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Axioms for Leaving Certificate Geometry

In 1932, George D. Birkhoff published a paper entitled A set of postulates
for plane geometry, based on scale and protractor [Annals of Mathematics,
Second Series, Vol. 33, No. 2 (1932), pp. 329–345. JSTOR stable URL:
http://www.jstor.org/stable/1968336.] The first three axioms chosen
for the development of synthetic geometry on the Leaving Certificate syllabus
from 2013 onwards clearly derive from some of Birkhoff’s axioms.

Axiom 1 (Two Points Axiom, LCG). There is exactly one line through
any two given points. (The line through A and B is denoted by AB.)

Remark (DRW ). The “Two Points Axiom” (Axiom 1) corresponds to
Birkhoff’s “Point-Line Postulate”.

Remark (DRW ). Postulate 1 in Book I of Euclid’s Elements of Geometry
postulates that one can draw a straight line from any point to any other point.
Many 17th, 18th and 19th century editions of Euclid’s Elements replace the
4th and 5th postulates and the five “common notions” that are presumed
to constitute Euclid’s own axiom system with twelve “axioms”. The 10th of
these axioms asserts that “two straight lines cannot enclose a space”. This
axiom (which is presumed to have been interpolated into manuscripts of
Euclid by later editors and copyists) ensures that at most one line segment
can join any two given points.

Axiom 2 (Ruler Axiom, LCG). The distance between points has the
following properties:

1. the distance |AB| is never negative;

2. |AB| = |BA|;

3. if C lies on AB, between A and B, then |AB| = |AC|+ |CB|;

4. (marking off a distance) given any ray from A, and given any real
number k ≥ 0, there is a unique point B on the ray whose distance
from A is k.

Remark (DRW ). The “Ruler Axiom” (Axiom 2) derives from Birkhoff’s
“Postulate of Line Measure”.

Remark (DRW ). Propositions 1, 2 and 3 in Book I of Euclid’s Elements
of Geometry together provide a construction for cutting off from a ray an
initial segment equal (in length) to a given line segment.
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Axiom 3 (Protractor Axiom, LCG). The number of degrees in an angle
(also known as its degree-measure) is always a number between 0◦ and 360◦.
The number of degrees in an ordinary angle is less than 180◦. It has these
properties:

1. a straight line has 180◦;

2. given a ray [AB, and a number d between 0 and 180, there is exactly
one ray from A on each side of the line AB that make an (ordinary)
angle having d degrees with the ray AB;

3. if D is a point within an angle ∠BAC, then

|∠BAC| = |∠BAD|+ |∠DAC|.

Remark (DRW ). The “Protractor Axiom” (Axiom 3) derives from
Birkhoff’s “Postulate of Angle Measure”.

Remark (DRW ). Given a point A on a line AB, the existence of rays
making a given angle with the ray [AB is the result of Proposition 23 in
Book I of Euclid’s Elements. The proof of this proposition and the preceding
propositions show how such rays can be constructed.

Axiom 4 (Congruence Axiom, SAS+ASA+SSS, LCG). If

(SAS) |AB| = |A′B′|, |AC| = |A′C ′| and |∠A| = |∠A′|,

or

(ASA) |BC| = |B′C ′|, |∠B| = |∠B′| and |∠C| = |∠C ′|,

or

(SSS) |AB| = |A′B′|, |BC| = |B′C ′| and |CA| = |C ′A′|

then the triangles 4ABC and 4A′B′C ′ are congruent.

Remark (DRW ). The the “SAS” case of the Congruence Axiom above
is related to Birkhoff’s “Similarity Postulate” which, when translated into
the notation of the Leaving Certificate syllabus, states that, given triangles
ABC and A′B′C ′, if there exists some positive real constant k such that

|A′B′| = k|AB|, |A′C ′| = k|AC| and |∠A′| = |∠A|,

then

|B′C ′| = k|BC|, |∠B′| = |∠B| and |∠C ′| = |∠C|,

The triangles ABC and A′B′C ′ are then similar.
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Remark (DRW ). The “SAS” case of the Congruence Axiom (Axiom 4)
is the result of Proposition 4 in Book I of Euclid’s Elements of Geometry.
Euclid’s proof of this proposition notoriously uses the technique of “applying”
one triangle to another, superposing parts of one triangle on corresponding
parts of the other, so that one can assume, without loss of generality, that
the vertex A coincides with the vertex A′, the ray [AB coincides with the ray
[A′B′ and the points C and C ′ lie on the same side of the line AB. Euclid
then applies his Postulates and Common Notions to deduce that the vertices
and edges of the first triangle coincide with the corresponding vertices and
edges of the second triangle, which then ensures that lengths of corresponding
sides are equal and that corresponding angles are equal. The possibility of
“applying” a triangle to another in this way of course assumes that the image
of a line or angle under a “Euclidean motion” resulting from a translation,
rotation or reflection of the plane is equal to the line or angle that is mapped
onto it.

