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9. Differentiation of Functions of Several Real Variables (continued)

9.4. The Multidimensional Product Rule

Proposition 9.7 (Product Rule)

Let X be an open set in Rm, and let f : X → R and g : X → R be
functions mapping X into R. Let p be a point of X . Suppose that
f and g are differentiable at p. Then the function f · g is
differentiable at p, and

D(f · g)p = g(p)(Df )p + f (p)(Dg)p.



9. Differentiation of Functions of Several Real Variables (continued)

Proof
The functions f and g are differentiable at p, and therefore there
are well-defined functions Q1 : X → R and Q2 : X → R, where

lim
x→p

Q1(x) = 0 = Q1(p) and lim
x→p

Q2(x) = 0 = Q2(p),

that are defined throughout X so as to ensure that

f (x) = f (p) + (Df )p (x− p) + |x− p|Q1(x)

and
g(x) = g(p) + (Dg)p (x− p) + |x− p|Q2(x)

for all x ∈ X (see Lemma 9.3).



9. Differentiation of Functions of Several Real Variables (continued)

Then

f (x)g(x) = f (p)g(p)

+
(
g(p) (Df )p + f (p) (Dg)p

)
(x− p)

+ |x− p|Q(x)

where

Q(x) =
1

|x− p|
(Df )p(x− p)× (Dg)p(x− p)

+ (g(p) + (Dg)p(x− p))Q1(x)

+ (f (p) + (Df )p(x− p))Q2(x)

+ |x− p|Q1(x)Q2(x).



9. Differentiation of Functions of Several Real Variables (continued)

Now
|(Df )p(x− p)| ≤ ‖(Df )p‖op|x− p|

where ‖(Df )p‖op denotes the operator norm of (Df )p (see
Lemma 8.1) Similarly

|(Dg)p(x− p)| ≤ ‖(Dg)p‖op|x− p|.

It follows that∣∣∣∣ 1

|x− p|
(Df )p(x− p)× (Dg)p(x− p)

∣∣∣∣
≤ ‖(Df )p‖op‖(Dg)p‖op|x− p|,

and therefore

lim
x→p

(
1

|x− p|
(Df )p(x− p)× (Dg)p(x− p)

)
= 0.



9. Differentiation of Functions of Several Real Variables (continued)

Next we note that

lim
x→p

(
(g(p) + (Dg)p(x− p))Q1(x)

)
= lim

x→p
(g(p) + (Dg)p(x− p))× lim

x→p
Q1(x) = 0,

because lim
x→p

Q1(x) = 0.

Similarly

lim
x→p

(
(f (p) + (Df )p(x− p))Q2(x)

)
= lim

x→p
(f (p) + (Df )p(x− p))× lim

x→p
Q2(x) = 0,

because lim
x→p

Q2(x) = 0.



9. Differentiation of Functions of Several Real Variables (continued)

The quantities Q1(x) and Q2(x) converge to zero and therefore
remain bounded as x tends to p. It follows that

lim
x→p
|x− p|Q1(x)Q2(x) = 0.

Putting these results together, we see that

lim
x→p

Q(x) = 0.

It follows from this that the function f · g is differentiable at p, and

D(f · g)p = g(p)(Df )p + f (p)(Dg)p

(see Lemma 9.3). This completes the proof.



9. Differentiation of Functions of Several Real Variables (continued)

9.5. The Multidimensional Chain Rule

Proposition 9.8 (Chain Rule)

Let X be an open set in Rm, and let ϕ : X → Rn be a function
mapping X into Rn. Let Y be an open set in Rn which contains
ϕ(X ), and let ψ : Y → Rk be a function mapping Y into Rk . Let
p be a point of X . Suppose that ϕ is differentiable at p and that ψ
is differentiable at ϕ(p). Then the composition ψ ◦ ϕ : Rm → Rk

(i.e., ϕ followed by ψ) is differentiable at p. Moreover

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p.

Thus the derivative of the composition ψ ◦ ϕ of the functions at
the given point is the composition of the derivatives of those
functions at the appropriate points.



9. Differentiation of Functions of Several Real Variables (continued)

Proof
Let q = ϕ(p). The functions ϕ : X → Rn and ψ : Y → Rk are
differentiable at p and q respectively, and therefore there are
well-defined functions Ω1 : X → Rn and Ω2 : Y → Rk that are
defined throughout X and Y respectively so as to ensure that

lim
x→p

Ω1(x) = 0 = Ω1(p), lim
y→q

Ω2(y) = 0 = Ω2(q)

for all x ∈ X , and

ϕ(x) = ϕ(p) + (Dϕ)p (x− p) + |x− p|Ω1(x)

and
ψ(y) = ψ(q) + (Dψ)q (y − q) + |y − q|Ω2(y)

for all y ∈ Y (see Lemma 9.3).



