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11. The Inverse and Implicit Function Theorems (continued)

11.3. The Inverse Function Theorem

The Inverse Function Theorem ensures that, for a continuously
differentiable function of several real variables, mapping an open
set in one Euclidean space into a Euclidean space of the same
dimension, the invertibility of the derivative of the function at a
given point is sufficient to ensure the local invertibility of that
function around the given point, and moreover ensures that the
inverse function is also locally a continuously differentiable
function.
The proof uses the method of successive approximations, using a
convergence criterion for infinite sequences of points in Euclidean
space that we established in Proposition 11.4.



11. The Inverse and Implicit Function Theorems (continued)

Theorem 11.5 (Inverse Function Theorem)

Let ϕ : X → Rn be a continuously differentiable function defined
over an open set X in n-dimensional Euclidean space Rn and
mapping X into Rn, and let p be a point of X . Suppose that the
derivative (Dϕ)p : Rn → Rn of the map ϕ at the point p is an
invertible linear transformation. Then there exists an open set W
in Rn and a continuously differentiable function µ : W → X that
satisfies the following conditions:—

(i) µ(W ) is an open set in Rn contained in X , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈W.
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Proof
We may assume, without loss of generality, that p = 0 and
ϕ(p) = 0. Indeed the result in the general case can then be
deduced by applying the result in this special case to the function
that sends z to ϕ(p+ z)−ϕ(p) for all z ∈ Rn for which p+ z ∈ X .
Now (Dϕ)0 : Rn → Rn is an invertible linear transformation, by
assumption. Let T = (Dϕ)−10 , and let ψ : X → Rn be defined such
that

ψ(x) = x− T (ϕ(x))

for all x ∈ X .
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Now the derivative of any linear transformation at any point is
equal to that linear transformation (see Lemma 9.2). It follows
from the Chain Rule (Proposition 9.8) that the derivative of the
composition function T ◦ ϕ at any point x of X is equal to
T (Dϕ)x. It follows that (Dψ)x = I − T (Dϕ)x for all x ∈ X , where
I denotes the identity operator on Rn. In particular
(Dψ)0 = I − T (Dϕ)0 = 0. It then follows from Proposition 9.10
that there exists a positive real number δ such that

|ψ(u)− ψ(v)| ≤ 1
2 |u− v|

whenever |u| < δ and |v| < δ.

Now ψ(0) = 0. It follows from the inequality just proved that
|ψ(x)| ≤ 1

2 |x| whenever |x| < δ.
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Let W be the open set in Rn defined so that

W = {y ∈ Rn : |T (y)| < 1
2δ},

and let µ0, µ1, µ2, . . . be the infinite sequence of functions from W
to Rn defined so that µ0(y) = 0 for all y ∈W and

µj(y) = µj−1(y) + T (y − ϕ(µj−1(y)))

for all positive integers j . Now ϕ(0) = 0. It follows that if
µj−1(0) = 0 for some positive integer j then µj(0) = 0. It then
follows by induction on j that µj(0) = 0 for all non-negative
integers j .

We shall prove that there is a well-defined function µ : W → Rn

defined such that µ(y) = lim
j→+∞

µj(y) and that this function µ is a

local inverse for ϕ defined on the open set W that satisfies the
required properties.
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Let y ∈W and let xj = µj(y) for all non-negative integers j . Then
x0 = 0 and

xj = xj−1 + T (y − ϕ(xj−1))

= ψ(xj−1) + Ty

for all positive integers j . Now we have already shown that
|ψ(x)| ≤ 1

2 |x| whenever |x| < δ. Also the definition of the open
set W ensures that |Ty| < 1

2δ. It follows that if |xj−1| < δ then

|xj | ≤ |ψ(xj−1)|+ |Ty| ≤ 1
2 |xj−1|+ |Ty| < 1

2δ + |Ty| < δ.

