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2. Convergence in Euclidean Spaces

2. Convergence in Euclidean Spaces

2.1. Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn)
of real numbers. The set Rn represents n-dimensional Euclidean
space (with respect to the standard Cartesian coordinate system).
Let x and y be elements of Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n .
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The quantity x · y is the scalar product (or inner product) of x and
y, and the quantity |x| is the Euclidean norm of x. Note that
|x|2 = x · x. The Euclidean distance between two points x and y of
Rn is defined to be the Euclidean norm |y − x| of the vector y − x.

Proposition 2.1

(Schwarz’s Inequality) Let x and y be elements of Rn. Then
|x · y| ≤ |x||y|.
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Proof
We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and
µ. In particular, suppose that λ = |y|2 and µ = −x · y. We
conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that
(
|x|2|y|2 − (x · y)2

)
|y|2 ≥ 0. Thus if y 6= 0 then |y| > 0,

and hence
|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus
|x · y| ≤ |x||y|, as required.
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Proposition 2.2

(Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.

Proof
Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.
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It follows immediately from the Triangle Inequality
(Proposition 2.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality expresses
the geometric fact that the length of any triangle in a Euclidean
space is less than or equal to the sum of the lengths of the other
two sides.
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2.2. Convergence of Sequences in Euclidean Spaces

Definition

A sequence x1, x2, x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists
some positive integer N such that |xj − p| < ε whenever
j ≥ N.

We refer to p as the limit lim
j→+∞

xj of the sequence x1, x2, x3, . . . .
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Lemma 2.3

Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1, x2, x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to
pi for i = 1, 2, . . . , n.

Proof
Let (xj)i denote the ith components of xj . Then
|(xj)i − pi | ≤ |xj − p| for i = 1, 2, . . . , n and for all positive
integers j . It follows directly from the definition of convergence
that if xj → p as j → +∞ then (xj)i → pi as j → +∞.
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Conversely suppose that, for each integer i between 1 and n,
(xj)i → pi as j → +∞. Let ε > 0 be given. Then there exist
positive integers N1,N2, . . . ,Nn such that |(xj)i − pi | < ε/

√
n

whenever j ≥ Ni . Let N be the maximum of N1,N2, . . . ,Nn. If
j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi )
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.
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2.3. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ Rn. The point p is said to be a limit point of the set X if,
given any δ > 0, there exists some point x of X such that
0 < |x− p| < δ.
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Lemma 2.4

Let X be a subset of n-dimensional Euclidean space Rn. A point p
is a limit point of the set X if and only if, given any positive real
number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set.

Proof
Suppose that, given any positive real number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set. Then, for each positive real number δ, the set
thus determined by δ must consist of more than just the single
point p, and therefore there exists x ∈ X satisfying
0 < |x− p| < δ. Thus p is a limit point of the set X .
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Now let p be an arbitrary point of Rn. Suppose that there exists
some positive real number δ0 for which the set

{x ∈ X : |x− p| < δ0}

is finite. If this set does not contain any points of X distinct from
the point p then p is not a limit point of the set X . Otherwise let
δ be the minimum value of |x− p| as x ranges over all points of
the finite set

{x ∈ X : |x− p| < δ0}

that are distinct from p. Then δ > 0, and |x− p| ≥ δ for all x ∈ X
satisfying x 6= p. Thus the point p is not a limit point of the
set X . The result follows.
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Lemma 2.5

Let X be a subset of n-dimensional Euclidean space Rn and let
p ∈ Rn. Then the point p is a limit point of the set X if and only
if there exists an infinite sequence x1, x2, x3, . . . of points of X , all
distinct from the point p, such that lim

j→+∞
xj = p.
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Proof
Suppose that p is a limit point of X . Then, for each positive
integer j , there exists a point xj of X for which 0 < |xj − p| < 1/j .
The points xj satisfying this condition then constitute an infinite
sequence x1, x2, x3, . . . of points of X , all distinct from the point p,
that converge to the point p.

Conversely suppose that p is some point of Rn that is the limit of
some infinite sequence x1, x2, x3, . . . of points of X that are all
distinct from the point p. Let some positive number δ be given.
The definition of convergence ensures that there exists a positive
integer N such that |xj − p| < δ whenever j ≥ N. Moreover
|xj − p| > 0 for all positive integers j . Thus 0 < |xj − p| < δ when
the positive integer j is sufficiently large. Thus the point p is a
limit point of the set X , as required.
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Definition

Let X be a subset of n-dimensional Euclidean space Rn. A point p
of X is said to be an isolated point of X if it is not a limit point of
X .

Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ X . It follows immediately from the definition of isolated points
that the point p is an isolated point of the set X if and only if
there exists some strictly positive real number δ for which

{x ∈ X : |x− p| < δ} = {p}.
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2.4. The Multidimensional Bolzano-Weierstrass Theorem

We introduce some terminology and notation for discussing
convergence along subsequences of bounded sequences of points in
Euclidean spaces. This will be useful in proving the
multi-dimensional version of the Bolzano-Weierstrass Theorem.

Definition

Let x1, x2, x3, . . . be an infinite sequence of points in Rn, let J be
an infinite subset of the set N of positive integers, and let p be a
point of Rn. We say that p is the limit of xj as j tends to infinity
in the set J, and write “xj → p as j → +∞ in J” if the following
criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists
some positive integer N such that |xj − p| < ε whenever
j ∈ J and j ≥ N.
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The one-dimensional version of the Bolzano-Weierstrass Theorem
(Theorem 1.9) is equivalent to the following statement:

Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, there exists an infinite subset J of the set N of
positive integers and a real number p such that xj → p
as j → +∞ in J.

