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1. The Real Number System (continued)

1.1. A Concise Characterization of the Real Number System

The set R of real numbers, with its usual ordering and algebraic
operations of addition and multiplication, is a Dedekind-complete
ordered field.

We describe below what a field is, what an ordered field is, and
what is meant by saying that an ordered field is
Dedekind-complete.
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1.2. Fields

Definition

A field is a set F on which are defined operations of addition and
multiplication, associating elements x + y and xy of F to each pair
x , y of elements of F, for which the following axioms are satisfied:

(i) x + y = y + x for all x , y ∈ F (i.e., the operation of addition
on F is commutative);

(ii) (x + y) + z = x + (y + z) for all x , y , z ∈ F (i.e., the
operation of addition on F is associative);

(iii) there exists an element 0 of F with the property that
0 + x = x for all x ∈ F (i.e., there exists a zero element for
the operation of addition on F);

(iv) given any x ∈ F, there exists an element −x of F satisfying
x + (−x) = 0 (i.e., negatives of elements of F always exist);
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(v) xy = yx for all x , y ∈ F (i.e., the operation of multiplication
on F is commutative);

(vi) (xy)z = x(yz) for all x , y , z ∈ F (i.e., the operation of
multiplication on F is associative);

(vii) there exists an element 1 of F with the property that 1x = x
for all x ∈ F (i.e., there exists an identity element for the
operation of multiplication on F);

(viii) given any x ∈ F satisfying x 6= 0, there exists an element x−1

of F satisfying xx−1 = 1;

(ix) x(y + z) = xy + xz for all x , y , z ∈ F (i.e., multiplication is
distributive over addition).
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The operations of subtraction and division are defined on a field F
in terms of the operations of addition and multiplication on that
field in the obvious fashion: x − y = x + (−y) for all elements x
and y of F, and moreover x/y = xy−1 provided that y 6= 0.
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1.3. Ordered Fields

Definition

An ordered field consists of a field F together with an ordering <
on that field that satisfies the following axioms:—

(x) if x and y are elements of F then one and only one of the
three statements x < y , x = y and y < x is true (i.e., the
ordering satisfies the Trichotomy Law);

(xi) if x , y and z are elements of F and if x < y and y < z then
x < z (i.e., the ordering is transitive);

(xii) if x , y and z are elements of F and if x < y then
x + z < y + z ;

(xiii) if x and y are elements of F which satisfy 0 < x and 0 < y
then 0 < xy .
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We can write x > y in cases where y < x . we can write x ≤ y in
cases where either x = y or x < y . We can write x ≥ y in cases
where either x = y or y < x .

Example
The rational numbers, with the standard ordering, and the
standard operations of addition, subtraction, multiplication, and
division constitute an ordered field.
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Example
Let Q(

√
2) denote the set of all numbers that can be represented

in the form b + c
√

2, where b and c are rational numbers. The
sum and difference of any two numbers belonging to Q(

√
2)

themselves belong to Q(
√

2). Also the product of any two
numbers Q(

√
2) itself belongs to Q(

√
2) because, for any rational

numbers b, c , e and f ,

(b + c
√

2)(e + f
√

2) = (be + 2cf ) + (bf + ce)
√

2,

and both be + 2cf and bf + ce are rational numbers. The
reciprocal of any non-zero element of Q(

√
2) itself belongs to

Q(
√

2), because
1

b + c
√

2
=

b − c
√

2

b2 − 2c2
.

for all rational numbers b and c . It is then a straightforward
exercise to verify that Q(

√
2) is an ordered field.
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1.4. Least Upper Bounds

Let S be a subset of an ordered field F. An element u of F is said
to be an upper bound of the set S if x ≤ u for all x ∈ S . The set
S is said to be bounded above if such an upper bound exists.
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Definition

Let F be an ordered field, and let S be some subset of F which is
bounded above. An element s of F is said to be the least upper
bound (or supremum) of S (denoted by supS) if s is an upper
bound of S and s ≤ u for all upper bounds u of S .

Example
The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and
{x ∈ Q : x < 2}. Note that the first of these sets contains its least
upper bound, whereas the second set does not.
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The following property is satisfied in some ordered fields but not in
others.

Least Upper Bound Property: given any non-empty
subset S of F that is bounded above, there exists an
element supS of F that is the least upper bound for the
set S.

