MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 24 (November 30, 2017)

David R. Wilkins

11. The Inverse and Implicit Function Theorems

11.1. Local Invertibility of Differentiable Functions

Definition

Let $\varphi: X \to \mathbb{R}^n$ be a continuous function defined over an open set X in \mathbb{R}^n and mapping that open set into \mathbb{R}^n , and let **p** be a point of X. A *local inverse* of the map $\varphi: X \to \mathbb{R}^n$ around the point **p** is a continuous function $\mu: W \to X$ defined over an open set W in \mathbb{R}^n that satisfies the following conditions:

(i) μ(W) is an open set in ℝⁿ contained in X, and p ∈ μ(W);
(ii) φ(μ(y)) = y for all y ∈ W.

If there exists a function $\mu: W \to X$ satisfying these conditions, then the function φ is said to be *locally invertible* around the point **p**.

Lemma 11.1

Let $\varphi: X \to \mathbb{R}^n$ be a continuous function defined over an open set X in \mathbb{R}^n and mapping that open set into \mathbb{R}^n , let **p** be a point of X. and let $\mu: W \to X$ be a local inverse for the map ϕ around the point **p**. Then $\varphi(\mathbf{x}) \in W$ and $\mu(\varphi(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mu(W)$.

Proof

The definition of local inverses ensures that $\mu(W)$ is an open subset of X, $\mathbf{p} \in \mu(W)$ and $\varphi(\mu(\mathbf{y})) = \mathbf{y}$ for all $\mathbf{y} \in W$. Let $\mathbf{x} \in \mu(W)$. Then $\mathbf{x} = \mu(\mathbf{y})$ for some $\mathbf{y} \in W$. But then $\varphi(\mathbf{x}) = \varphi(\mu(\mathbf{y})) = \mathbf{y}$, and therefore $\varphi(\mathbf{x}) \in W$. Moreover $\mu(\varphi(\mathbf{x})) = \mu(\mathbf{y}) = \mathbf{x}$, as required. Let $\varphi \colon X \to \mathbb{R}^n$ be a continuous function defined over an open set X in \mathbb{R}^n and mapping that open set into \mathbb{R}^n , let **p** be a point of X. and let $\mu: W \to X$ be a local inverse for the map ϕ around the point **p**. Then the function from the open set $\mu(W)$ to the open set W that sends each point **x** of $\mu(W)$ to $\varphi(x)$ is invertible, and its inverse is the continuous function from W to $\varphi(W)$ that sends each point **y** of W to μ (**y**). A function between sets is *bijective* if it has a well-defined inverse. A continuous bijective function whose inverse is also continuous is said to be a *homeomorphism*. We see therefore that the restriction of the map φ to the image $\mu(W)$ of the local inverse $\mu: W \to X$ determines a homeomorphism from the open set $\mu(W)$ to the open set W.

Example

The function $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{(0,0)\}$ defined such that

$$\varphi(u,v) = (e^u \cos v, e^u \sin v)$$

for all $u, v \in \mathbb{R}^2$ is locally invertible, though it is not bijective. Indeed, given $(u_0, v_0) \in \mathbb{R}$, let

$$egin{array}{rl} \mathcal{W}&=&\{(r\,\cos(
u_0+ heta),r\,\sin(
u_0+ heta)):\ &r, heta\in\mathbb{R},\ r>0\ ext{and}\ -\pi< heta<\pi\}, \end{array}$$

and let

$$\mu(r\,\cos(v_0+\theta),r\,\sin(v_0+\theta)) = (\log r,v_0+\theta)$$

whenever r > 0 and $-\pi < \theta < 1$. Then W is an open set in \mathbb{R}^2 , the function $\mu \colon W \to \mathbb{R}^2$ is continuous,

$$\mu(W) = \{(u, v) \in \mathbb{R}^2 : v_0 - \pi < v < v_0 + \pi\},$$

and $\mu(\varphi(u, v)) = (u, v)$ for all $(u, v) \in \mu(W)$.

A continuously differentiable function may have a continuous inverse, but that inverse is not guaranteed to be differentiable, as the following example demonstrates.

Example

Let $f : \mathbb{R} \to \mathbb{R}$ be defined so that $f(x) = x^3$ for all real numbers x. The function f is continuously differentiable and has a continuous inverse $f^{-1} : \mathbb{R} \to \mathbb{R}$, where $f^{-1}(x) = \sqrt[3]{x}$ when $x \ge 0$ and $f^{-1}(x) = -\sqrt[3]{-x}$ when x < 0. This inverse function is not differentiable at zero.

