F (χ(γ(t)))

dp(χ(γ(t)))

dt

dq(χ(γ(t)))

dt
,

G

(
dq

dt

)2

= G(χ(γ(t)))

(
dq(χ(γ(t)))

dt

)2

In order to reduce the complexity of notation involved, we use the letters
E, G and G to denote the functions on the open set D induced by the
corresponding functions on the smooth surface, so that

E(u, v) = E(χ(u, v)), F (u, v) = F (χ(u, v)), G(u, v) = G(χ(u, v)).

These functions determine a metric tensor g which associates to each point
(u, v) of D a symmetric bilinear form g(u,v), where

gu,v((z1, w1), (z2, w2)) = E(u, v)z1z2 + F (u, v)(z1w2 + w1z2) +G(u, v)w1w2

for all (z1, w1), (z2, w2) ∈ R2. Moreover

E(u, v)z2 + F (u, v)(zw + wz) +G(u, v)w2 > 0
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for all non-zero (z, w) ∈ R2, and thus

gu,v((z, w), (z, w)) > 0.

for all non-zero (z, w) ∈ R2. The quadratic form q(u,v) is then positive definite
for all (u, v) ∈ D.

Definition A Riemannian metric g on an open set D in R2 assigns to each
point (u, v) of V a positive definite bilinear symmetric form g(u,v) whose
coefficients are smooth real-valued functions on D.

It follows from this definition that, given any Riemannian metric on an
open set D in the plane, there exist smooth real-valued functions E, F and
G on D such that

gu,v((z1, w1), (z2, w2)) = E(u, v)z1z2 + F (u, v)(z1w2 + w1z2) +G(u, v)w1w2

for all (z1, w1), (z2, w2) ∈ R2 and

E(u, v)z2 + F (u, v)(zw + wz) +G(u, v)w2 > 0

for all non-zero (z, w) ∈ R2.
Let g be a Riemannian metric on an connected open set D in the plane.

Let γ: [a, b]→ D be a smooth curve in D parameterized by a closed interval
[a, b], and let γ(t) = (u(t), v(t)) for all t ∈ [a, b]. The length lengthg(γ) of the
curve γ with respect to the induced metric g on D is then defined such that

lengthg(γ) =

∫ b

a

√
E(γ)u′(t)2 + 2F (γ)u′(t)v′(t) +G(γ)v′(t)2 dt

=

∫ b

a

√
g

(
dγ(t)

dt
,
dγ(t)

dt

)
dt

The distance between two points of D with respect to the metric g is then
defined to be the greatest lower bound (or infinimum) of the lengths of all
smooth curves that join the first point to the second. This distance function
satisfies all the axioms that are required to be satisfied by the distance func-
tion on a metric space. A connected open set in the plane provided with a
Riemannian metric therefore a metric space.

It is customary to specify a Riemannian metric with coefficients E, F and
G on an open set with coordinate system (u, v) by writing

ds2 = Edu2 + 2Fdudv +Gdv2.

Historically, ds was conceptualized as an infinitesimal representing an ele-
ment of arclength, and the above formula expressed the manner in which
infinitesimal increments of arclength are determined by infinitesimal incre-
ments du and dv of the coordinates u and v.

85



Definition Let g be a Riemannian metric on an open subset D in the plane.
The curvature k of g is then determined according to the formula

4(EG− F 2)2k = E

(
∂E

∂v

∂G

∂v
− 2

∂F

∂u

∂G

∂v
+

(
∂G

∂u

)2
)

+ F
(∂E
∂u

∂G

∂v
− ∂E

∂v

∂G

∂u
− 2

∂E

∂v

∂F

∂v

+ 4
∂F

∂u

∂F

∂v
− 2

∂F

∂u

∂G

∂u

)
+G

(
∂E

∂u

∂G

∂u
− 2

∂E

∂u

∂F

∂v
+

(
∂E

∂v

)2
)

− 2(EG− F 2)

(
∂E

∂v2
− 2

∂2F

∂u ∂v
+
∂G

∂u2

)
.

where u and v are local coordinates, and E, F and G are the coefficients of
the metric tensor g with respect to these local coordinates, so that

ds2 = Edu2 + 2Fdudv +Gdv2.