Definition

A Dedekind-complete ordered field F is an ordered field which has
the Least Upper Bound Property.



1. The Real Number System (continued)

1.5. Greatest Lower Bounds

Let S be a subset of an ordered field F. A lower bound of S is an
element l of F with the property that l ≤ x for all x ∈ S . The set
S is said to be bounded below if such a lower bound exists. A
greatest lower bound (or infimum) for a set S is a lower bound for
that set that is greater than every other lower bound for that set.
The greatest lower bound of the set S (if it exists) is denoted by
inf S .

Let F be a Dedekind-complete ordered field. Then, given any
non-empty subset S of F that is bounded below, there exists a
greatest lower bound (or infimum) inf S for the set S . Indeed
inf S = − sup{x ∈ R : −x ∈ S}.
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Remark
It can be proved that any two Dedekind-complete ordered fields are
isomorphic via an isomorphism that respects the ordering and the
algebraic operations on the fields. The theory of Dedekind cuts
provides a construction that yields a Dedekind-complete ordered
field that can represent the system of real numbers. For an account
of this construction, and for a proof that these axioms are sufficient
to characterize the real number system, see chapters 27–29 of
Calculus, by M. Spivak. The construction of the real number
system using Dedekind cuts is also described in detail in the
Appendix to Chapter 1 of Principles of Real Analysis by W. Rudin.
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1.6. Bounded Sets of Real Numbers

The set R of real numbers, with its usual ordering algebraic
operations, constitutes a Dedekind-complete ordered field. Thus
every non-empty subset S of R that is bounded above has a least
upper bound (or supremum) sup S , and every non-empty subset S
of R that is bounded below has a greatest lower bound (or
infimum) inf S .
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Let S be a non-empty subset of the real numbers that is bounded
(both above and below). Then the closed interval [inf S , supS ] is
the smallest closed interval in the set R of real numbers that
contains the set S . Indeed if S ⊂ [a, b], where a and b are real
numbers satisfying a ≤ b, then a ≤ inf S ≤ supS ≤ b, and
therefore

S ⊂ [inf S , supS ] ⊂ [a, b].
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1.7. Absolute Values of Real Numbers

Let x be a real number. The absolute value |x | of x is defined so
that

|x | =

{
x if x ≥ 0;
−x if x < 0;

Lemma 1.1

Let u and v be real numbers. Then |u + v | ≤ |u|+ |v | and
|uv | = |u| |v |.



1. The Real Number System (continued)

Proof
Let u and v be real numbers. Then

−|u| ≤ u ≤ |u| and − |v | ≤ v ≤ |v |.

On adding inequalities, we find that

−(|u|+ |v |) = −|u| − |v | ≤ u + v ≤ |u|+ |v |,

and thus

u + v ≤ |u|+ |v | and − (u + v) ≤ |u|+ |v |.
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Now the value of |u + v | is equal to at least one of the numbers
u + v and −(u + v). It follows that

|u + v | ≤ |u|+ |v |

for all real numbers u and v .

Next we note that |u| |v | is the product of one or other of the
numbers u and −u with one or other of the numbers v and −v ,
and therefore its value is equal either to uv or to −uv . Because
both |u| |v | and |uv | are non-negative, we conclude that
|uv | = |u| |v |, as required.
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Lemma 1.2

Let u and v be real numbers. Then
∣∣∣|u| − |v |∣∣∣ ≤ |u − v |.

Proof
It follows from Lemma 1.1 that

|u| = |v + (u − v)| ≤ |v |+ |u − v |.

Therefore |u| − |v | ≤ |u − v |. Interchanging u and v , we find also
that

|v | − |u| ≤ |v − u| = |u − v |.

Now
∣∣∣|u|− |v |∣∣∣ is equal to one or other of the real numbers |u|− |v |

and |v | − |u|. It follows that
∣∣∣|u| − |v |∣∣∣ ≤ |u − v |, as required.
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1.8. Convergence of Infinite Sequences of Real Numbers

An infinite sequence x1, x2, x3, . . . of real numbers associates to
each positive integer j a corresponding real number xj .

Definition

An infinite sequence x1, x2, x3, . . . of real numbers is said to
converge to some real number p if and only if the following
criterion is satisfied:

given any strictly positive real number ε, there exists
some positive integer N such that |xj − p| < ε for all
positive integers j satisfying j ≥ N.

