Euclid's Elements of Geometry Book III (T.L. Heath's Edition)

Transcribed by D. R. Wilkins

October 28, 2015

Proposition 1

To find the centre of a given circle.
Let $A B C$ be the given circle;
thus it is required to find the centre of the circle $A B C$.

Let a straight line $A B$ be drawn through it at random, and let it be bisected at the point D;
from D let $D C$ be drawn at right angles to $A B$ and let it de drawn through to E; let $C E$ be bisected at F;

I say that F is the centre of the circle $A B C$.
For suppose it is not, but, if possible, let G be the centre, and let $G A, G D, G B$ be joined.
Then, since $A D$ is equal to $D B$, and $D G$ is common,
the two sides $A D, D G$ are equal to the two sides $B D, D G$ respectively; and the base $G A$ is equal to the base $G B$, for they are radii;
therefore the angle $A D G$ is equal to the angle $D G B$. [1. 8]
But, when a straight line set up on a straight line makes the adjacent angles equal to one another, each of the the equal angles is right; [i Def. 10]
therefore the angle $G D B$ is right.
But the angle $F D B$ is also right;
Therefore the angle $F D B$ is equal to the angle $G D B$, the greater to the less: which is impossible.

Therefore G is not the centre of the circle $A B C$.
Similarly we can prove that neither is any other point except F.
Therefore the point F is the centre of the circle $A B C$.

Porism. From this, it is manifest that, if in a circle a straight line cut a straight line into two equal parts and at right angles, the centre of the circle is on the cutting straight line.
Q.E.F.

Proposition 2

If on the circumference of a given circle two points be taken at random, the straight line joining the points wil fall within the circle.

Let $A B C$ be a circle, and let two points A and B be taken at random on its circumference;

I say that the straight line joined from A to B will fall within the circle. For suppose it does not, but, if possible, let it fall outside, as $A E B$;
let the centre of the circle $A B C$ be taken [III. 1], and let it be D; let $D A, D B$ be joined, and let $D F E$ be drawn through.

Then since $D A$ is equal to $D B$,
the angle $D A E$ is also equal to the angle $D B E$. [r. 5] And, since one side $A E B$ of the triangle $D A E$ is produced,
the angle $D E B$ is greater than the angle $D A E$. [I. 16]
But the angle $D A E$ is equal to the angle $D B E$;
therefore the angle $D E B$ is greater than the angle $D B E$. And the greater angle is subtended by the greater side; [I. 19]
therefore $D B$ is greater than $D E$.
But $D B$ is equal to $D F$;
therefore $D F$ is greater than $D E$,
the less than the greater: which is impossible.
Therefore the straight line joined from A to B will not fall outside the circle.

Similarly we can prove that neither will it fall on the circumference itself; therefore it will fall within. Therefore etc.
Q.E.D.

Proposition 3

If in a circle a straight line through the centre bisect a straight line not through the centre, it also cuts it at right angles; and if it cut it at right angles, it also bisects it.

Let $A B C$ be a circle, and in it let a straight line $C D$ through the centre bisect a straight line $A B$ not through the centre at the point F;

I say that it also cuts it at right angles.
For let the centre of the circle $A B C$ be taken, and let it be E; let $E A$, $E B$ be joined.

Then, since $A F$ is equal to $F B$, and $F E$ is common, two sides are equal to two sides; and the base $E A$ is equal to the base $E B$;
therefore the angle $A F E$ is equal to the angle $B F E$. [r. 8]
But, when a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right; [I. Def. 10]
therefore each of the angles $A F E, B F E$ is right.
Therefore $C D$, which is through the centre, and bisects $A B$ which is not through the centre, also cuts it at right angles.

