MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 26 (December 7, 2017)

David R. Wilkins

11. The Inverse and Implicit Function Theorems (continued)

11.4. The Implicit Function Theorem

Theorem 11.6

Let X be an open set in \mathbb{R}^n , let f_1, f_2, \ldots, f_m be a continuously differentiable real-valued functions on X, where m < n, let

$$M = \{ \mathbf{x} \in X : f_i(\mathbf{x}) = 0 \text{ for } i = 1, 2, ..., m \},\$$

and let \mathbf{p} be a point of M.

Suppose that f_1, f_2, \ldots, f_m are zero at **p** and that the matrix

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_m} \end{pmatrix}$$

is invertible at the point **p**. Then there exists an open neighbourhood U of **p** and continuously differentiable functions h_1, h_2, \ldots, h_m of n - m real variables, defined around (p_{m+1}, \ldots, p_n) in \mathbb{R}^{n-m} , such that

$$M \cap U = \{(x_1, x_2, \dots, x_n) \in U :$$

 $x_i = h_i(x_{m+1}, \dots, x_n) \text{ for } i = 1, 2, \dots, m\}.$

Proof

Let $\varphi\colon X\to \mathbb{R}^n$ be the continuously differentiable function defined such that

$$\varphi(\mathbf{x}) = \left(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}), x_{m+1}, \dots, x_n\right)$$

for all $\mathbf{x} \in X$. (Thus the *i*th Cartesian component of the function φ is equal to f_i for $i \leq m$, but is equal to x_i for $m < i \leq n$.) Let J be the Jacobian matrix of φ at the point \mathbf{p} , and let $J_{i,j}$ denote the coefficient in the *i*th row and *j*th column of J. Then

$$J_{i,j} = \frac{\partial f_i}{\partial x_j}$$

for i = 1, 2, ..., m and j = 1, 2, ..., n. Also $J_{i,i} = 1$ if i > m, and $J_{i,j} = 0$ if i > m and $j \neq i$.

The matrix J can therefore be represented in block form as

$$J = \left(\begin{array}{c|c} J_0 & A \\ \hline 0 & I_{n-m} \end{array} \right),$$

where J_0 is the leading $m \times m$ minor of the matrix J, A is an $m \times (n-m)$ minor of the matrix J and I_{n-m} is the identity $(n-m) \times (n-m)$ matrix. It follows from standard properties of determinants that det $J = \det J_0$. Moreover the hypotheses of the theorem require that $\det J_0 \neq 0$. Therefore $\det J \neq 0$. The derivative $(D\varphi)_{\mathbf{p}}$ of φ at the point \mathbf{p} is represented by the Jacobian matrix J. It follows that $(D\varphi)_{\mathbf{p}} \colon \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation.

The Inverse Function Theorem (Theorem 11.5) now ensures the existence of a local inverse $\mu: W \to X$ for the function φ around **p**. The range $\mu(W)$ of this local inverse is then an open set in X containing the point **p**, and $\varphi(\mu(\mathbf{y})) = \mathbf{y}$ for all $\mathbf{y} \in W$.

Let **y** be a point of W, and let $\mathbf{y} = (y_1, y_2, \dots, y_n)$. Then $\mathbf{y} = \varphi(\mu(\mathbf{y}))$, and therefore $y_i = f_i(\mu(\mathbf{y}))$ for $i = 1, 2, \dots, m$, and y_i is equal to the *i*th component of $\mu(\mathbf{y})$ when $m < i \le n$.

Now $\mathbf{p} \in \mu(W)$. Therefore there exists some point \mathbf{q} of W satisfying $\mu(\mathbf{q}) = \mathbf{p}$. Now $\mathbf{p} \in M$, and therefore $f_i(\mathbf{p}) = 0$ for i = 1, 2, ..., m. But $q_i = f_i(\mu(\mathbf{q})) = f_i(\mathbf{p})$ when $1 \le i \le m$. It follows that $q_i = 0$ when $1 \le i \le m$. Also $q_i = p_i$ when i > m.

Let g_i denote the *i*th Cartesian component of the continuously differentiable map $\mu \colon W \to \mathbb{R}^n$ for i = 1, 2, ..., n. Then $g_i \colon W \to \mathbb{R}$ is a continuously differentiable real-valued function on W for i = 1, 2, ..., n. If $(y_1, y_2, ..., y_n) \in W$ then

$$(y_1, y_2, \ldots, y_n) = \varphi(\mu(y_1, y_2, \ldots, y_n)).$$

It then follows from the definition of the map φ that y_i is the *i*th Cartesian component of $\mu(y_1, y_2, \ldots, y_n)$ when i > m, and thus

$$y_i = g_i(y_1, y_2, \ldots, y_n)$$
 when $i > m$.