The “SSS” case of the Congruence Axiom is the result of Proposition 8
in Book I of Euclid’s Elements. The “ASA“ case, together with the other
(“AAS”) case in which the measure of two angles and one side of the first
triangle agree with the corresponding angles and side of the second triangle,
constitute the result of Proposition 26 in Book I of Euclid’s Elements.

Axiom 5 (Axiom of Parallels, LCG). Given any line l and a point P ,
there is exactly one line through P that is parallel to l.

Remark (DRW ). The “Axiom of Parallels” (Axiom 5) is Playfair’s
Axiom, introduced by John Playfair into his edition of Euclid’s Elements of
Geometry, published in 1795.

Euclid himself, in his Fifth Postulate, asserted that “if a straight line
falling on two straight lines make the interior angles on the same side less
than two right angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles less than the two right angles”. This
postulate appears as the Twelfth Axiom in many editions of Euclid published
in the 17th, 18th and 19th centuries.
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Sides of a Line

Axiom PSA (Plane Separation Axiom, [not included in the LCG syl-
labus]). Any line in the Euclidean plane separates the remainder of the
plane into exactly two sides that are opposite one another, so that if a point
of the plane does not lie on the given line then it lies within exactly one of
the two sides of the line. Moreover if two points A and B both lie on the
same side of a line l then the line segment [AB] joining A to B does not
intersect l. But if those points A and B lie on opposite sides of the line l
then the line segment [AB] joining A to B intersects the line l.

Remark (DRW ). The statement of Theorem 3 on the Leaving Certificate
Geometry syllabus refers to points being on opposite sides of line.
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Vertically Opposite Angles

Theorem 1 (LCG). (Vertically-opposite Angles)
Vertically opposite angles are equal in measure.

Proof (DRW ). Let A be a point that lies on distinct lines BC and DE.
We must prove that |∠BAD| = |∠CAE|.

The angles ∠BAD and ∠BAE are supplementary angles and therefore
|∠BAD|+ |∠BAE| = 180◦. Similarly the angles ∠CAE and ∠BAE are sup-
plementary angles and therefore |∠CAE|+ |∠BAE| = 180◦. On subtracting
|∠BAE| from both sides of these equalities, we find that |∠BAD| = |∠CAE|,
as required.

Q.E.D.

Remark (DRW ). The statement and proof in the Leaving Certificate
geometry syllabus correspond to the above proof, and are essentially identical
to the statement and proof of Proposition 15 in Book I of Euclid’s Elements.
Euclid’s proof makes use of Proposition 13, which ensures that supplementary
angles always add up to two right angles.
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Isosceles Triangles

Theorem 1 (LCG). (Isosceles Triangles)

(1) In an isosceles triangle the angles opposite the equal sides are equal.

(2) Conversely, if two angles are equal, then the triangle is isosceles.

Proof (LCG). (1) Suppose the triangle 4ABC has |AB| = |AC| (as in
the figure). Then
4ABC is congruent to 4ACB [SAS],
therefore ∠B = ∠C.

(2) Suppose now that |∠B| = |∠C|. Then
4ABC is congruent to |triangleACB [ASA],
therefore |AB| = |AC|, and thus 4ABC is isosceles.

Q.E.D.

Remark (DRW ). The result of part (1) is that of Proposition 4 in Book I
of Euclid’s Elements of Geometry. This is the famous Pons Asinorum or
“Bridge of Asses”. The proof method presented in the Leaving Certificate
geometry syllabus was described by Proclus (412–485 A.D.) who attributed
it to Pappus (4th century A.D.).

Pappus’s proof, as presented by Proclus, was translated by T.L. Heath
(The Thirteen Books of Euclid, Vol 1, 2nd edition, 1908, p. 254, as follows.