If an infinite sequence x1, x2, x3, . . . of real numbers converges to
some real number p, then p is said to be the limit of the sequence,
and we can indicate the convergence of the infinite sequence to p
by writing ‘xj → p as j → +∞’, or by writing ‘ lim

j→+∞
xj = p’.
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Let x and p be real numbers, and let ε be a strictly positive real
number. Then |x − p| < ε if and only if both x − p < ε and
p − x < ε. It follows that |x − p| < ε if and only if
p − ε < x < p + ε. The condition |x − p| < ε essentially requires
that the value of the real number x should agree with p to within
an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any
positive real number ε, there exists some positive integer N such
that p − ε < xj < p + ε for all positive integers j satisfying j ≥ N.
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Definition

We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that
xj ≤ B for all positive integers j . Similarly we say that this
sequence is bounded below if there exists some real number A such
that xj ≥ A for all positive integers j . A sequence is said to be
bounded if it is bounded above and bounded below. Thus a
sequence is bounded if and only if there exist real numbers A
and B such that A ≤ xj ≤ B for all positive integers j .
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Lemma 1.3

Every convergent sequence of real numbers is bounded.

Proof
Let x1, x2, x3, . . . be a sequence of real numbers converging to
some real number p. On applying the formal definition of
convergence (with ε = 1), we deduce the existence of some
positive integer N such that p − 1 < xj < p + 1 for all j ≥ N. But
then A ≤ xj ≤ B for all positive integers j , where A is the
minimum of x1, x2, . . . , xN−1 and p − 1, and B is the maximum of
x1, x2, . . . , xN−1 and p + 1.
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Proposition 1.4

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers. Then the sum and difference of these sequences
are convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj ,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj .

Proof
Throughout this proof let p = lim

j→+∞
xj and q = lim

j→+∞
yj . It

follows directly from the definition of limits that lim
j→+∞

(−yj) = −q.
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that
|xj + yj − (p + q)| < ε whenever j ≥ N. Now xj → p as j → +∞,
and therefore, given any strictly positive real number ε1, there
exists some positive integer N1 with the property that |xj − p| < ε1
whenever j ≥ N1. In particular, there exists a positive integer N1

with the property that |xj − p| < 1
2ε whenever j ≥ N1. (To see

this, let ε1 = 1
2ε.) Similarly there exists some positive integer N2

such that |yj − q| < 1
2ε whenever j ≥ N2. Let N be the maximum

of N1 and N2. If j ≥ N then

|xj + yj − (p + q)| = |(xj − p) + (yj − q)| ≤ |xj − p|+ |yj − q|
< 1

2ε + 1
2ε = ε.

Thus xj + yj → p + q as j → +∞.

On replacing yj by −yj for all positive integers j , and using the
result that −yj → −q as j → +∞, we see that Thus
xj − yj → p − q as j → +∞, as required.
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Lemma 1.5

Let x1, x2, x3, . . . be a convergent infinite sequence of real numbers,
and let c be a real number. Then

lim
j→+∞

(cxj) = c lim
j→+∞

xj .

Proof
Let some strictly positive real number ε be given. Then a strictly
positive real number ε1 can be chosen so that |c| ε1 ≤ ε. There
then exists some positive integer N such that |xj − p| < ε1
whenever j ≥ N, where p = lim

j→+∞
xj . But then

|cxj − cp| < |c | ε1 ≤ ε

whenever j ≥ N. We conclude that lim
j→+∞

cxj = cp, as

required.
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Proposition 1.6

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers. Then the product of these sequences is
convergent, and

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.

Proof
Let uj = xj − p and vj = yj − q for all positive integers j where
p = lim

j→+∞
xj and q = lim

j→+∞
yj . Then

lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjq − pyj + pq)

= lim
j→+∞

(xjyj)− q lim
j→+∞

xj − p lim
j→+∞

yj + pq

= lim
j→+∞

(xjyj)− pq.
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Let some strictly positive real number ε be given. It follows from
the definition of limits that lim

j→+∞
uj = 0 and lim

j→+∞
vj = 0.