8.2 Curvature of Conformally Flat Metrics

Definition Let D be a connected subset of the plane. A conformally flat
metric on D is a Riemannian metric g on D that takes the form

gp(v,w) = λ(p)2v .w,

where x and y are the standard Cartesian coordinates on D, λ:D → R is a
smooth real-valued function that is strictly positive throughout D, and v.w
is the usual two-dimensional scalar product of the vectors v and w, defined
so that

(v1, v2) . (w1, w2) = v1w1 + v2w2.

The metric tensor of a conformally-flat metric determined by an real-
valued function λ that is positive throughout the connected open set D can
be specified in traditional notation as follows:

ds2 = λ2(dx2 + dy2).

Let λ:D → R be a smooth real-valued function that is positive through-
out some connected open set D in the plane, and let g be the conformally-flat
metric determined by λ, so that

gp(v,w) = λ(p)2v.w
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at each point p of D. Let γ: [a, b]→ D be a smooth curve in D parameterized
by a closed interval [a, b], and let γ(t) = (u(t), v(t)) for all t ∈ [a, b]. The
length length(γ) of the smooth curve γ is then given by the formula

lengthg(γ) =

∫ b

a

λ(γ(t))|γ′(t)| dt.

Proposition 8.1 Let λ:D → R be a smooth real-valued function that is
positive throughout some connected open set D in the plane, and let g be the
conformally-flat metric determined by λ, so that

gp(v,w) = λ(p)2v.w

at each point p of D. Then the curvature k of this conformally flat metric
satisfies

k = − 1

λ2

(
∂2(log λ)

∂x2
+
∂2(log λ)

∂y2

)
.

Proof Let E, F and G denote the components of the conformally-flat metric
tensor g, so that

ds2 = E dx2 + 2F dx dy +Gdy2.

Then E = G = λ2 and F = 0. Substituting into the formula that specifies
the curvature of a two-dimensional Riemannian metric, we find that

4λ8k = 2λ2

((
∂(λ2)

∂x

)2

+

(
∂(λ2)

∂y

)2
)
− 2λ4

(
∂2(λ2)

∂x2
+
∂2(λ2)

∂y2

)

= 8λ4

((
∂λ

∂x

)2

+

(
∂λ

∂y

)2
)

− 2λ4

(
2λ
∂2λ

∂x2
+ 2

(
∂λ

∂x

)2

+ 2λ
∂2λ

∂y2
+ 2

(
∂λ

∂y

)2
)
,

and therefore

k =
−1

λ3

(
∂2λ

∂x2
+
∂2λ

∂y2

)
+

1

λ4

((
∂λ

∂x

)2

+

(
∂λ

∂y

)2
)
.

Now(
∂2(log λ)

∂x2
+
∂2(log λ)

∂y2

)
=

∂

∂x

(
1

λ

∂λ

∂x

)
+

∂

∂y

(
1

λ

∂λ

∂y

)
=

1

λ

(
∂2λ

∂x2
+
∂2λ

∂y2

)
− 1

λ2

((
∂λ

∂x

)2

+

(
∂λ

∂y

)2
)
.
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It follows that

k = − 1

λ2

(
∂2(log λ)

∂x2
+
∂2(log λ)

∂y2

)
,

as required.

Corollary 8.2 The upper half plane {(x, y) : y > 0} with metric

ds2 =
1

y2
(dx2 + dy2)

has constant Gaussian curvature equal to −1.

Proof The metric is conformally-flat, and the function λ that determines
the metric is given by λ(x, y) = y−1. It follows that log λ = − log y, and
therefore

∂2(log λ)

∂x2
= 0,

∂2(log λ)

∂y2
=

1

y2
= λ2.

The general formula for the curvature of a conformally flat metric (Propo-
sition 8.1) ensures that k = −1, as required.

Corollary 8.3 The open unit disk {(x, y) : x2 + y2 < 1} with metric

ds2 =
4

(1− x2 − y2)2
(dx2 + dy2)

has constant Gaussian curvature equal to −1.