Again, let $C D$ cut $A B$ at right angles;
I say that it also bisects it, that is, that $A F$ is equal to $F B$.
For, with the same construction,
since $E A$ is equal to $E B$,
the angle $E A F$ is also equal to the angle $E B F$. [1. 5]
But the right angle $A F E$ is equal to the right angle $B F E$, therefore $E A F$, $E B F$ are two triangles having two angles equal to two angles and one side equal to one side, namely $E F$, which is common to them, and subtends one of the equal angles;
therefore they will also have the remaining sides equal to the remaining sides; [I. 26]
therefore $A F$ is equal to $F B$.
Therefore etc.
Q.E.D.

Proposition 4

If in a circle two straight lines cut one another which are not through the centre, they do not bisect one another.

Let $A B C D$ be a circle, and in it let the two straight lines $A C, B D$, which are not through the centre, cut one another in E;

I say that they do not bisect one another.
For, if possible, let them bisect one another, so that $A E$ is equal to $E C$, and $B E$ to $E D$;
let the centre of the circle $A B C D$ be taken [iII. 1], and let it be F; let $F E$ be joined.

Then, since a straight line $F E$ through the centre bisects a straight line $A C$ not through the centre;
it also cuts it at right angles; [III. 3]
therefore the angle $F E A$ is right.
Again, since a straight line $F E$ bisects a straight line $B D$, it also cuts it at right angles; [III. 3]
therefore the angle $F E B$ is right.
But the angle $F B A$ was also proved right;
therefore the angle $F E A$ is euqal to the angle $F E B$, the less to the greater: which is impossible.

Therefore $A C, B D$ do not bisect one another.
Therefore etc.
Q.E.D.

Proposition 14

In a circle equal straight lines are equally distant from the centre, and those which are equally distant from the centre are equal to one another.

Let $A B D C$ be a circle, and let $A B, C D$ be equal straight lines in it;
I say that $A B, C D$ are equally distant from the centre.
For let the centre of the circle $A B D C$ be taken [iII. 1], and let it be E; from E let $E F, E G$ be drawn perpendicular to $A B, C D$, and let $A E, E C$ be joined.

Then, since a straight line $E F$ through the centre cuts a straight line $A B$ not through the centre at right angles, it also bisects it. [III. 3]

Therefore $A F$ is equal to $F B$;
therefore $A B$ is the double of $A F$.
For the same reason
$C D$ is also the double of $C G$;
and $A B$ is equal to $C D$;
therefore $A F$ is also equal to $C G$.
And, since $A E$ is equal to $E C$,
the square on $A E$ is also equal to the square on $E C$.
But the squares on $A F, E F$ are equal to the square on $A E$, for the angle at F is right;
and the squares on $E G, G C$ are equal to the square on $E C$, for the angle at G is right; [I. 47]
therefore the squares on $A F, F E$ are equal to the squares on $C G, G E$,
of which the square on $A F$ is equal to the square on $C G$, for $A F$ is equal to $C G$;
therefore the square on $F E$ which remains is equal to the square on $E G$,
therefore $E F$ is equal to $E G$.

But in a circle straight lines are said to be equally distant from the centre; that is, let $E F$ be equal to $E G$.

I say that $A B$ is also equal to $C D$.
For, with the same construction, we can prove, similarly, that $A B$ is double of $A F$, and $C D$ of $C G$.

And, since $A E$ is equal to $C E$,
the square on $A E$ is equal to the square on $C E$.
But the squares on $E F, F A$ are equal to the square on $A E$, and the squares on $E G, G C$ equal to the square on $C E$. [r. 47]

Therefore the squares on $E F, F A$ are equal to the squares on $E G, G C$,
of which the square on $E F$ is equal to the square on $E G$, for $E F$ is equal to $E G$;
therefore the square on $A F$ which remains is equal to the square on $C G$;
therefore $A F$ is equal to $C G$.
And $A B$ is double of $A F$, and $C D$ double of $C G$;
therefore $A B$ is equal to $C D$.
Therefore etc.
Q.E.D.

Proposition 15

Of straight lines in a circle the diameter is greatest, and of the rest the nearer to the centre is always greater than the more remote.