“Let ABC be an iscosceles triangle, and AB equal to AC.
“Let us conceive this one triangle as two triangles, and let us

argue in this way.
“Since AB is equal to AC, and AC to AB, the two sides AB,

AC are equal to the two sides AC, AB.
“And the angle BAC is equal to the angle CAB, for it is the

same.
“Therefore the corresponding parts (in the triangles) are equal,

namely
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BC to BC,
the triangle ABC to the triangle ABC (i.e., ACB),
the angle ABC to the angle ACB,
and the angle ACB to the angle ABC,
(for these are the angles subtended by the equal sides AB, AC).

“Therefore in isosceles triangles the angles at the base are
equal.”

However the validity of this argument was rejected by many down towards
the end of the 19th century. The proof in Euclid’s Elements were far more
complicated, as were variant proofs by Proclus and others.

The second part of the statement of Theorem 2 above is the result of
Proposition 6 in Book I of Euclid’s Elements.

Remark (DRW ). In his edition of the first six books of Euclid’s Ele-
ments, An edition of Euclid’s Elements of Geometry was published in 1885
by John Casey, a graduate of Trinity College Dublin who became Professor
of the Higher Mathematics and of Mathematical Physics in the Catholic Uni-
versity of Ireland, and subsequently Lecturer in Mathematics at University
College, Dublin. Casey offers (on p.12), the following proof that the angles
of an isosceles triangle opposite the equal sides are equal:—

“The following is a very easy proof of this Proposition. Con-
ceive the 4ACB to be turned, without alteration, round the line
AC, until it falls on the other side. Let ACD be its new position;
then the angle ADC of the displaced triangle is evidently equal
to the angle ABC, with which it originally coincided. Again, the

two 4s BAC, CAD have the sides BA, AC of one respectively
equal to the sides AC, AD of the other, and the included angles
equal; therefore [Proposition 4] the angle ACB opposite the side
AB is equal to the angle ADC opposite the side AC; but the
angle ADC is equal to ABC; therefore ACB is equal to ABC.”
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External Angles exceed Internal Angles

Proposition 3A (DRW). Suppose that A and D are on opposite sides of
the line BC, and that the lines AB and CD intersect at E, where E lies on
the same side of BC as D. Then |∠BCD| < |∠ABC|.

Proof (DRW, axiomatic, using LCG axioms).
It follows from the Ruler Axiom (LCG, Axiom 2, (4)) that there exists

a point F on the ray [BC for which |BF | = 1
2
|BC|. There then exists a

point G on the ray [EF for which |EG| = 2|EF |. (This also follows from the
Ruler Axiom (LCG, Axiom 2, (4).) The point F then the midpoint of the
line segments [BC] and [EG], and lies in the interior of those line segments.

Now the points C and F both lie on the same side of the line AB, because
they both lie on a ray [BC whose endpoint B lies on AB. Similarly the points
F and G both lie on the same side of the line AB, because they both lie on a
ray [EF whose endpoint E lies on the line AB. Therefore the points C and
G are both on the same side of the line AB, because they are both on that
side of the line AB that contains the point F .

Also the line segments [EG] and [BC] intersect at the point F , and there-
fore the point C lies in the interior of the ordinary angle between the rays
[BE and [BG. It follows from the Protractor Axiom (LCG, Axiom 3, (1)
and (3)) that

|∠EBC|+ |∠GBC| = |∠EBG| < 180◦.

Now angles ∠EBC and ∠ABC are supplementary angles, because the
point E, B and A are collinear, and therefore

|∠EBC|+ |∠ABC| = 180◦.

(see LCG, Definition 2 and LCG, Definition 16). It follows that

|∠EBC|+ |∠CBG| < |∠EBC|+ |∠ABC|.

On subtracting |∠EBC| from both sides of this inequality, we find that
|∠CBG| < |∠ABC|.
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Now |FB| = |FC| and |FE| = |FG|, because F is the midpoint of the
line segments [BC] and [EG]. Moreover ∠BFG and ∠CFE are vertically
opposite angles, and therefore |∠BFG| = |∠CFE| (LCG, Theorem 1). It
therefore follows from the Congruence Axiom (LCG, Axiom 4, SAS) that the
triangle BFG is congruent to the triangle CFE, and therefore |∠ECF | =
|∠GBF |, But ∠BCD = ∠FCE = ∠ECF and 〈GBC = 〈GBF , because F
lies on [BC] and D lies on [CE]. It follows that |∠BCD| = |∠GBC|. But we
showed earlier that |∠GBC| < |∠ABC|. It follows that |∠BCD| < |∠ABC|,
as required.