Proof In this case λ(x, y) = 2(1− x2 − y2)−1 and therefore

log λ = log 2− log(1− x2 − y2),
∂(log λ)

∂x
=

2x

1− x2 − y2
,

∂(log λ)

∂y
=

2y

1− x2 − y2
,

∂2(log λ)

∂x2
=

2 + 2x2 − 2y2

(1− x2 − y2)2
,

∂2(log λ)

∂y2
=

2 + 2y2 − 2x2

(1− x2 − y2)2
,

and therefore

∂2(log λ)

∂x2
+
∂2(log λ)

∂y2
=

4

(1− x2 − y2)2
= λ2.

The result therefore follows from the general formula for the curvature of a
conformally flat metric (Proposition 8.1).
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8.3 Möbius Transformations of the Upper Half Plane

A Möbius transformation determined by complex numbers a, b, c, d is a
transformation from C \ {−d/c} that sends z to

az + b

cz + d

for all complex numbers z satisfying cz + d 6= 0.
We consider in this section the action on the open upper half plane of

those Möbius transformations for which the parameters a, b, c and d are
real numbers and satisfy ad − bc = 1. We shall show that such Möbius
transformations map the open upper half plane H onto itself, where

H = {z ∈ C : Im[z] > 0}.

Let a, b, c, d be real numbers satisfying ad − bc = 1, let z be a complex
number not equal to −d/c, and let w = az+b

cz+d
. Let z = x+ iy, where x and y

are real numbers and i =
√
−1. Multiplying the numerator and denominator

of the fraction defining w by cz+d, where z denotes the complex conjugate of
z, and using the fact that a, b, c and d are real numbers satisfying ad−bc = 1,
we find that

w =
(az + b)(cz + d)

(cz + d)(cz + d)
=
ac|z|2 + bd+ (ad+ bc)x+ iy

|cz + d|2
.

It follows that w = u+ iv, where

u =
ac|z|2 + bd+ (ad+ bc)x

|cz + d|2
.

and
v =

y

|cz + d|2
.

Moreover v = 0 when y = 0 and v > 0 when y > 0. It follows that the map
that sends z ∈ H to (az+ b)/(cz+d) maps the open upper half plane H into
itself. Also cwz − az = dw − b, and therefore

z =
dw − b
a− cw

.

It follows that the map that sends z ∈ H to (az+b)/(cz+d) is surjective,
and thus maps the open upper half plane H onto itself.

89



Let SL(2,R) denote the group of all 2×2 matrices with determinant equal
to one, where the group operation on SL(2,R) is matrix multiplication. Then

SL(2,R) =

{(
a b
c d

)
: a, b, c, d ∈ R and ad− bc = 1

}
.

Given any 2 × 2 matrix A with real coefficients satisfying detA = 1, we
denote by µA:H → H the Möbius transformation of the open upper half
plane H defined such that

µA(z) =
az + b

cz + d
,

where a, b, c, d are real numbers satisfying ad− bc = 1 and

A =

(
a b
c d

)
Lemma 8.4 Let H = {z ∈ C : Im[z] > 0}, and, given any A ∈ SL(2,R),
where

A =

(
a b
c d

)
,

let Möbius(H) denote the group of all Möbius transformations that map the
open upper half plane H onto itself, and, for each A ∈ SL(2,R), let µA:H →
H denote the mapping of the upper half plane H to itself defined such that

µA(z) =
az + b

cz + d

where

A =

(
a b
c d

)
Then µB(µA(z)) = µBA(z) for all A,B ∈ SL(2,R) and therefore the mapping

µ: SL(2,R)→ Möbius(H)

sending A ∈ SL(2,R) to µA:H → H is a homomorphism of groups. The
kernel of this homomorphism is the normal subgroup of SL(2,R) of order
two consisting of the matrices I and −I, where I denotes the identity 2× 2
matrix.

Proof Let a, b, c, d, e, f , g and h be real numbers satisfying ad − bc = 1
and eh− fg = 1, let z ∈ H, and let w = (az + b)/(cz + d). Then

ew + f

gw + h
=
e(az + b) + f(cz + d)

g(az + b) + h(cz + d)
=

(ea+ fc)z + (eb+ fd)

(ga+ hc)z + (gb+ hd)
.
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Moreover (
e f
g h

)(
a b
c d

)
=

(
ea+ fc eb+ fd
ga+ hc gb+ hd

)
.