Lemma 11.2

Let $\varphi \colon X \to \mathbb{R}^n$ be a continuously differentiable function defined over an open set X in \mathbb{R}^n . Suppose that φ is locally invertible around some point **p** of X. Suppose also that a local inverse to φ around **p** is differentiable at the point $\varphi(\mathbf{p})$. Then the derivative $(D\varphi)_{\mathbf{p}} \colon \mathbb{R}^n \to \mathbb{R}^n$ of φ at the point **p** is an invertible linear operator on \mathbb{R}^n . Thus if

$$\varphi(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n),$$

for all $(x_1, x_2, ..., x_n) \in X$, where $y_1, y_2, ..., y_n$ are differentiable functions of $x_1, x_2, ..., x_n$, and if φ has a differentiable local inverse around the point **p**, then the Jacobian matrix

11. The Inverse and Implicit Function Theorems (continued)

$$\begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix}$$

is invertible at the point **p**.

Proof

Let $\mu: W \to X$ be a local inverse of φ around \mathbf{p} , where W is an open set in \mathbb{R}^n , $\mathbf{p} \in \mu(W)$, $\mu(W) \subset X$ and $\mu(\varphi(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mu(W)$. Suppose that $\mu: W \to X$ is differentiable at $\varphi(\mathbf{p})$. The identity $\mu(\varphi(\mathbf{x})) = \mathbf{x}$ holds throughout the open neighbourhood $\mu(W)$ of point \mathbf{p} . Applying the Chain Rule (Proposition 9.8), we find that $(D\mu)_{\varphi(\mathbf{p})}(D\varphi)_{\mathbf{p}}$ is the identity operator on \mathbb{R}^n . It follows that the linear operators $(D\mu)_{\varphi(\mathbf{p})}$ and $(D\varphi)_{\mathbf{p}}$ on \mathbb{R}^n are inverses of one another, and therefore $(D\varphi)_{\mathbf{p}}$ is an invertible linear operator on \mathbb{R}^n . The result follows.

Definition

A function $\mu: W \to X$ between subsets W and X of Euclidean spaces is said to be *Lipschitz continuous* if there exists a positive constant C such that

$$|\mu(\mathbf{u}) - \mu(\mathbf{v})| \leq C|\mathbf{u} - \mathbf{v}|$$

for all $\mathbf{u}, \mathbf{v} \in W$.

It follows from Corollary 9.11 that a continuously differentiable function is Lipschitz continuous throughout some sufficiently small open neighbourhood of any given point in its domain.

Lemma 11.3

Let $\varphi: X \to \mathbb{R}^n$ be a continuously differentiable function defined over an open set X in \mathbb{R}^n that is locally invertible around some point of X and let $\mu: W \to X$ be a local inverse for φ . Suppose that $\varphi: X \to \mathbb{R}^n$ is continuously differentiable and that the local inverse $\mu: W \to X$ is Lipschitz continuous throughout W. Then $\mu: W \to X$ is continuously differentiable throughout W.

Proof

The function $\mu: W \to X$ is Lipschitz continuous, and therefore there exists a positive constant *C* such that

$$|\mu(\mathbf{y}) - \mu(\mathbf{w})| \le C |\mathbf{y} - \mathbf{w}|$$

for all $\mathbf{y}, \mathbf{w} \in W$. Let $\mathbf{q} \in W$, let $\mathbf{p} = \mu(\mathbf{q})$, and let S be the derivative of φ at \mathbf{p} . Then

$$S\mathbf{v} = \lim_{t \to 0} \frac{1}{t} (\varphi(\mathbf{p} + t\mathbf{v}) - \varphi(\mathbf{p}))$$

for all $\mathbf{v} \in \mathbb{R}^n$ (see Lemma 9.5). If |t| is sufficiently small then $\mathbf{p} + t\mathbf{v} \in \mu(W)$.

It then follows from Lemma 11.1 that

$$t\mathbf{v} = \mu(\varphi(\mathbf{p} + t\mathbf{v})) - \mu(\varphi(\mathbf{p})),$$

and therefore

$$|t||\mathbf{v}| \leq C |arphi(\mathbf{p} + t\mathbf{v}) - arphi(\mathbf{p})|.$$

It follows that

$$|S\mathbf{v}| = \lim_{t o 0} rac{1}{|t|} |arphi(\mathbf{p} + t\mathbf{v}) - arphi(\mathbf{p})| \geq rac{1}{C} |\mathbf{v}|$$

for all $\mathbf{v} \in \mathbb{R}^n$, and therefore $S\mathbf{v} \neq \mathbf{0}$ for all non-zero vectors \mathbf{v} . It then follows from basic linear algebra that the linear operator S on \mathbb{R}^n is invertible. Moreover $|S^{-1}\mathbf{v}| \leq C|\mathbf{v}|$ for all $\mathbf{v} \in \mathbb{R}^n$.

