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9. The Inverse and Implicit Function Theorems (continued)

9.1. Contraction Mappings on Closed Subsets of Euclidean Spaces

Theorem 9.1

Let F be a closed subset of Rn, let r be a real number satisfying
0 < r < 1, and let ϕ : F → F be a continuous map from F to itself
with the property that

|ϕ(x′)− ϕ(x′′)| ≤ r |x′ − x′′|

for all x′, x′′ ∈ F . Then there exists a unique point x∗ of F for
which ϕ(x∗) = x∗.



9. The Inverse and Implicit Function Theorems (continued)

Proof
Choose x0 ∈ F , and let x1, x2, x3, . . . be the infinite sequence of
points of F defined such that xj = ϕ(xj−1) for all positive
integers j . Then

|xj+1 − xj | ≤ r |xj − xj−1|

for all positive integers j . It follows that

|xj+1 − xj | ≤ r j |x1 − x0|

for all positive integers j , and therefore

|xk − xj | ≤
r j − rk

1− r
|x1 − x0| ≤

r j

1− r
|x1 − x0|

for all positive integers j and k satisfying j < k .



9. The Inverse and Implicit Function Theorems (continued)

Now the inequality r < 1 ensures that, given any positive real
number ε, there exists a positive integer N large enough to ensure
that r j |x1 − x0| < (1− r)ε for all integers j satisfying j ≥ N. Then
|xk − xj | < ε for all positive integers j and k satisfying k > j ≥ N.
The infinite sequence x1, x2, x3, . . . is thus a Cauchy sequence of
points of Rn. Now all Cauchy sequences in Rn are convergent (see
Theorem 2.8). We conclude therefore that the infinite sequence
x1, x2, x3, . . . is convergent. Let x∗ = lim

j→+∞
xj . Then x∗ ∈ F ,

because F is closed in Rn. Moreover

x∗ = lim
j→+∞

xj+1 = lim
j→+∞

ϕ(xj) = ϕ

(
lim

j→+∞
xj

)
= ϕ(x∗).

We have thus proved the existence of a point x∗ of F for which
ϕ(x∗) = x∗.



9. The Inverse and Implicit Function Theorems (continued)

If x̃ belongs to F , and if ϕ(x̃) = x̃ then

|x̃− x∗| = |ϕ(x̃)− ϕ(x∗)| ≤ r |x̃− x∗|.

But r < 1. It follows that the Euclidean distance |x̃− x∗| from x̃ to
x∗ cannot be strictly positive, and therefore x̃ = x∗. We conclude
therefore that x∗ is the unique point of F for which ϕ(x∗) = x∗, as
required.



9. The Inverse and Implicit Function Theorems (continued)

9.2. The Inverse Function Theorem

Lemma 9.2

Let X be an open set in Rm, let ϕ : X → Rn be a differentiable
function mapping X into Rn, let p be a point of X , and let c be a
positive real number. Suppose that |x− p| ≤ c|ϕ(x)− ϕ(p)| for all
points x of X . Then |v| ≤ c |(Dϕ)pv| for all v ∈ Rm.



9. The Inverse and Implicit Function Theorems (continued)

Proof
Let v ∈ Rm. Then

t|v| = |(p + tv)− p| ≤ c |ϕ(p + tv)− ϕ(p)|

for all positive real numbers t small enough to ensure that
p + tv ∈ X . Now

(Dϕ)pv = lim
t→0+

ϕ(p + tv)− ϕ(p)

t

(see Proposition 8.13). It follows that

|v| ≤ lim
t→0+

c

∣∣∣∣ϕ(p + tv)− ϕ(p)

t

∣∣∣∣ = c

∣∣∣∣ lim
t→0+

ϕ(p + tv)− ϕ(p)

t

∣∣∣∣
= c |(Dϕ)pv|,

as required.



