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Alternate Angles

Suppose that a railway crosses the equator of the earth running from due
south to due north across a flat featureless plane that extends in all directions
as far as the eye can see. The rails give the appearance of maintaining a
constant distance from one another. At the point where the railway crosses
the equator, a bridge crosses over the railway: the centre of the bridge is
exactly halfway between the two rails of the railway and lies exactly on
the equator, and crosses the equator at an angle of 30◦ from the northwest
quadrant to the southeast quadrant, as shown in the diagram.

We suppose that the inhabitants in this region do not know whether the
surface of the earth is flat or curved. They have debated both possibilities,
but they have not journeyed far enough away from their home to determine
the geometry of the surface of the world on which they live. But it is taken for
granted that all geometric properties of the surface of the earth are preserved
under a central inversion about a point that has the effect of a rotation of
the earth’s surface about that point through an angle of 180◦.

Sheila, one of the local inhabitants, stands at the centre of the bridge,
looking due north. She observes that the rail on her left makes an obtuse
interior angle of 120◦ with the bridge, and the rail on her right makes an acute
interior angle of 60◦ with the bridge. She swivels round to look due south,
and again observes that the rail on her left makes an obtuse interior angle of
120◦ with the bridge, and the rail on her right makes an acute interior angle
of 60◦ with the bridge. She also notes that of course the distance between
the points on the bridge directly over the two rails is the same, whether
she is looking north or south. And indeed the view looks exactly the same
whether she looks north or south. So although she does not know whether
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or not the rails going northward would meet or not, assuming each rail ran
constantly northwards without turning to the left or right, she nevertheless
concludes from the symmetry of the situation that if the rails running due
north were to converge and eventually intersect on being continued due north
without turning to the left or right, then the rails running due south would
also have to converge and eventually intersect on each being continued due
south without turning to the left or right. Because it is taken for granted
that the conclusions regarding the geometry of their world are preserved
under central inversion, it is not possible for them to conceive that the rails,
continued without turning to the left or right, would meet on one side of the
bridge, but not on the other.

And indeed on the surface of our planet, ideally conceived to be a perfect
sphere, the rails, if continued due northward and due southward, would meet
at both the south pole and the north pole. This exemplifies a basic fact about
spherical geometry that distinguishes spherical geometry from both flat and
hyperbolic geometry: there exist pairs of conjugate points between which
there exist multiple geodesics (following great circles of the sphere, such as
the meridians along which longitude is constant) that join one conjugate
point to the other. Thus, in spherical geometry, an axiom that states that
between any two points there exists exactly one (length-minimizing) geodesic
would not hold. Something different happens in “elliptic geometry”, which is
the geometry of real projective spaces (with the metric properties inherited
from the sphere). In a world with “elliptic geometry” the point at which the
rails running northward converge would coincide with the point at which the
rails running southward would converge. The geodesic following the line of
the bridge, produced indefinitely in both directions, would not separate the
surface into two disconnected parts. Thus in “elliptic geometry” there exist
geodesics (the “straightest possible” routes) that start out from a point and
return to that point.

The scenario described above exhibits the basic symmetry property of
complete two-dimensional surfaces of constant curvature that underlies the
result of Theorem 3 of the Project Maths curriculum.
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Theorem 3 (LCG). (Alternate Angles)
Suppose that A and D are on opposite sides of the line BC.

(1) If |∠ABC| = |∠BCD|, then AB ‖ CD. In other words, if a transversal
makes equal alternate angles on two lines, then the lines are parallel.

(2) Conversely, if AB ‖ CD, then |∠ABC| = |∠BCD|. In other words,
if two lines are parallel, then any transversal will make equal alternate
angles with them.

Proof (DRW, based on LCG proof in NCCA 2013 syllabus). First we
prove (1). Suppose that

|∠ABC| = |∠BCD|.

Let G be a point taken on the line AB so that B lies between A and G,

and let H be a point taken on the line DC so that C lies between H and
D. Then ∠ABC and ∠GBC are supplementary angles, and also ∠BCD and
∠BCH are supplementary angles, and therefore

|∠BCH| = 180◦ − |∠BCD|
= 180◦ − |∠ABC|
= |∠GBC|.

Thus both |∠ABC| = |∠BCD| and |∠GBC| = |∠BCH|.
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We now prove that if the lines AB and CD were to intersect at some
point on the same side of the line BC as the point D, then they would also
have to intersect on the other side of BC. Thus suppose that the lines BG
and CD were to meet at E, where E is on the same side of BC as the points
D and G. Then a point F would lie on the line AB, on the same side of the
line BC as the point A, with |FB| = |EC|. Join F to C and compare the
triangles FBC and ECB.

