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11. The Inverse and Implicit Function Theorems

11. The Inverse and Implicit Function Theorems

11.1. Local Invertibility of Differentiable Functions

Definition

Let ϕ : X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, and let p be a
point of X . A local inverse of the map ϕ : X → Rn around the
point p is a continuous function µ : W → X defined over an open
set W in Rn that satisfies the following conditions:

(i) µ(W ) is an open set in Rn contained in X , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈W .

If there exists a function µ : W → X satisfying these conditions,
then the function ϕ is said to be locally invertible around the point
p.
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Lemma 11.1

Let ϕ : X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, let p be a point
of X . and let µ : W → X be a local inverse for the map φ around
the point p. Then ϕ(x) ∈W and µ(ϕ(x)) = x for all x ∈ µ(W ).

Proof
The definition of local inverses ensures that µ(W ) is an open
subset of X , p ∈ µ(W ) and ϕ(µ(y)) = y for all y ∈W . Let
x ∈ µ(W ). Then x = µ(y) for some y ∈W . But then
ϕ(x) = ϕ(µ(y)) = y, and therefore ϕ(x) ∈W . Moreover
µ(ϕ(x)) = µ(y) = x, as required.
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Let ϕ : X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, let p be a point of
X . and let µ : W → X be a local inverse for the map φ around the
point p. Then the function from the open set µ(W ) to the open
set W that sends each point x of µ(W ) to ϕ(x) is invertible, and
its inverse is the continuous function from W to ϕ(W ) that sends
each point y of W to µ(y). A function between sets is bijective if
it has a well-defined inverse. A continuous bijective function whose
inverse is also continuous is said to be a homeomorphism. We see
therefore that the restriction of the map ϕ to the image µ(W ) of
the local inverse µ : W → X determines a homeomorphism from
the open set µ(W ) to the open set W .
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Example
The function ϕ : R2 → R2 \ {(0, 0)} defined such that

ϕ(u, v) = (eu cos v , eu sin v)

for all u, v ∈ R2 is locally invertible, though it is not bijective.
Indeed, given (u0, v0) ∈ R, let

W = {(r cos(v0 + θ), r sin(v0 + θ)) :

r , θ ∈ R, r > 0 and − π < θ < π},

and let

µ(r cos(v0 + θ), r sin(v0 + θ)) = (log r , v0 + θ)

whenever r > 0 and −π < θ < 1. Then W is an open set in R2,
the function µ : W → R2 is continuous,

µ(W ) = {(u, v) ∈ R2 : v0 − π < v < v0 + π},

and µ(ϕ(u, v)) = (u, v) for all (u, v) ∈ µ(W ).
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A continuously differentiable function may have a continuous
inverse, but that inverse is not guaranteed to be differentiable, as
the following example demonstrates.

Example
Let f : R→ R be defined so that f (x) = x3 for all real numbers x .
The function f is continuously differentiable and has a continuous
inverse f −1 : R→ R, where f −1(x) = 3

√
x when x ≥ 0 and

f −1(x) = − 3
√
−x when x < 0. This inverse function is not

differentiable at zero.
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Lemma 11.2

Let ϕ : X → Rn be a continuously differentiable function defined
over an open set X in Rn. Suppose that ϕ is locally invertible
around some point p of X . Suppose also that a local inverse to ϕ
around p is differentiable at the point ϕ(p). Then the derivative
(Dϕ)p : Rn → Rn of ϕ at the point p is an invertible linear
operator on Rn. Thus if

ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn),

for all (x1, x2, . . . , xn) ∈ X, where y1, y2, . . . , yn are differentiable
functions of x1, x2, . . . , xn, and if ϕ has a differentiable local
inverse around the point p, then the Jacobian matrix
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is invertible at the point p.
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Proof
Let µ : W → X be a local inverse of ϕ around p, where W is an
open set in Rn, p ∈ µ(W ), µ(W ) ⊂ X and µ(ϕ(x)) = x for all
x ∈ µ(W ). Suppose that µ : W → X is differentiable at ϕ(p). The
identity µ(ϕ(x)) = x holds throughout the open neighbourhood
µ(W ) of point p. Applying the Chain Rule (Proposition 9.8), we
find that (Dµ)ϕ(p)(Dϕ)p is the identity operator on Rn. It follows
that the linear operators (Dµ)ϕ(p) and (Dϕ)p on Rn are inverses of
one another, and therefore (Dϕ)p is an invertible linear operator
on Rn. The result follows.
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Definition

A function µ : W → X between subsets W and X of Euclidean
spaces is said to be Lipschitz continuous if there exists a positive
constant C such that

|µ(u)− µ(v)| ≤ C |u− v|

for all u, v ∈W .