9. The Inverse and Implicit Function Theorems (continued)

Proposition 9.3

Let X be an open set in Rn, let ϕ : X → Rn be a differentiable
function on X , and let p be a point of X at which the derivative of
ϕ is both invertible and continuous. Then there exist positive real
numbers r , s and c such that the following properties hold:

(i) if x ∈ Rn satisfies |x− p| ≤ r then x ∈ X ;

(ii) if y ∈ Rn satisfies |y − ϕ(p)| < s then there exists x ∈ X
satisfying |x− p| < r for which ϕ(x) = y;

(iii) |x′ − x′′| ≤ c |ϕ(x′)− ϕ(x′′)| for all points x′ and x′′ of X for
which |x′ − p| ≤ r and |x′′ − p| ≤ r .



9. The Inverse and Implicit Function Theorems (continued)

Proof
The derivative (Dϕ)p : Rn → Rn of ϕ at the point p is an
invertible linear transformation, by assumption. Let T = (Dϕ)−1p ,
let a positive real number c be chosen such that 2|Tx| ≤ c for all
x ∈ Rn satisfying |x| = 1, and let ψ : X → Rn be defined such that

ψ(x) = x− T (ϕ(x)− q)

for all x ∈ X , where q = ϕ(p).



9. The Inverse and Implicit Function Theorems (continued)

Now the derivative of any linear transformation at any point is
equal to that linear transformation (see Lemma 8.9). It follows
from the Chain Rule (Proposition 8.20) that the derivative of the
composition function T ◦ ϕ at any point x of X is equal to
T (Dϕ)x. It follows that (Dψ)x = I − T (Dϕ)x for all x ∈ X , where
I denotes the identity operator on Rn. In particular
(Dψ)p = I − T (Dϕ)p = 0. Moreover ψ(p) = p. It then follows
from a straightforward application of Corollary 8.7 that there exists
a positive real number r small enough to ensure both that x ∈ X
for all elements x of Rn satisfying |x− p| ≤ r and also that

|ψ(x′)− ψ(x′′)| ≤ 1
2 |x
′ − x′′|

for all points x′ and x′′ of X for which |x′−p| ≤ r and |x′′−p| ≤ r .



9. The Inverse and Implicit Function Theorems (continued)

Let x′ and x′′ be points of X for which |x′ − p| ≤ r and
|x′′ − p| ≤ r . Then

ψ(x′)− ψ(x′′) = x′ − x′′ − T (ϕ(x′)− ϕ(x′′)),

because T is a linear transformation, and therefore

|x′ − x′′| =
∣∣ψ(x′)− ψ(x′′) + T (ϕ(x′)− ϕ(x′′))

∣∣
≤ |ψ(x′)− ψ(x′′)|+

∣∣T (ϕ(x′)− ϕ(x′′))
∣∣

≤ 1
2 |x
′ − x′′|+

∣∣T (ϕ(x′)− ϕ(x′′))
∣∣ .

Subtracting 1
2 |x
′ − x′′| from both sides of this inequality, and

multiplying by 2, we deduce that

|x′ − x′′| ≤ 2
∣∣T (ϕ(x′)− ϕ(x′′))

∣∣ ≤ c |ϕ(x′)− ϕ(x′′)|,

for all points x′ and x′′ of X satisfying |x′−p| ≤ r and |x′′−p| ≤ r .



9. The Inverse and Implicit Function Theorems (continued)

Now let
F = {x ∈ Rn : |x− p| ≤ r}.

Then F is a closed subset of Rn, and F ⊂ X . Moreover
|ψ(x′)− ψ(x′′)| ≤ 1

2 |x
′ − x′′| for all x′ ∈ F and x′′ ∈ F .



9. The Inverse and Implicit Function Theorems (continued)

Let y ∈ Rn satisfy |y − q| < s, where s = r/c , let
z = p + T (y − q), and let

θ(x) = ψ(x) + z− p

for all x ∈ X . Now the choice of c then ensures that

|z− p| ≤ 1
2c |y − q| ≤ 1

2cs = 1
2 r .

If x ∈ X satisfies |x− p| ≤ r , and if

x′ = ψ(x) + z− p,

then

|x′ − z| = |ψ(x)− p| = |ψ(x)− ψ(p)| ≤ 1
2 |x− p| ≤ 1

2 r ,

and therefore

|x′ − p| ≤ |x′ − z|+ |z− p| < r .



9. The Inverse and Implicit Function Theorems (continued)

We conclude therefore that θ maps the closed set F into itself,
where

F = {x ∈ X : |x− p| ≤ r}.