9. Differentiation of Functions of Several Real Variables (continued)

Substituting ϕ(x) and ϕ(p) for y and q respectively, we find that

ψ(ϕ(x)) = ψ(ϕ(p)) + (Dψ)q(ϕ(x)− ϕ(p))

+ |ϕ(x)− ϕ(p)|Ω2(ϕ(x))

= ψ(ϕ(p)) + (Dψ)ϕ(p)((Dϕ)p(x− p))

+ |x− p|Ω(x),

where

Ω(x) = (Dψ)ϕ(p)(Ω1(x))

+

∣∣∣∣ 1

|x− p|
(Dϕ)p(x− p) + Ω1(x)

∣∣∣∣ Ω2(ϕ(x)).



9. Differentiation of Functions of Several Real Variables (continued)

Let

M(x) =

∣∣∣∣ 1

|x− p|
(Dϕ)p(x− p) + Ω1(x)

∣∣∣∣
for all x ∈ X satisfying x 6= p. Then

0 ≤ M(x) ≤ |(Dϕ)p(x− p)|
|x− p|

+ |Ω1(x)|

for all x ∈ X satisfying x 6= p. Moreover

|(Dϕ)p(x− p)| ≤ ‖(Dϕ)p‖op|x− p|,

where ‖(Dϕ)p‖op denotes the operator norm of the linear operator
(Dϕ)p (see Lemma 8.1). It follows that

0 ≤ M(x) ≤ ‖(Dϕ)p‖op + |Ω1(x)|

for all x ∈ X satisfying x 6= p. It follows from the continuity of the
function Ω1 at p that M(x) remains bounded as x tends to p in X .



9. Differentiation of Functions of Several Real Variables (continued)

Now
Ω(x) = (Dψ)ϕ(p)(Ω1(x)) + M(x)Ω2(ϕ(x))

Also the function ϕ : X → Rn is continuous at p and the function
Ω2 : Y → Rk is continuous at ϕ(p). It follows that the composition
function Ω2 ◦ ϕ is continuous at p (see Lemma 4.1), and therefore

lim
x→p

Ω2(ϕ(x)) = Ω2(ϕ(p)) = 0.

We have already shown that M(x) remains bounded as x tends to
p in X . It follows that

lim
x→p

(M(x)Ω2(ϕ(x)) = 0

(see Proposition 4.9).



9. Differentiation of Functions of Several Real Variables (continued)

Linear operators on finite-dimensional vector spaces are
continuous. It follows that

lim
x→p

(Dψ)ϕ(p)(Ω1(x)) = (Dψ)ϕ(p)

(
lim
x→p

Ω1(x)

)
= 0.

It follows that

lim
x→p

Ω(x) = lim
x→p

(Dψ)ϕ(p)(Ω1(x)) + lim
x→p

(M(x)Ω2(ϕ(x)))

= 0 = Ω(p).

This result ensures that the composition function ψ ◦ ϕ is
differentiable at p, and that

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p

(see Lemma 9.3). The result follows.



9. Differentiation of Functions of Several Real Variables (continued)

Example
Consider the function ϕ : R2 → R defined by

ϕ(x , y) =

{
x2y3 sin

1

x
if x 6= 0;

0 if x = 0.

Now one can verify from the definition of differentiability that the
function h : R→ R defined by

h(t) =

{
t2 sin

1

t
if t 6= 0,

0 if t = 0

is differentiable everywhere on R, though its derivative h′ : R→ R
is not continuous at 0. Also the functions (x , y) 7→ x and
(x , y) 7→ y are differentiable everywhere on R (by Lemma 9.2).
Now ϕ(x , y) = y3h(x). Using Proposition 9.6 and Proposition 9.8,
we conclude that ϕ is differentiable everywhere on R2.



9. Differentiation of Functions of Several Real Variables (continued)

Let (e1, e2, . . . , em) denote the standard basis of Rm, where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , em = (0, 0, . . . , 1).

Let us denote by fi : X → R the ith component of the map
ϕ : X → Rn, where X is an open subset of Rm. Thus

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X . The jth partial derivative of fi at p ∈ X is then given
by

∂fi
∂xj

∣∣∣∣
x=p

= lim
t→0

fi (p + tej)− fi (p)

t
.