11. The Inverse and Implicit Function Theorems (continued)

Now $\mu(W)$ is an open set, and $\mathbf{p} \in \mu(W)$. It follows that there exists some positive real number δ such that $H(\mathbf{p}, \delta) \subset \mu(W)$. where

$$\begin{aligned} \mathcal{H}(\mathbf{p},\delta) &= \{(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n : \\ p_i - \delta < x_i < p_i + \delta \text{ for } i = 1,2,\ldots,n \}. \end{aligned}$$

Let

$$D = \{(z_1, z_2, \dots, z_{n-m}) \in \mathbb{R}^{n-m} : p_{m+j} - \delta < z_j < p_{m+j} + \delta$$
for $j = 1, 2, \dots, n-m\},$

and let $h_i \colon D \to \mathbb{R}$ be defined so that

$$h_i(z_1, z_2, \ldots, z_{n-m}) = g_i(0, 0, \ldots, 0, z_1, z_2, \ldots, z_{n-m})$$

for i = 1, 2, ..., m.

Let $\mathbf{x} \in H(\mathbf{p}, \delta)$, where $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Then $\mathbf{x} \in \mu(W)$. It follows from Lemma 11.1 that

$$\begin{aligned} (x_1, x_2, \dots, x_n) &= \mu(\varphi(\mathbf{x})) \\ &= \mu\Big(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}), x_{m+1}, \dots, x_n\Big). \end{aligned}$$

On equating Cartesian components we find that

$$x_i = g_i\Big(f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}), x_{m+1}, \ldots, x_n\Big).$$

for i = 1, 2, ..., n.

In particular, if $\mathbf{x} \in H(\mathbf{p}, \delta) \cap M$ then

$$f_1(\mathbf{x}) = f_2(\mathbf{x}) = \cdots = f_m(\mathbf{x}) = 0,$$

and therefore

$$\begin{aligned} x_i &= g_i \Big(0, 0, \dots, 0, x_{m+1}, \dots, x_n \Big) \\ &= h_i \Big(x_{m+1}, \dots, x_n \Big). \end{aligned}$$

for $i = 1, 2, \ldots, m$. It follows that

$$\begin{aligned} M \cap H(\mathbf{p},\delta) \quad \subset \quad \{(x_1,x_2,\ldots,x_n) \in H(\mathbf{p},\delta) : \\ x_i &= h_i(x_{m+1},\ldots,x_n) \text{ for } i = 1,2,\ldots,m \}. \end{aligned}$$

11. The Inverse and Implicit Function Theorems (continued)

Now let **x** be a point of $H(\mathbf{x}, \delta)$ whose Cartesian components x_1, x_2, \ldots, x_n satisfy the equations

$$x_i = h_i(x_{m+1},\ldots,x_n)$$

for i = 1, 2, ..., m. Then

$$x_i = g_i(0,0,\ldots,0,x_{m+1},\ldots,x_n)$$

for $i = 1, 2, \ldots, m$. Now it was shown earlier that

$$y_i = g_i(y_1, y_2, \ldots, y_n)$$

for all $(y_1, y_2, \ldots, y_n) \in W$ when i > m. It follows from this that

$$x_i = g_i(0, 0, \ldots, 0, x_{m+1}, \ldots, x_n)$$

when $m < i \le n$. The functions g_1, g_2, \ldots, g_n are the Cartesian components of the map $\mu \colon W \to X$. We conclude therefore that

$$(x_1, x_2, \ldots, x_n) = \mu(0, 0, \ldots, 0, x_{m+1}, \ldots, x_n),$$

Applying the function φ to both sides of this equation we see that

$$\varphi(x_1, x_2, \dots, x_n) = \varphi(\mu(0, 0, \dots, 0, x_{m+1}, \dots, x_n))$$

= (0, 0, \dots, 0, x_{m+1}, \dots, x_n).

It then follows from the definition of the map φ that

$$f_i(x_1,x_2,\ldots,x_n)=0,$$

for i = 1, 2, ..., m. We have thus shown that if **x** is a point of $H(\mathbf{x}, \delta)$ whose Cartesian components $x_1, x_2, ..., x_n$ satisfy the equations

$$x_i = h_i(x_{m+1},\ldots,x_n)$$

for i = 1, 2, ..., m then $\mathbf{x} \in M$. The converse of this result was proved earlier. The proof of the theorem is therefore completed on taking $U = H(\mathbf{p}, \delta)$.