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11. The Inverse and Implicit Function Theorems (continued)

11.4. The Implicit Function Theorem

Theorem 11.6

Let X be an open set in Rn, let f1, f2, . . . , fm be a continuously
differentiable real-valued functions on X , where m < n, let

M = {x ∈ X : fi (x) = 0 for i = 1, 2, . . . ,m},

and let p be a point of M.



11. The Inverse and Implicit Function Theorems (continued)

Suppose that f1, f2, . . . , fm are zero at p and that the matrix
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is invertible at the point p. Then there exists an open
neighbourhood U of p and continuously differentiable
functions h1, h2, . . . , hm of n −m real variables, defined around
(pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U :

xi = hi (xm+1, . . . , xn) for i = 1, 2, . . . ,m}.



11. The Inverse and Implicit Function Theorems (continued)

Proof
Let ϕ : X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X . (Thus the ith Cartesian component of the function ϕ
is equal to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be
the Jacobian matrix of ϕ at the point p, and let Ji ,j denote the
coefficient in the ith row and jth column of J. Then

Ji ,j =
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji ,i = 1 if i > m, and
Ji ,j = 0 if i > m and j 6= i .



11. The Inverse and Implicit Function Theorems (continued)

The matrix J can therefore be represented in block form as

J =

(
J0 A

0 In−m

)
,

where J0 is the leading m ×m minor of the matrix J, A is an
m × (n −m) minor of the matrix J and In−m is the identity
(n −m)× (n −m) matrix. It follows from standard properties of
determinants that det J = det J0. Moreover the hypotheses of the
theorem require that det J0 6= 0. Therefore det J 6= 0. The
derivative (Dϕ)p of ϕ at the point p is represented by the
Jacobian matrix J. It follows that (Dϕ)p : Rn → Rn is an invertible
linear transformation.



11. The Inverse and Implicit Function Theorems (continued)

The Inverse Function Theorem (Theorem 11.5) now ensures the
existence of a local inverse µ : W → X for the function ϕ around
p. The range µ(W ) of this local inverse is then an open set in X
containing the point p, and ϕ(µ(y)) = y for all y ∈W .

Let y be a point of W , and let y = (y1, y2, . . . , yn). Then
y = ϕ(µ(y)), and therefore yi = fi (µ(y)) for i = 1, 2, . . . ,m, and yi
is equal to the ith component of µ(y) when m < i ≤ n.

Now p ∈ µ(W ). Therefore there exists some point q of W
satisfying µ(q) = p. Now p ∈ M, and therefore fi (p) = 0 for
i = 1, 2, . . . ,m. But qi = fi (µ(q)) = fi (p) when 1 ≤ i ≤ m. It
follows that qi = 0 when 1 ≤ i ≤ m. Also qi = pi when i > m.



11. The Inverse and Implicit Function Theorems (continued)

Let gi denote the ith Cartesian component of the continuously
differentiable map µ : W → Rn for i = 1, 2, . . . , n. Then
gi : W → R is a continuously differentiable real-valued function on
W for i = 1, 2, . . . , n. If (y1, y2, . . . , yn) ∈W then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).

It then follows from the definition of the map ϕ that yi is the ith
Cartesian component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi (y1, y2, . . . , yn) when i > m.



11. The Inverse and Implicit Function Theorems (continued)

Now µ(W ) is an open set, and p ∈ µ(W ). It follows that there
exists some positive real number δ such that H(p, δ) ⊂ µ(W ).
where

H(p, δ) = {(x1, x2, . . . , xn) ∈ Rn :

pi − δ < xi < pi + δ for i = 1, 2, . . . , n}.

Let

D = {(z1, z2, . . . , zn−m) ∈ Rn−m : pm+j − δ < zj < pm+j + δ

for j = 1, 2, . . . , n −m},

and let hi : D → R be defined so that

hi (z1, z2, . . . , zn−m) = gi (0, 0, . . . , 0, z1, z2, . . . , zn−m)

for i = 1, 2, . . . ,m.



11. The Inverse and Implicit Function Theorems (continued)

Let x ∈ H(p, δ), where x = (x1, x2, . . . , xn). Then x ∈ µ(W ). It
follows from Lemma 11.1 that

(x1, x2, . . . , xn) = µ(ϕ(x))

= µ
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

On equating Cartesian components we find that

xi = gi

(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

for i = 1, 2, . . . , n.



11. The Inverse and Implicit Function Theorems (continued)

In particular, if x ∈ H(p, δ) ∩M then

f1(x) = f2(x) = · · · = fm(x) = 0,

and therefore

xi = gi

(
0, 0, . . . , 0, xm+1, . . . , xn

)
= hi

(
xm+1, . . . , xn

)
.

for i = 1, 2, . . . ,m. It follows that

M ∩ H(p, δ) ⊂ {(x1, x2, . . . , xn) ∈ H(p, δ) :

xi = hi (xm+1, . . . , xn) for i = 1, 2, . . . ,m}.



11. The Inverse and Implicit Function Theorems (continued)

Now let x be a point of H(x, δ) whose Cartesian components
x1, x2, . . . , xn satisfy the equations

xi = hi (xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Then

xi = gi (0, 0, . . . , 0, xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Now it was shown earlier that

yi = gi (y1, y2, . . . , yn)

for all (y1, y2, . . . , yn) ∈W when i > m. It follows from this that

xi = gi (0, 0, . . . , 0, xm+1, . . . , xn)

when m < i ≤ n. The functions g1, g2, . . . , gn are the Cartesian
components of the map µ : W → X . We conclude therefore that

(x1, x2, . . . , xn) = µ(0, 0, . . . , 0, xm+1, . . . , xn),



11. The Inverse and Implicit Function Theorems (continued)

Applying the function ϕ to both sides of this equation we see that

ϕ(x1, x2, . . . , xn) = ϕ(µ(0, 0, . . . , 0, xm+1, . . . , xn))

= (0, 0, . . . , 0, xm+1, . . . , xn).

It then follows from the definition of the map ϕ that

fi (x1, x2, . . . , xn) = 0,

for i = 1, 2, . . . ,m. We have thus shown that if x is a point of
H(x, δ) whose Cartesian components x1, x2, . . . , xn satisfy the
equations

xi = hi (xm+1, . . . , xn)

for i = 1, 2, . . . ,m then x ∈ M. The converse of this result was
proved earlier. The proof of the theorem is therefore completed on
taking U = H(p, δ).
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