Therefore there exist positive integers N1 and N2 such that
|uj | <

√
ε whenever j ≥ N1 and |vj | <

√
ε whenever j ≥ N2. Let N

be the maximum of N1 and N2. If j ≥ N then |ujvj | < ε. Thus
lim

j→+∞
ujvj = 0, and therefore lim

j→+∞
(xjyj)− pq = 0. The result

follows.
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Proposition 1.7

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers, where yj 6= 0 for all positive integers j and

lim
j→+∞

yj 6= 0. Then the quotient of the sequences (xj) and (yj) is

convergent, and

lim
j→+∞

xj
yj

=

lim
j→+∞

xj

lim
j→+∞

yj
.
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Proof
Let p = lim

j→+∞
xj and Let q = lim

j→+∞
yj . Then

xj
yj
− p

q
=

qxj − pyj
qyj

for all positive integers j . Now there exists some positive
integer N1 such that |yj − q| < 1

2 |q| whenever j ≥ N1. Then
|yj | ≥ 1

2 |q| whenever j ≥ N1, and therefore∣∣∣∣xjyj − p

q

∣∣∣∣ ≤ 2

|q|2
|qxj − pyj |

whenever j ≥ N1.
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Let some strictly positive real number ε be given. Applying
Lemma 1.5 and Proposition 1.4, we find that

lim
j→+∞

(qxj − pyj) = q lim
j→+∞

xj − p lim
j→+∞

yj = qp − pq = 0.

Therefore there exists some positive integer N satisfying N ≥ N1

with the property that

|qxj − pyj | < 1
2 |q|

2ε

whenever j ≥ N. But then ∣∣∣∣xjyj − p

q

∣∣∣∣ < ε

whenever j ≥ N. Thus

lim
j→+∞

xj
yj

=
p

q
,

as required.
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1.9. Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be
strictly increasing if xj+1 > xj for all positive integers j , strictly
decreasing if xj+1 < xj for all positive integers j , non-decreasing if
xj+1 ≥ xj for all positive integers j , non-increasing if xj+1 ≤ xj for
all positive integers j . A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.
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Theorem 1.8

Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

Proof
Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Axiom that there exists a least upper bound p for the set
{xj : j ∈ N}. We claim that the sequence converges to p.
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that |xj − p| < ε
whenever j ≥ N. Now p − ε is not an upper bound for the set
{xj : j ∈ N} (since p is the least upper bound), and therefore there
must exist some positive integer N such that xN > p− ε. But then
p − ε < xj ≤ p whenever j ≥ N, since the sequence is
non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N. Therefore xj → p as j → +∞, as required.
If the sequence x1, x2, x3, . . . is non-increasing and bounded below
then the sequence −x1,−x2,−x3, . . . is non-decreasing and
bounded above, and is therefore convergent. It follows that the
sequence x1, x2, x3, . . . is also convergent.
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1.10. Subsequences of Sequences of Real Numbers

Definition

Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form
xj1 , xj2 , xj3 , . . . where j1, j2, j3, . . . is an infinite sequence of positive
integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The
following sequences are examples of subsequences of the above
sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .
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Theorem 1.9 (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a convergent
subsequence.

Proof
Let a1, a2, a3, . . . be a bounded sequence of real numbers. We
define a peak index to be a positive integer j with the property
that aj ≥ ak for all positive integers k satisfying k ≥ j . Thus a
positive integer j is a peak index if and only if the jth member of
the infinite sequence a1, a2, a3, . . . is greater than or equal to all
succeeding members of the sequence. Let S be the set of all peak
indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.
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First let us suppose that the set S of peak indices is infinite.
Arrange the elements of S in increasing order so that
S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 < · · · . It follows
from the definition of peak indices that aj1 ≥ aj2 ≥ aj3 ≥ aj4 ≥ · · · .
Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence of the original
sequence a1, a2, a3, . . .. This subsequence is bounded below (since
the original sequence is bounded). It follows from Theorem 1.8
that aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original
sequence.
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Now suppose that the set S of peak indices is finite. Choose a
positive integer j1 which is greater than every peak index. Then j1
is not a peak index. Therefore there must exist some positive
integer j2 satisfying j2 > j1 such that aj2 > aj1 . Moreover j2 is not
a peak index (because j2 is greater than j1 and j1 in turn is greater
than every peak index). Therefore there must exist some positive
integer j3 satisfying j3 > j2 such that aj3 > aj2 . We can continue in
this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This
increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 1.8.
This completes the proof of the Bolzano-Weierstrass Theorem.
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