Moreover |θ(x)| < r for all x ∈ F and

|θ(x′)− θ(x′′)| = |ψ(x′)− ψ(x′′)| ≤ 1
2 |x
′ − x′′|

for all x′ ∈ F and x′′ ∈ F . It then follows from Theorem 9.1 that
there exists a point x of F for which θ(x) = x. Then |x− p| < r .
Also

x = θ(x) = ψ(x) + z− p = x− T (ϕ(x)− q) + z− p,

where q = ϕ(p), and thus z− p = T (ϕ(x)− q). But
z− p = T (y − q). It follows that Ty = T (ϕ(x)), and therefore

y = (Dϕ)p(Ty) = (Dϕ)p(T (ϕ(x)) = ϕ(x).



9. The Inverse and Implicit Function Theorems (continued)

We have thus shown that, given any element y of Rn satisfying
|y − q| < s, there exists x ∈ X satisfying |x− p| < r for which
ϕ(x) = y. This completes the proof.



9. The Inverse and Implicit Function Theorems (continued)

Theorem 9.4 (Inverse Function Theorem)

Let ϕ : X → Rn be a continuously differentiable function defined
over an open set X in n-dimensional Euclidean space Rn and
mapping X into Rn, and let p be a point of X . Suppose that the
derivative (Dϕ)p : Rn → Rn of the map ϕ at the point p is an
invertible linear transformation. Then there exists an open set W
in Rn and a continuously differentiable function µ : W → X that
satisfies the following conditions:—

(i) µ(W ) is an open set in Rn contained in X , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈W .



9. The Inverse and Implicit Function Theorems (continued)

Proof
It follows from Proposition 9.3 that there exist positive real
numbers r , s and c such that the following properties hold: if
x ∈ Rn satisfies |x− p| ≤ r then x ∈ X ; if y ∈ Rn satisfies
|y − ϕ(p)| < s then there exists x ∈ X satisfying |x− p| < r for
which ϕ(x) = y; |x′ − x′′| ≤ c |ϕ(x′)− ϕ(x′′)| for all points x′ and
x′′ of X for which |x′ − p| ≤ r and |x′′ − p| ≤ r . It then follows
from Lemma 9.2 that |(Dϕ)uv| ≥ c |v| for all u ∈ X satisfying
|u− p| < r and for all v ∈ Rn.



9. The Inverse and Implicit Function Theorems (continued)

Let
W = {y ∈ Rn : |y − ϕ(p)| < s}.

If y is a point of W , there exists a point x of X such that
|x− p| < r and ϕ(x) = y. There cannot exist more than one point
of X with this property because if x′ is a point of X distinct from
x, and if |x′ − p| < r , then

|ϕ(x′)− y| ≥ c |x′ − x| > 0.

Therefore there is a well-defined function µ : W → Rn

characterized by the property that, for each y ∈W , µ(y) is the
unique point of X for which |µ(y)− p| < r and ϕ(µ(y)) = y.



9. The Inverse and Implicit Function Theorems (continued)

We next show that µ(W ) is an open subset of Rn. Let u ∈ µ(W ).
Then |u− p| < r , and there exists w ∈W for which µ(w) = u.
But then ϕ(u) = w, and thus u ∈ ϕ−1(W ). We conclude that

µ(W ) ⊂ ϕ−1(W ) ∩ {x ∈ X : |x− p| < r}.

Conversely let u be a point of ϕ−1(W ) satisfying |u− p| < r , and
let w = ϕ(u). Then w ∈W and µ(w) = u, and therefore
u ∈ µ(W ). We conclude from this that

µ(W ) = ϕ−1(W ) ∩ {x ∈ X : |x− p| < r}.

It follows that µ(W ) is the intersection of two open subsets of X ,
and must therefore itself be open in X . Now X itself is open in Rn.
It follows that µ(W ) is indeed an open subset of Rn.