Q.E.D.

Remark (DRW ). The statement and proof of Proposition 3A are adapted
from the statement and proof of Euclid, Book I, Proposition 16.

The proof has been written out at length, to seek to ensure that the
assumptions made are clearly set out. But the basic ideas can be summarized
as follows.

From the basic construction, it is clear that the line segments [CF ] and
[FG] do not intersect the line AB. Therefore the points C, F and G must
all lie on the same side of the line AB. It follows that ∠EBG must be an
ordinary angle that contains the point F and therefore contains the point C
that lies on the ray [BF . It follows that

|∠EBC|+ |∠CBG| < 180◦.

But ∠EBC and ∠ABC are supplementary angles, and therefore

|∠EBC|+ |∠ABC| = 180◦.

It follows that |∠CBG| < |∠ABC|.
But the construction has been designed to ensure that the triangles BFG

and CFE are congruent. Moreover it is clear from the construction that
∠FBG = ∠CBG and ∠FCE = ∠BCD. Therefore

|∠BCD| = |∠CBG| < |∠ABC|.

Corollary 3B (DRW). An exterior angle of a triangle always exceeds the
interior and opposite angles.

Remark (DRW ). The above corollary is Proposition 16 in Book I of
Euclid’s Elements of Geometry.
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Alternate Angles

Theorem 3 (LCG). (Alternate Angles)
Suppose that A and D are on opposite sides of the line BC.

(1) If |∠ABC| = |∠BCD|, then AB ‖ CD. In other words, if a transversal
makes equal alternate angles on two lines, then the lines are parallel.

(2) Conversely, if AB ‖ CD, then |∠ABC| = |∠BCD|. In other words,
if two lines are parallel, then any transversal will make equal alternate
angles with them.

Proof (DRW ). First we prove (1). Suppose that |∠ABC| = |∠BCD|.
If it were the case that the lines AB and CD were not parallel then they
would intersect on one or other side of the line BC. If they intersected
on the side of the line containing the point D then the point D would lie
between the point C and the intersection point E of the lines AB and CD.
It would then follow from Proposition 3A [not included in the LCG syllabus]
that |∠BCD| < |∠ABC|. Similarly if they intersected on the other side of
the line BC, then one could apply Proposition 3A [not included in the LCG
syllabus] (with A, B, C and D in the statement of the proposition replaced
by D, C, B and A respectively) to deduce that |∠ABC| < |∠BCD|. But
the alternate angles |∠ABC| and |∠BCD| are equal. It follows that the lines
AB and CD cannot intersect on either side of the line BC, and therefore
these lines are parallel.

Conversely suppose that the lines AB and CD are parallel. We must show
that |∠ABC| = |∠BCD|. Now the Protractor Axiom (Axiom 3) ensures the
existence of a point E, on the same side of BC as the point A, such that
|∠EBC| = |∠BCD|. It follows from what we have already proved that
EB ‖ CD. But the Axiom of Parallels (Axiom 5) ensures that there is only
one line through the point B parallel to CD. It follows that the points A, B
and E must be collinear, and therefore |∠ABC| = |∠EBC| = |∠BCD|, as
required.

Q.E.D.
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Remark (DRW ). The result that if the alternate angles made by two
lines on a transversal are equal then the lines are parallel is the result of
Proposition 27 in Book I of Euclid’s Elements of Geometry. The deduction
of this result from Proposition 3A [not included in the LCG syllabus] follows
the standard deduction of Proposition 27 from Proposition 16 of Book I of
Euclid’s Elements of Geometry.

The proof that alternate angles determined by parallel lines are equal
closely follows John Playfair’s proof of Proposition 29 in Book I of his edition
of Euclid’s Elements of Geometry, published in 1795. Proposition 23 in
Book I of Euclid ensures the existence of the point E for which |∠EBC| =
|∠BCD|. The proof is completed using Playfair’s Axiom, which is Axiom 5
of the Leaving Certificate Geometry syllabus.

Remark (DRW ). The proof given in the Leaving Certificate geometry
syllabus (2013) uses the method of reductio ad absurdum in a fairly long
sequence of steps to draw conclusions after successive steps that are very
much at variance with the visual appearance of the accompanying diagram.
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