The equality of the alternate angles would ensure that

|∠FBC| = |∠ABC| = |∠BCD| = |∠ECB|.

The Congruence Axiom (Axiom 4, SAS) would then ensure the congruence
of the triangles FBC and ECB, because |FB| = |EC|, |BC| = |CB| and
|∠FBC| = |∠ECB|. It would then follow that |∠FCB| = |∠EBC|. But
then the points F and H would both lie on the same side of the line BC,
and

|∠EBC| = |∠GBC| = |∠HCB|.
The Protractor Axiom (Axiom 3) would then ensure the collinearity of the
points C, H and F . It would then follow that there would exist two distinct
straight line segments joining F to E: one would pass through the points A,
B and G and the other would pass through the points H, C and D. Moreover
the points F and E would be distinct, because they would lie on opposite
sides of the line BC. But the Two Points Axiom (Axiom 1) requires that
there be only one line segment joining any two distinct points. Thus the
assumption that the lines AB and CD intersect at some point on the same
side of BC as the point D would lead to a contradiction. Moreover applying
this result with A, B, C and D replaced by D, C, B and A respectively
shows that a contradiction would also arise were the lines AB and CD to
intersect on the same side of CD as the point A. Therefore the lines AB and
CD must be parallel.

Conversely suppose that the lines AB and CD are parallel. We must show
that |∠ABC| = |∠BCD|. Now the Protractor Axiom (Axiom 3) ensures the
existence of a point K, on the same side of BC as the point A, such that
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|∠KBC| = |∠BCD|. It follows from what we have already proved that
KB ‖ CD. But the Axiom of Parallels (Axiom 5) ensures that there is only
one line through the point B parallel to CD. It follows that the points A, B
and K must be collinear, and therefore |∠ABC| = |∠KBC| = |∠BCD|, as
required.

Q.E.D.

Remark (DRW ). The result that if the alternate angles made by two
lines on a transversal are equal then the lines are parallel is the result of
Proposition 27 in Book I of Euclid’s Elements of Geometry.
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Congruence and Intersection

Proposition 3C (DRW). Let A, B, C, D, A′, B′, C ′ and D′ be distinct
points of the plane, where the points A and D both lie away from the line BC
and on one side of that line, and the points A′ and D′ both lie away from
the line B′C ′ and on one side of that line. Suppose also that |BC| = |B′C ′|,
|∠ABC| = |∠A′B′C ′| and |∠BCD| = |∠B′C ′D′|. Then the rays [BA and
[CD intersect if and only if the rays [B′A′ and [C ′D′ intersect.

Proof (DRW ). Suppose that the rays [BA and [CD intersect at E. The
Ruler Axiom (Axiom 2) that we can take a point E ′ on the ray [B′A′ for
which |B′E ′| = |BE|. Join C ′E ′.

The triangles 4EBC and 4E ′B′C ′ must then be congruent. Indeed
|EB| and |BC| are equal to |E ′B′| and |B′C ′| respectively and

|∠EBC| = |∠ABC| = |∠A′B′C ′| = |∠E ′B′C ′|.

It follows from the Congruence Axiom (Axiom 4, SAS) that the two triangles
are congruent and therefore |∠B′C ′E ′| = |∠BCE|. But then

|∠B′C ′D′| = |∠BCD| = |∠BCE| = |∠B′C ′E ′|.

Moreover the points D′ and E ′ both lie on the same side of the line B′C ′. It
follows from the Protractor Axiom (Axiom 3) that the points C ′, D′ and E ′

are colinear, and therefore the rays [B′A′ and [C ′D′ intersect at E ′.
We have proved that if the rays [BA and [CD intersect, then the rays

[B′A′ and [C ′D′ intersect. The converse follows directly on interchanging the
roles of the two triangles. This completes the proof.

Q.E.D.

Remark (DRW ). The above proposition (Proposition 3C [not included
in the LCG syllabus]) is intended to capture the essence of the lengthy re-
ductio ad absurdum section of the proof of Theorem 3 given previously. The
proof of the first part of Theorem 3 assuming Proposition 3C [not included
in the LCG syllabus] proceeds as follows.
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We label points etc. as in the figure. The alternate angles ∠ABC and
∠BCD are equal. Therefore the corresponding supplementary angles are
∠GBC and ∠BCH are also equal, as explained in the first part of the given
proof of Theorem 3. It then follows from Proposition 3C [not included in
the LCG syllabus] that if the rays [CD and [BG were to intersect at some
point E (on the right of the figure) then the rays [BA and [CH would have
to intersect at some point F of the figure. We would thus obtain a result
contradicting the Two Points Axiom (Axiom 1).
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