9. The Inverse and Implicit Function Theorems (continued)

Let w ∈W , and let u = µ(w). Then |u− p| < r . Let some
positive real number ε be given. The differentiability of the map ϕ
at u ensures the existence of a positive real number δ such that
η + |u− p| ≤ r and

|ϕ(x)− ϕ(u)− (Dϕ)u(x− u)| ≤ ε

c2
|x− u|

for all x ∈ X satisfying |x−u| ≤ cδ. Let y ∈W satisfy |y−w| < δ,
and let x = µ(y). Then ϕ(x) = y and ϕ(u) = w, and therefore

|x− u| ≤ c |ϕ(x)− ϕ(u)| = c|y −w| < cδ.

It follows that

|y −w − (Dϕ)u(x− u)| ≤ ε

c2
|x− u| ≤ ε

c
|y −w|,

and therefore∣∣(Dϕ)−1u (y −w)− (x− u)
∣∣ ≤ c |y −w − (Dϕ)u(x− u)|
≤ ε|y −w|.



9. The Inverse and Implicit Function Theorems (continued)

But x− u = µ(y)− µ(w). We conclude therefore that, given any
positive real number ε, there exists some positive real number δ
such that ∣∣µ(y)− µ(w)− (Dϕ)−1u (y −w)

∣∣ ≤ ε|y −w|

for all points y of W satisfying |y −w| < δ. It follows that the
map µ : W → X is differentiable at w, and moreover

(Dµ)w = (Dϕ)−1u = (Dϕ)−1µ(y).



9. The Inverse and Implicit Function Theorems (continued)

Now the map µ : W → X is continuous, because it is
differentiable. Also the coefficients of the Jacobian matrix
representing the derivative of ϕ at points x of µ(W ) are
continuous functions of x on µ(W ). It follows that the coefficients
of the inverse of the Jacobian matrix of the map ϕ are also
continuous functions of x on µ(W ). Each coefficient of the
Jacobian matrix of the map µ is thus the composition of the
continuous map µ with a continuous real-valued function on
µ(W ), and must therefore itself be a continuous real-valued
function on W . It follows that the map µ : W → X is continuously
differentiable on W . This completes the proof.



9. The Inverse and Implicit Function Theorems (continued)

9.3. The Implicit Function Theorem

Theorem 9.5

Let X be an open set in Rn, let f1, f2, . . . , fm be a continuously
differentiable real-valued functions on X , where m < n, let

M = {x ∈ X : fi (x) = 0 for i = 1, 2, . . . ,m},

and let p be a point of M.



9. The Inverse and Implicit Function Theorems (continued)

Suppose that f1, f2, . . . , fm are zero at p and that the matrix

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


is invertible at the point p. Then there exists an open
neighbourhood U of p and continuously differentiable
functions h1, h2, . . . , hm of n −m real variables, defined around
(pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U :

xi = hi (xm+1, . . . , xn) for i = 1, 2, . . . ,m}.



9. The Inverse and Implicit Function Theorems (continued)

Proof
Let ϕ : X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X . (Thus the ith Cartesian component of the function ϕ
is equal to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be
the Jacobian matrix of ϕ at the point p, and let Ji ,j denote the
coefficient in the ith row and jth column of J. Then

Ji ,j =
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji ,i = 1 if i > m, and
Ji ,j = 0 if i > m and j 6= i .



9. The Inverse and Implicit Function Theorems (continued)

The matrix J can therefore be represented in block form as

J =

(
J0 A

0 In−m

)
,

where J0 is the leading m ×m minor of the matrix J, A is an
m × (n −m) minor of the matrix J and In−m is the identity
(n −m)× (n −m) matrix. It follows from standard properties of
determinants that det J = det J0. Moreover the hypotheses of the
theorem require that det J0 6= 0. Therefore det J 6= 0. The
derivative (Dϕ)p of ϕ at the point p is represented by the
Jacobian matrix J. It follows that (Dϕ)p : Rn → Rn is an invertible
linear transformation.



9. The Inverse and Implicit Function Theorems (continued)

The Inverse Function Theorem (Theorem 9.4) now ensures the
existence of a continuously differentiable map µ : W → X with the
properties that µ(W ) is an open subset of X and ϕ(µ(y)) = y for
all y ∈W .

Let y be a point of W , and let y = (y1, y2, . . . , yn). Then
y = ϕ(µ(y)), and therefore yi = fi (µ(y)) for i = 1, 2, . . . ,m, and yi
is equal to the ith component of µ(y) when m < i ≤ n.