Let $A B C D$ be a circle, let $A D$ be its diameter and E the centre; and let $B C$ be nearer to the diameter $A D$, and $F G$ more remote;

I say that $A D$ is the greatest and $B C$ greater than $F G$.
For from the centre E let $E H, E K$ be drawn perpendicular to $B C, F G$.

Then, since $B C$ is nearer to the centre and $F G$ more remote, $E K$ is greater than $E H$. [iII. Def. 5]

Let $E L$ be made equal to $E H$, through L let $L M$ be drawn at right angles to $E K$ and crried through to N, and let $M E, E N, F E, E G$ be joined.

Then, since $E H$ is equal to $E L$,
$B C$ is also equal to $M N$. [III. 14]
Again, since $A E$ is equal to $E M$, and $E D$ to $E N$, $A D$ is equal to $M E, E N$.
But $M E, E N$ are greater than $M N$, and $M N$ is equal to $B C$;
therefore $A D$ is greater than $B C$.
And since the two sides $M E, E N$ are equal to the two sides $F E, E G$, and the angle $M E N$ greater than the angle $F E G$,
therefore the base $M N$ is greater than the base $F G$. [I. 24]
But $M N$ was proved equal to $B C$.
Therefore the diameter $A D$ is the greatest and $B C$ greater than $F G$.
Therefore etc.
Q.E.D.

Proposition 16

The straight line drawn at right angles to the diameter of a circle from its extremity will fall outside the circle, and into the space between the straight line and the circumference another straight line cannot be interposed; further the angle of the semicircle is greater, and the remaining angle less, than any acute rectilinear angle.

Let $A B C$ be a circle about D as centre and $A B$ as diameter; I say that the straight line drawn from A at right angles to $A B$ from its extremity will fall outside the circle.

For suppose it does not, but, if possible, let it fall within as CA, and let $D C$ be joined.

Since $D A$ is equal to $D C$,
the angle $D A C$ is also equal to the angle $A C D$. [1. 5]
But the angle $D A C$ is right;
therefore the angle $A C D$ is also right:
thus, in the triangle $A C D$, the two angles $D A C, A C D$ are equal to two right angles: which is impossible. [I. 17]

Therefore the straight line drawn from the point A at right angles to $B A$ will not fall within the circle.

Similarly we can prove that neither will it fall on the circumference;
therefore it will fall outside.
Let it fall as $A E$;
I say next that into the space between the straight line $A E$ and the circumference CHA another straight line cannot be interposed.

For, if possible, let another straight line be so interposed, as $F A$, and let $D G$ be drawn from the point D perpendicular to $F A$.

Then, since the angle $A G D$ is right, and the angle $D A G$ is less than a right angle, $A D$ is greater than $D G$. [I. 19]
But $D A$ is equal to $D H$;
therefore $D H$ is greater than $D G$, the less than the greater, which is impossible.

Therefore another straight line cannot be interposed into the space between the straight line and the circumference.

I say further that the angle of the semicircle contained by the straight line $B A$ and the circumference $C H A$ is greater than any acute rectilineal angle, and the remaining angle contained by the circumference $C H A$ and the straight line $A E$ is less than any acute rectilinear angle.

For, if there is any rectilineal angle greater than the angle contained by the straight line $B A$ and the circumference $C H A$, and any rectilineal angle less than the angle contained by the circumference $C H A$ and the straight line $A E$, then into the space between the circumference and the straight line $A E$ a straight line will be interposed such as will make an angle contined by straight lines which is greater than the angle contained by the straight line $B A$ and the circumference $C H A$, and another angle contained by straight lines which is less than the angle contained by the circumference $C H A$ and the straight line $A E$.

But such a straight line cannot be interposed;
therefore there will not be any acute angle contained by straight lines which is greater than the angle contained by the straight line $B A$ and the circumference $C H A$, nor yet any acute angle contained by straight lines which is less than the angle contained by the circumference $C H A$ and the straight line $A E$.-

Porism. From this it is manifest that the straight line drawn at right angles to the diameter of a circle from its extremity touches the circle.
Q.E.D.