It follows by induction on j that |xj | < 1
2δ + |Ty| for all

non-negative integers j . Also

xj+1 − xj = xj − xj−1 − T (ϕ(xj)− ϕ(xj−1))

= ψ(xj)− ψ(xj−1)

for all positive integers j .
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But |xj | < δ and |xj−1| < δ and therefore

|xj+1 − xj | = |ψ(xj)− ψ(xj−1)| ≤ 1
2 |xj − xj−1|

for all positive integers j . It then follows from Lemma 11.4 that
the infinite sequence x0, x1, x2, x3, . . . is convergent. Now
xj = µj(y) for all non-negative integers j , where y is an arbitrary
element of the open set W . The convergence result just obtained
therefore guarantees that there is a well-defined function
µ : W → Rn which satisfies

µ(y) = lim
j→+∞

µj(y)

for all y ∈W . Moreover |µj(y)| < 1
2δ + |Ty| for all positive

integers j and for all y ∈W , and therefore

|µ(y)| ≤ 1
2δ + |Ty| < δ

for all y ∈W .
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Next we prove that ϕ(µ(y)) = y for all y ∈W . Now

µ(y) = lim
j→+∞

µj(y) = lim
j→+∞

(µj−1(y) + T (y − ϕ(µj−1(y))))

= µ(y) + T (y − ϕ(µ(y)))

It follows that T (y − ϕ(µ(y))) = 0. But T = (Dϕ)−10 . It follows
that

y − ϕ(µ(y)) = (Dϕ)0(T (y − ϕ(µ(y)))) = (Dϕ)0(0) = 0.

Thus y = ϕ(µ(y)) for all y ∈W . Also µj(0) = 0 for all
non-negative integers j , and therefore µ(0) = 0.
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Next we show that if x ∈ Rn satisfies |x| < δ and if ϕ(x) ∈W then
x = µ(ϕ(x)). Now x = ψ(x) + Tϕ(x) for all x ∈ X . Also

|Tϕ(x)| ≤ ‖T‖op |ϕ(x)|

for all x ∈ X , where ‖T‖op denotes the operator norm of T (see
Lemma 8.1). It follows that

|x− z| = |ψ(x)− ψ(z) + T (ϕ(x)− ϕ(z))|
≤ |ψ(x)− ψ(z)|+ |T (ϕ(x)− ϕ(z))|
≤ 1

2 |x− z|+ ‖T‖op |ϕ(x)− ϕ(z)|

for all x, z ∈ Rn satisfying |x| < δ and |z| < δ. Subtracting 1
2 |x− z|

from both sides of the above inequality, and then multiplying by
two, we find that

|x− z| ≤ 2‖T‖op |ϕ(x)− ϕ(z)|.

whenever |x| < δ and |z| < δ.
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Substituting z = µ(y), we find that

|x− µ(y)| ≤ 2‖T‖op |ϕ(x)− y|

for all x ∈ X satisfying |x| < δ and for all y ∈W . It follows that if
x ∈ X satisfies |x| < δ and if ϕ(x) = y for some y ∈W then
x = µ(y). The inequality also ensures that

|µ(y)− µ(w)| ≤ 2‖T‖op |y −w|

for all y,w ∈W . Thus the function µ : W → X is Lipschitz
continuous. It then follows from Lemma 11.3 that the function µ
is continuously differentiable.
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Next we prove that µ(W ) is an open subset of X . Now
µ(W ) ⊂ ϕ−1(W ) because y = ϕ(µ(y)) for all y ∈W . We have
also proved that |µ(y)| < δ for all y ∈W . It follows that

µ(W ) ⊂ ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

But we have also shown that if x ∈ X satisfies |x| < δ, and if
ϕ(x) ∈W then x = µ(ϕ(x)), and therefore x ∈ µ(W ). It follows
that

µ(W ) = ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

Now ϕ−1(W ) is an open subset in X , because ϕ : X → Rn is
continuous and W is an open set in Rn (see Proposition 4.18). It
follows that µ(W ) is an intersection of two open sets, and is thus
itself an open set. Moreover 0 ∈ µ(W ), because µ(0) = 0. We can
now conclude that µ : W → X is a local inverse for ϕ : X → Rn.
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We have shown that the function µ : W → X is Lipschitz
continuous. It therefore follows from Lemma 11.3 that the
function µ : W → X is continuously differentiable. This completes
the proof of the Inverse Function Theorem for continuously
differentiable functions whose derivative at a given point is an
invertible linear transformation.
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