Now p ∈ µ(W ). Therefore there exists some point q of W
satisfying µ(q) = p. Now p ∈ M, and therefore fi (p) = 0 for
i = 1, 2, . . . ,m. But qi = fi (µ(q)) = fi (p) when 1 ≤ i ≤ m. It
follows that qi = 0 when 1 ≤ i ≤ m. Also qi = pi when i > m.



9. The Inverse and Implicit Function Theorems (continued)

Let gi denote the ith Cartesian component of the continuously
differentiable map µ : W → Rn for i = 1, 2, . . . , n. Then
gi : W → R is a continuously differentiable real-valued function on
W for i = 1, 2, . . . , n. If (y1, y2, . . . , yn) ∈W then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).

It then follows from the definition of the map ϕ that yi is the ith
Cartesian component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi (y1, y2, . . . , yn) when i > m.



9. The Inverse and Implicit Function Theorems (continued)

Now µ(W ) is an open set, and p ∈ µ(W ). It follows that there
exists some positive real number δ such that H(p, δ) ⊂ µ(W ).
where

H(p, δ) = {(x1, x2, . . . , xn) ∈ Rn :

pi − δ < xi < pi + δ for i = 1, 2, . . . , n}.

Let

D = {(z1, z2, . . . , zn−m) ∈ Rn−m : pm+j − δ < zj < pm+j + δ

for j = 1, 2, . . . , n −m},

and let hi : D → R be defined so that

hi (z1, z2, . . . , zn−m) = gi (0, 0, . . . , 0, z1, z2, . . . , zn−m)

for i = 1, 2, . . . ,m.



9. The Inverse and Implicit Function Theorems (continued)

Let x ∈ H(p, δ), where x = (x1, x2, . . . , xn). Then x ∈ µ(W ).
There therefore exists w ∈W for which µ(w) = x. But the
properties of the map µ ensure that w = ϕ(µ(w)). It follows that

x = µ(w) = µ(ϕ(µ(w))) = µ(ϕ(x)).

Thus

(x1, x2, . . . , xn) = µ(ϕ(x))

= µ
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

On equating Cartesian components we find that

xi = gi

(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

for i = 1, 2, . . . , n.
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In particular, if x ∈ H(p, δ) ∩M then

f1(x) = f2(x) = · · · = fm(x) = 0,

and therefore

xi = gi

(
0, 0, . . . , 0, xm+1, . . . , xn

)
= hi

(
xm+1, . . . , xn

)
.

for i = 1, 2, . . . ,m. It follows that

M ∩ H(p, δ) ⊂ {(x1, x2, . . . , xn) ∈ H(p, δ) :

xi = hi (xm+1, . . . , xn) for i = 1, 2, . . . ,m}.



9. The Inverse and Implicit Function Theorems (continued)

Now let x be a point of H(x, δ) whose Cartesian components
x1, x2, . . . , xn satisfy the equations

xi = hi (xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Then

xi = gi (0, 0, . . . , 0, xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Now it was shown earlier that

yi = gi (y1, y2, . . . , yn)

for all (y1, y2, . . . , yn) ∈W when i > m. It follows from this that

xi = gi (0, 0, . . . , 0, xm+1, . . . , xn)

when m < i ≤ n. The functions g1, g2, . . . , gn are the Cartesian
components of the map µ : W → X . We conclude therefore that

(x1, x2, . . . , xn) = µ(0, 0, . . . , 0, xm+1, . . . , xn),
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Applying the function ϕ to both sides of this equation we see that

ϕ(x1, x2, . . . , xn) = ϕ(µ(0, 0, . . . , 0, xm+1, . . . , xn))

= (0, 0, . . . , 0, xm+1, . . . , xn).

It then follows from the definition of the map ϕ that

fi (x1, x2, . . . , xn) = 0,

for i = 1, 2, . . . ,m. We have thus shown that if x is a point of
H(x, δ) whose Cartesian components x1, x2, . . . , xn satisfy the
equations

xi = hi (xm+1, . . . , xn)

for i = 1, 2, . . . ,m then x ∈ M. The converse of this result was
proved earlier. The proof of the theorem is therefore completed on
taking U = H(p, δ).
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