It follows that µBA(z) = µB(µA(z)), where

A =

(
a b
c d

)
and B =

(
e f
g h

)
.

Suppose that the matrix A belongs to the kernel of µ. Then

az + b

cz + d
= z

for all z ∈ H. But then cz2 + (d − a)z − b = 0 for all z ∈ H, and therefore
c = b = 0 and d = a. But ad− bc = ad = 1. It follows that either a = d = 1
or a = d = −1. The result follows.

The projective special linear group PSL(2,R) is defined to be the quotient
group

PSL(2,R) = SL(2,R)/{I,−I}

that is the quotient of the group SL(2,R) by the normal subgroup consisting
of the matrices I and−I. It follows from Lemma 8.4 that the group of Möbius
transformations of the upper half plane H is isomorphic to PSL(2,R).

Next we compute the derivative of µA:H → H, where A ∈ SL(2,R),
where we take the real and imaginary parts of a complex number belonging
to H as its local coordinates.

Proposition 8.5 Let H = {z ∈ C : Im[z] > 0}, let a, b, c and d be real num-
bers satisfying ad− bc = 1, and let µ:H → H be the Möbius transformation
of the upper half plane H defined such that

µ(z) =
az + b

cz + d

for all z ∈ H. Let x and y be real variables, where y > 0, and let u(x, y) and
v(x, y) be the smooth functions of x and y on H determined so that

u(x, y) + iv(x, y) = µ(x+ iy),

where i =
√
−1. Then

u =
ac(x2 + y2) + (ad+ bc)x+ bd

(cx+ d)2 + c2y2
,
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v =
y

(cx+ d)2 + c2y2
,

∂u

∂x
=

∂v

∂y
=

(cx+ d)2 − c2y2

((cx+ d)2 + c2y2)2

∂u

∂y
= −∂v

∂x
=

2c(cx+ d)

((cx+ d)2 + c2y2)2

and (
∂u

∂x

)2

+

(
∂u

∂y

)2

=
1

((cx+ d)2 + c2y2)2
=
v2

y2
.

Also the Jacobian matrix of the smooth map sending (x, y) to (u, v) for all
real numbers x and positive real numbers y satisfies

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

 =
v

y

(
cos θx,y − sin θx,y
sin θx,y cos θx,y

)
.

where θx,y is the angle that the vector

(
∂u

∂x
,
∂v

∂x

)
makes with the vector (1, 0).

Proof Let z = x+ iy. Then

µ(z) =
az + b

cz + d
=

(az + b)(cz + d)

|cz + d|2

=
(ax+ b+ iay)(cx+ d− icy)

(cx+ d)2 + c2y2

=
ac(x2 + y2) + (ad+ bc)x+ bd+ iy

(cx+ d)2 + c2y2
.

and thus µ(x+ iy) = u+ iv, where

u(x, y) =
ac(x2 + y2) + (ad+ bc)x+ bd

(cx+ d)2 + c2y2
and v(x, y) =

y

(cx+ d)2 + c2y2
.

It then follows from direct calculation that

∂u

∂x
=

(2acx+ ad+ bc)(c2x2 + 2cdx+ d2 + c2y2)

((cx+ d)2 + c2y2)2

− (acx2 + acy2 + adx+ bcx+ bd)(2c2x+ 2cd)

((cx+ d)2 + c2y2)2
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=
(ad− bc)(c2x2 + 2cdx− c2y2 + d2)

((cx+ d)2 + c2y2)2

=
(cx+ d)2 − c2y2

((cx+ d)2 + c2y2)2
,

∂u

∂y
=

(2acy)(c2x2 + 2cdx+ d2 + c2y2)

((cx+ d)2 + c2y2)2

− (acx2 + acy2 + adx+ bcx+ bd)(2c2y)

((cx+ d)2 + c2y2)2

=
2(ad− bc)c(cx+ d)

((cx+ d)2 + c2y2)2

=
2c(cx+ d)y

((cx+ d)2 + c2y2)2

∂v

∂x
=

−2c(cx+ d)y

((cx+ d)2 + c2y2)2
= −∂u

∂y

∂v

∂y
=

(cx+ d)2 − c2y2)
((cx+ d)2 + c2y2)2

=
∂u

∂x
.