Given an infinite subset J of N, the elements of J can be labelled
as k1, k2, k3, . . ., where k1 < k2 < k3 < · · · , so that k1 is the
smallest positive integer belonging of J, k2 is the next smallest,
etc. Therefore any standard result concerning convergence of
sequences of points can be applied in the context of the
convergence of subsequences of a given sequence of points.
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The following result is therefore a direct consequence of the
one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.9):

Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, and given an infinite subset J of the set N of
positive integers, there exists an infinite subset K of J
and a real number p such that xj → p as j → +∞ in K .
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The above statement in fact corresponds to the following
assertion:—

Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, and given any subsequence

xk1 , xk2 , xk3 , · · ·

of the given infinite sequence, there exists a convergent
subsequence

xkm1
, xkm2

, xkm3
, . . .

of the given subsequence. Moreover this convergent
subsequence of the given subsequence is itself a
convergent subsequence of the given infinite sequence,
and it contains only members of the given subsequence
of the given sequence.
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The basic principle can be presented purely in words as follows:

Given a bounded sequence of real numbers, and given a
subsequence of that original given sequence, there exists
a convergent subsequence of the given subsequence.
Moreover this subsequence of the subsequence is a
convergent subsequence of the original given sequence.

We employ this principle in the following proof of the
Multidimensional Bolzano-Weierstrass Theorem.
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Theorem 2.6 (Multidimensional Bolzano-Weierstrass
Theorem)

Every bounded sequence of points in a Euclidean space has a
convergent subsequence.

Proof
Let x1, x2, x3, . . . be a bounded infinite sequence of points in Rn,
and, for each positive integer j , and for each integer i between 1
and n, let (xj)i denote the ith component of xj . Then

xj =
(

(xj)1, (xj)2, . . . , (xj)n
)
.

for all positive integers j . It follows from the one-dimensional
Bolzano-Weierstrass Theorem (Theorem 1.9) that there exists an
infinite subset J1 of the set N of positive integers and a real
number p1 such that (xj)1 → p1 as j → +∞ in J1.
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Let k be an integer between 1 and n− 1. Suppose that there exists
an infinite subset Jk of N and real numbers p1, p2, . . . , pk such
that, for each integer i between 1 and k , (xj)i → pi as j → +∞ in
Jk . It then follows from the one-dimensional Bolzano-Weierstrass
Theorem that there exists an infinite subset Jk+1 of Jk and a real
number pk+1, such that (xj)k+1 → pk+1 as j → +∞ in Jk+1.
Moreover the requirement that Jk+1 ⊂ Jk then ensures that, for
each integer i between 1 and k + 1, (xj)i → pi as j → +∞ in Jk+1.
Repeated application of this result then ensures the existence of an
infinite subset Jn of N and real numbers p1, p2, . . . , pn such that,
for each integer i between 1 and n, (xj)i → pi as j → +∞ in Jn.
Let

Jn = {k1, k2, k3, . . .},
where k1 < k2 < k3 < · · · . Then lim

j→+∞
(xkj )i = pi for

i = 1, 2, . . . , n. It then follows from Proposition 2.3 that
lim

j→+∞
xkj = p. The result follows.
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2.5. Cauchy Sequences in Euclidean Spaces

Definition

A sequence x1, x2, x3, . . . of points of n-dimensional Euclidean
space Rn is said to be a Cauchy sequence if the following condition
is satisfied:

given any strictly positive real number ε, there exists
some positive integer N such that |xj − xk | < ε for all
positive integers j and k satisfying j ≥ N and k ≥ N.
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Lemma 2.7

Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof
Let x1, x2, x3, . . . be a Cauchy sequence of points in Rn. Then
there exists some positive integer N such that |xj − xk | < 1
whenever j ≥ N and k ≥ N. In particular, |xj | ≤ |xN |+ 1 whenever
j ≥ N. Therefore |xj | ≤ R for all positive integers j , where R is the
maximum of the real numbers |x1|, |x2|, . . . , |xN−1| and |xN |+ 1.
Thus the sequence is bounded, as required.
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Theorem 2.8

(Cauchy’s Criterion for Convergence) An infinite sequence of
points of n-dimensional Euclidean space Rn is convergent if and
only if it is a Cauchy sequence.

Proof
First we show that convergent sequences in Rn are Cauchy
sequences. Let x1, x2, x3, . . . be a convergent sequence of points in
Rn, and let p = lim

j→+∞
xj . Let some strictly positive real number ε

be given. Then there exists some positive integer N such that
|xj − p| < 1

2ε for all j ≥ N. Thus if j ≥ N and k ≥ N then
|xj − p| < 1

2ε and |xk − p| < 1
2ε, and hence

|xj − xk | = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1, x2, x3, . . . is a Cauchy sequence.
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Conversely we must show that any Cauchy sequence x1, x2, x3, . . .
in Rn is convergent. Now Cauchy sequences are bounded, by
Lemma 2.7. The sequence x1, x2, x3, . . . therefore has a convergent
subsequence xk1 , xk2 , xk3 , . . ., by the multidimensional
Bolzano-Weierstrass Theorem (Theorem 2.6). Let
p = limj→+∞ xkj . We claim that the sequence x1, x2, x3, . . . itself
converges to p.
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Let some strictly positive real number ε be given. Then there
exists some positive integer N such that |xj − xk | < 1

2ε whenever
j ≥ N and k ≥ N (since the sequence is a Cauchy sequence). Let
m be chosen large enough to ensure that km ≥ N and
|xkm − p| < 1

2ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2ε+ 1

2ε = ε

whenever j ≥ N. It follows that xj → p as j → +∞, as
required.
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