We see therefore that if ϕ is differentiable at p then

(Dϕ)pej =

(
∂f1
∂xj

,
∂f2
∂xj

, . . . ,
∂fm
∂xj

)
.



9. Differentiation of Functions of Several Real Variables (continued)

Thus the linear transformation (Dϕ)p : Rm → Rn is represented by
the n ×m matrix 

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xm


This matrix is known as the Jacobian matrix of ϕ at p.



9. Differentiation of Functions of Several Real Variables (continued)

Example
Consider the function f : R2 → R defined by

f (x , y) =

{ xy

(x2 + y2)2
if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

Note that this function is not continuous at (0, 0). Indeed
f (t, t) = 1/(4t2) if t 6= 0 so that f (t, t)→ +∞ as t → 0, yet
f (x , 0) = f (0, y) = 0 for all x , y ∈ R, thus showing that

lim
(x ,y)→(0,0)

f (x , y)

cannot possibly exist. Because f is not continuous at (0, 0) we
conclude from Lemma 9.4 that f cannot be differentiable at (0, 0).
However it is easy to show that the partial derivatives

∂f (x , y)

∂x
and

∂f (x , y)

∂y

exist everywhere on R2, even at (0, 0).



9. Differentiation of Functions of Several Real Variables (continued)

Indeed

∂f (x , y)

∂x

∣∣∣∣
(x ,y)=(0,0)

= 0,
∂f (x , y)

∂y

∣∣∣∣
(x ,y)=(0,0)

= 0

on account of the fact that f (x , 0) = f (0, y) = 0 for all x , y ∈ R.



9. Differentiation of Functions of Several Real Variables (continued)

Example
Consider the function g : R2 → R defined by

g(x , y) =


xy2

x2 + y4
if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

Given real numbers b and c , let ub,c : R→ R be defined so that
ub,c(t) = g(bt, ct) for all t ∈ R. If b = 0 or c = 0 then
ub,c(t) = 0 for all t ∈ R. If b 6= 0 and c 6= 0 then

ub,c(t) =
bc2t3

b2t2 + c4t4
=

bc2t

b2 + c2t2
.



9. Differentiation of Functions of Several Real Variables (continued)

We now show that the function ub,c : R→ R has derivatives of all
orders. This is obvious when b = 0, and when c = 0. If b and c
are both non-zero, and if the function ub,c has a derivative u

(k)
b,c (t)

of order k that can be represented in the form

u
(k)
b,c (t) = pk(t)(b2 + c2t2)−k−1,

where pk(t) is a polynomial of degree at most k + 1, then it
follows from standard single-variable calculus that the function ub,c

has a derivative u
(k+1)
b,c (t) of order k + 1 that can be represented in

the form
u
(k+1)
b,c (t) = pk+1(t)(b2 + c2t2)−k−2,

where pk+1(t) is the polynomial of degree at most k + 2
determined by the formula

pk+1(t) = p′k(t)(b2 + c2t2)− 2(k + 1)c2tpk(t).

Thus the function ub,c : R→ R has derivatives of all orders.



9. Differentiation of Functions of Several Real Variables (continued)

Moreover the first derivative u′b,c(0) of ub,c(t) at t = 0 is given by
the formula

u′b,c(0) =


c2

b
if b 6= 0;

0 if b = 0.

We have shown that the restriction of the function g : R2 → R to
any line passing through the origin determines a function that may
be differentiated any number of times with respect to distance
along the line. Analogous arguments show that the restriction of
the function g to any other line in the plane also determines a
function that may be differentiated any number of times with
respect to distance along the line.



9. Differentiation of Functions of Several Real Variables (continued)

Now g(x , y) = 1
2 for all (x , y) ∈ R2 satisfying x > 0 and

y = ±
√
x , and similarly g(x , y) = −1

2 for all (x , y) ∈ R2 satisfying
x < 0 and y = ±

√
−x . It follows that every open disk about the

origin (0, 0) contains some points at which the function g takes
the value 1

2 , and other points at which the function takes the value
−1

2 , and indeed the function g will take on all real values between
−1

2 and 1
2 on any open disk about the origin, no matter how small

the disk. Therefore the function g : R2 → R is not continuous at
zero, even though the partial derivatives of the function g with
respect to x and y exist at each point of R2.



9. Differentiation of Functions of Several Real Variables (continued)

Remark
These last two examples exhibits an important point. They show
that even if all the partial derivatives of a function exist at some
point, this does not necessarily imply that the function is
differentiable at that point. However we shall show that if the first
order partial derivatives of the components of a function exist and
are continuous throughout some neighbourhood of a given point
then the function is differentiable at that point.
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