Now

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}|\varphi(\mathbf{x})-\varphi(\mathbf{p})-S(\mathbf{x}-\mathbf{p})|=0,$$

because the function φ is differentiable at **p**. Also $\mu(\mathbf{y}) \neq \mathbf{p}$ when $\mathbf{y} \neq \mathbf{q}$, because $\mathbf{q} = \varphi(\mathbf{p})$ and $\mathbf{y} = \varphi(\mu(\mathbf{y}))$. The continuity of μ ensures that $\mu(\mathbf{y})$ tends to **p** as **y** tends to **q**. It follows that

$$\lim_{\mathbf{y} \to \mathbf{q}} \frac{1}{|\mu(\mathbf{y}) - \mathbf{p}|} |\mathbf{y} - \mathbf{q} - S(\mu(\mathbf{y}) - \mathbf{p})| = 0$$

(see Proposition 4.16). Now

$$|S^{-1}(\mathbf{y}-\mathbf{q})-(\mu(\mathbf{y})-\mathbf{p})|\leq C|\mathbf{y}-\mathbf{q}-S(\mu(\mathbf{y})-\mathbf{p})|$$

for all $\mathbf{y} \in W$. Also

$$\frac{1}{|\mathbf{y} - \mathbf{q}|} \le \frac{C}{|\mathbf{p} - \mu(\mathbf{y})|}$$

for all $\mathbf{y} \in W$ satisfying $\mathbf{y} \neq \mathbf{q}$.

It follows that

$$rac{1}{|\mathbf{y}-\mathbf{q}|}|\mu(\mathbf{y})-\mathbf{p}-\mathcal{S}^{-1}(\mathbf{y}-\mathbf{q})|\leq rac{\mathcal{C}^2}{|\mu(\mathbf{y})-\mathbf{p}|}\,|\mathbf{y}-\mathbf{q}-\mathcal{S}(\mu(\mathbf{y})-\mathbf{p})|.$$

It follows that

$$\lim_{\mathbf{y}\to\mathbf{q}}\frac{1}{|\mathbf{y}-\mathbf{q}|}|\mu(\mathbf{y})-\mathbf{p}-S^{-1}(\mathbf{y}-\mathbf{q})|=0$$

(see Proposition 4.9), and therefore the function μ is differentiable at **q** with derivative S^{-1} . Thus $(D\mu)_{\mathbf{q}} = (D\varphi)_{\mathbf{p}}^{-1}$ for all $\mathbf{q} \in W$. It follows from this that $(D\mu)_{\mathbf{q}}$ depends continuously on **q**, and thus the function μ is continuously differentiable on W, as required.

11.2. Convergence of Contractive Sequences

Proposition 11.4

Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be an infinite sequence of points in n-dimensional Euclidean space \mathbb{R}^n , and let λ be a real number satisfying $0 < \lambda < 1$. Suppose that

$$|\mathbf{x}_{j+1} - \mathbf{x}_j| \le \lambda |\mathbf{x}_j - \mathbf{x}_{j-1}|$$

for all integers j satisfying j > 1. Then the infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ is convergent.

Proof

We show that an infinite sequence of points in Euclidean space satisfying the stated criterion is a Cauchy sequence and is therefore convergent. Now the infinite sequence satisfies

$$|\mathbf{x}_{j+1} - \mathbf{x}_j| \leq C \lambda^j$$

for all positive integers j, where $C = |\mathbf{x}_2 - \mathbf{x}_1|/\lambda$. Let j and k be positive integers satisfying j < k. Then

$$\begin{aligned} |\mathbf{x}_k - \mathbf{x}_j| &= \left| \sum_{s=j}^{k-1} (\mathbf{x}_{s+1} - \mathbf{x}_s) \right| \leq \sum_{s=j}^{k-1} |\mathbf{x}_{s+1} - \mathbf{x}_s| \\ &\leq C \sum_{s=j}^{k-1} \lambda^s = C \lambda^j \frac{1 - \lambda^{k-j}}{1 - \lambda} < \frac{C \lambda^j}{1 - \lambda}. \end{aligned}$$

We now show that the infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ is a Cauchy sequence. Let some positive real number ε be given. Then a positive integer N can be chosen large enough to ensure that $C\lambda^N < (1-\lambda)\varepsilon$. Then $|\mathbf{x}_k - \mathbf{x}_j| < \varepsilon$ whenever $j \ge N$ and $k \ge N$. Therefore the given infinite sequence is a Cauchy sequence. Now all Cauchy sequences in \mathbb{R}^n are convergent (see Theorem 2.8). Therefore the given infinite sequence is convergent, as required.