It follows from Corollary 9.11 that a continuously differentiable
function is Lipschitz continuous throughout some sufficiently small
open neighbourhood of any given point in its domain.
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Lemma 11.3

Let ϕ : X → Rn be a continuously differentiable function defined
over an open set X in Rn that is locally invertible around some
point of X and let µ : W → X be a local inverse for ϕ. Suppose
that ϕ : X → Rn is continuously differentiable and that the local
inverse µ : W → X is Lipschitz continuous throughout W . Then
µ : W → X is continuously differentiable throughout W .
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Proof
The function µ : W → X is Lipschitz continuous, and therefore
there exists a positive constant C such that

|µ(y)− µ(w)| ≤ C |y −w|

for all y,w ∈W . Let q ∈W , let p = µ(q), and let S be the
derivative of ϕ at p. Then

Sv = lim
t→0

1

t
(ϕ(p + tv)− ϕ(p))

for all v ∈ Rn (see Lemma 9.5). If |t| is sufficiently small then
p + tv ∈ µ(W ).
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It then follows from Lemma 11.1 that

tv = µ(ϕ(p + tv))− µ(ϕ(p)),

and therefore
|t||v| ≤ C |ϕ(p + tv)− ϕ(p)|.

It follows that

|Sv| = lim
t→0

1

|t|
|ϕ(p + tv)− ϕ(p)| ≥ 1

C
|v|

for all v ∈ Rn, and therefore Sv 6= 0 for all non-zero vectors v. It
then follows from basic linear algebra that the linear operator S on
Rn is invertible. Moreover |S−1v| ≤ C |v| for all v ∈ Rn.
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Now

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− S(x− p)| = 0,

because the function ϕ is differentiable at p. Also µ(y) 6= p when
y 6= q, because q = ϕ(p) and y = ϕ(µ(y)). The continuity of µ
ensures that µ(y) tends to p as y tends to q. It follows that

lim
y→q

1

|µ(y)− p|
|y − q− S(µ(y)− p)| = 0

(see Proposition 4.16). Now

|S−1(y − q)− (µ(y)− p)| ≤ C |y − q− S(µ(y)− p)|

for all y ∈W . Also

1

|y − q|
≤ C

|p− µ(y)|

for all y ∈W satisfying y 6= q.
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It follows that

1

|y − q|
|µ(y)− p− S−1(y− q)| ≤ C 2

|µ(y)− p|
|y− q− S(µ(y)− p)|.

It follows that

lim
y→q

1

|y − q|
|µ(y)− p− S−1(y − q)| = 0

(see Proposition 4.9), and therefore the function µ is differentiable
at q with derivative S−1. Thus (Dµ)q = (Dϕ)−1p for all q ∈W . It
follows from this that (Dµ)q depends continuously on q, and thus
the function µ is continuously differentiable on W , as required.
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11.2. Convergence of Contractive Sequences

Proposition 11.4

Let x1, x2, x3, . . . be an infinite sequence of points in n-dimensional
Euclidean space Rn, and let λ be a real number satisfying
0 < λ < 1. Suppose that

|xj+1 − xj | ≤ λ|xj − xj−1|

for all integers j satisfying j > 1. Then the infinite sequence
x1, x2, x3, . . . is convergent.
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Proof
We show that an infinite sequence of points in Euclidean space
satisfying the stated criterion is a Cauchy sequence and is therefore
convergent. Now the infinite sequence satisfies

|xj+1 − xj | ≤ Cλj

for all positive integers j , where C = |x2 − x1|/λ. Let j and k be
positive integers satisfying j < k . Then

|xk − xj | =

∣∣∣∣∣∣
k−1∑
s=j

(xs+1 − xs)

∣∣∣∣∣∣ ≤
k−1∑
s=j

|xs+1 − xs |

≤ C
k−1∑
s=j

λs = Cλj
1− λk−j

1− λ
<

Cλj

1− λ
.
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We now show that the infinite sequence x1, x2, x3, . . . is a Cauchy
sequence. Let some positive real number ε be given. Then a
positive integer N can be chosen large enough to ensure that
CλN < (1− λ)ε. Then |xk − xj | < ε whenever j ≥ N and k ≥ N.
Therefore the given infinite sequence is a Cauchy sequence. Now
all Cauchy sequences in Rn are convergent (see Theorem 2.8).
Therefore the given infinite sequence is convergent, as
required.
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