Then (
∂u

∂x

)2

+

(
∂u

∂y

)2

=
((cx+ d)2 − c2y2)2 + 4c2(cx+ d)2y2

((cx+ d)2 + c2y2)4

=
1

((cx+ d)2 + c2y2)2
=
v2

y2
.

The result concerning the Jacobian matrix of the transformation then follows
from the previous identities.

Definition The hyperbolic metric on H is the Riemannian metric defined
by the formula

ds2 =
1

y2
(dx2 + dy2).

It follows from Corollary 8.2 that this metric has constant curvature equal
to −1.

The length hylen(γ) of a smooth curve γ: [p, q] → H with respect to the
hyperbolic metric is then given by the formula

hylen(γ) =

∫ q

p

1

y(γ(t))
|γ′(t)| dt.
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Corollary 8.6 Let H = {z ∈ C : Im[z] > 0}, let a, b, c and d be real num-
bers satisfying ad− bc = 1, and let µ:H → H be the Möbius transformation
of the upper half plane H defined such that

µ(z) =
az + b

cz + d

for all z ∈ H. Then
hylen(µ ◦ γ) = hylen(γ)

for all smooth curves γ in H, where hylen(γ) denotes the hyperbolic length
of the curve γ.

Proof Let u and v be the real-valued functions on H defined so that µ(x+
iy) = u(x, y) + iv(x, y) for all real numbers x and y for which y > 0. Let
γ: [t1, t2] → H be a smooth curve in the upper half plane H parameterized
by a closed bounded interval [t1, t2]. Then (µ ◦ γ)′(t) = J(γ(t))γ′(t) for all
real numbers t in the interior of [t1, t2], where J(γ(t)) is the Jacobian matrix

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y


of the smooth map expressing u and v as functions of x and y on H so that
u + iv = µ(x + iy) for all (x, y) ∈ H, where i =

√
−1. It follows from

Proposition 8.5 that

|(µ ◦ γ)′(t)| = v(γ(t))

y(γ(t))
|γ′(t)| = y(µ(γ(t)))

y(γ(t))
|γ′(t)|,

and therefore
1

y(µ(γ(t)))
|(µ ◦ γ)′(t)| = 1

y(γ(t))
|γ′(t)|,

for all t ∈ I. It follows that

hylen(µ ◦ γ) =

∫ t2

t1

1

y(µ(γ(t)))
|(µ ◦ γ)′(t)| dt

=

∫ t2

t1

1

y(γ(t))
|γ′(t)| dt

= hylen(γ)

as required.
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Definition A smooth curve γ: [t1, t2]→ H in the upper half plane H param-
eterized by an closed interval [t1, t2] is said to be parameterized by hyperbolic
arclength if the velocity vector of the curve has hyperbolic length equal to
one, so that

1

y(γ(t))

√(
dx(γ(t))

dt

)2

+

(
dy(γ(t))

dt

)2

= 1

for all t ∈ I.

Definition A smooth curve γ: I → H parameterized by hyperbolic arclength
in the upper half plane H is said to be a geodesic if, for all t1 ∈ I, and
all t2 belonging to some sufficiently small open neighbourhood of t1 in the
parameterizing interval I, the portion γ|[t1, t2] of the curve γ parameterized
by the subinterval [t1, t2] minimizes hyperbolic length amongst all piecewise
smooth curves from γ(t1) to γ(t2).

Lemma 8.7 For all real numbers x0 and t0 the curve t 7→ x0 +
√
−1et is

a geodesic in the upper half plane H with respect to the hyperbolic metric.
Moreover, given any geodesic passing through the points (x0, y1) and (x0, y2),
there exists a real constant t0 such that the geodesic is either of the form
t 7→ x0 +

√
−1et−t0 or else is of the form t 7→ x0 +

√
−1et0−t.

Proof Let x0 be chosen, and let γ:R → H be defined such that γ(t) =
(x0, e

t) for all real numbers t. Then γ′(t) = (0, et) and therefore

1

y(γ(t))
|γ′(t)| = 1

(where |γ′(t)| here denotes the length of the vector γ′(t) with respect to the
Euclidean metric). It follows that the curve is parametrized by hyperbolic
arclength. Let η: [t1, t2]→ H be a piecewise smooth curve in H from (x0, y1)
to (x0, y2), where y1 < y2. Then

hylen(η) =

∫ t2

t1

1

y(γ(t))

√(
dx(γ(t))

dt

)2

+

(
dy(γ(t))

dt

)2

dt

≥
∫ t2

t1

1

y(γ(t))

∣∣∣∣dy(γ(t))

dt

∣∣∣∣ dt
≥

∫ t2

t1

1

y(γ(t))

dy(γ(t))

dt
dt =

∫ t2

t1

d(log(y(γ(t)))

dt
dt

= log y2 − log y1.
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Now γ(log y1) = (x0, y1) and γ(log y2) = (x0, y2) and the hyperbolic length of
γ|[log y1, log y2] is log y2− log y1. It follows that γ minimizes length amongst
all piecewise smooth curves from (x0, y1) and (x0, y2). This proves that
γ:R→ H is a geodesic.

The calculation carried out above shows that the real part will have to be
constant on any geodesic that passes through the points (x0, y1) and (x0, y2).
Moreover geodesics are parameterized by hyperbolic arclength. It follows
that every geodesic passing through these points is of one of the forms stated
in the proposition.

Let p and q be real numbers, and let µ:H → H be the Möbius transfor-
mation defined so that

µ(z) =
qz + p

1 + z
=
az + b

cz + d
.

where

a =
q√
q − p

, b =
p√
q − p

, c =
1√
q − p

, d =
1√
q − p

.

(Note that ad− bc = 1.)
Every Möbius transformation of the upper half plane preserves hyperbolic

lengths of piecewise-smooth curves. Let γ(t) = µ(iet) for all t ∈ R, where
i =
√
−1. Now the curve t 7→ iet is a geodesic in H. It follows that the

curve γ is also a geodesic.
Now

µ(iy)− 1
2
(p+ q) =

2qiy + 2p− (p+ q + piy + qiy)

2 + 2iy

=
(q − p)(iy − 1)

2 + 2iy

= 1
2
(q − p)iy − 1

iy + 1

and therefore
|µ(iy)− 1

2
(p+ q)| = 1

2
(q − p)

for all real numbers y. It follows that

|γ(t)− 1
2
(p+ q)| = 1

2
|q − p|

for all real numbers t. Thus the geodesic γ is contained in the semicircle that
is the intersection of the upper half plane with the circle of radius 1

2
(q − p)

centred on the point 1
2
(p+q). This circle intersects the real axis at the points

p and q and is orthogonal to the real axis there.
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Theorem 8.8 Let
H = {z ∈ C : Im[z] > 0}.

Let η: I → H be a smooth curve in H that is a geodesic with respect to the
hyperbolic metric on H. If there exist two points on η at which the real parts
coincide then there exist real constants x0 and t0 such that

η(t) = x0 + iet−t0 or η(t) = x0 + iet0−t

for all real numbers t. Otherwise there exist real constants p, q and t0 such
that

η(t) =
qiet−t0 + p

1 + iet−t0

for all t ∈ R.

Proof Let z1 and z2 be distinct points of H that lie on the geodesic η. If the
real parts of z1 and z2 coincide then let x0 = Re[z1]. It then follows directly
from Lemma 8.7 that the geodesic takes one of the two stated form.

If the real parts of z1 and z2 do not coincide then z1 and z2 lie on a circle
centred on a point that lies on the real axis. Let that circle cut the real
axis at p and q. Then there exists a Möbius transformation µ that maps the
semicircle of radius 1

2
|q − p| centred on 1

2
(p + q) onto the upper imaginary

axis {iy : y > 0}. This Möbius transformation will map the geodesic η onto
a geodesic that passes through two distinct points of the positive imaginary
axis. By the previous case, that geodesic must be contained in the upper
imaginary axis, and therefore η must be contained in the circle of radius
1
2
|q−p| about the point 1

2
(p+q). The result then follows by a straightforward

argument.
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