MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 20 (November 23, 2017)

David R. Wilkins

9.3. Properties of Differentiable Functions of Several Real Variables

Lemma 9.4

Let $\varphi: X \to \mathbb{R}^n$ be a function which maps an open subset X of \mathbb{R}^m into \mathbb{R}^n which is differentiable at some point **p** of X. Then φ is continuous at **p**.

Proof

Let $\Omega: X \to \mathbb{R}^n$ be defined so that $\Omega(\mathbf{p}) = 0$ and

$$\Omega(\mathbf{x}) = \frac{1}{|\mathbf{x} - \mathbf{p}|} \left(\varphi(\mathbf{x}) - \varphi(\mathbf{p}) - (D\varphi)_{\mathbf{p}} \left(\mathbf{x} - \mathbf{p} \right) \right)$$

for all points **x** of X satisfying $\mathbf{x} \neq \mathbf{p}$. If $\varphi \colon X \to \mathbb{R}^n$ is differentiable at **p** then $\Omega \colon X \to \mathbb{R}^n$ is continuous at **p** (see Lemma 9.3). Moreover

$$\varphi(\mathbf{x}) = \varphi(\mathbf{p}) + (D\varphi)_{\mathbf{p}} \left(\mathbf{x} - \mathbf{p}\right) + \left|\mathbf{x} - \mathbf{p}\right| \Omega(\mathbf{x})$$

for all $\mathbf{x} \in X$. It follows that $\varphi \colon X \to \mathbb{R}^n$ is continuous at \mathbf{p} , as required.

Lemma 9.5

Let $\varphi: X \to \mathbb{R}^n$ be a function which maps an open subset X of \mathbb{R}^m into \mathbb{R}^n which is differentiable at some point **p** of X. Let $(D\varphi)_{\mathbf{p}}: \mathbb{R}^m \to \mathbb{R}^n$ be the derivative of φ at **p**. Let **u** be an element of \mathbb{R}^m . Then

$$(D\varphi)_{\mathbf{p}}\mathbf{u} = \lim_{t \to 0} rac{1}{t} \left(\varphi(\mathbf{p} + t\mathbf{u}) - \varphi(\mathbf{p})
ight).$$

Thus the derivative $(D\varphi)_{\mathbf{p}}$ of φ at \mathbf{p} is uniquely determined by the map φ .

Proof

It follows from the differentiability of φ at ${\bf p}$ that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{|\mathbf{x}-\mathbf{p}|}\left(\varphi(\mathbf{x})-\varphi(\mathbf{p})-(D\varphi)_{\mathbf{p}}\left(\mathbf{x}-\mathbf{p}\right)\right)=\mathbf{0}.$$

In particular, if we set $(\mathbf{x} - \mathbf{p}) = t\mathbf{u}$, and $(\mathbf{x} - \mathbf{p}) = -t\mathbf{u}$, where t is a real variable, we can conclude that

$$\lim_{t\to 0^+} \frac{1}{t} \left(\varphi(\mathbf{p} + t\mathbf{u}) - \varphi(\mathbf{p}) - t(D\varphi)_{\mathbf{p}} \mathbf{u} \right) = \mathbf{0},$$
$$\lim_{t\to 0^-} \frac{1}{t} \left(\varphi(\mathbf{p} + t\mathbf{u}) - \varphi(\mathbf{p}) - t(D\varphi)_{\mathbf{p}} \mathbf{u} \right) = \mathbf{0},$$

It follows that

$$\lim_{t\to 0}\frac{1}{t}\left(\varphi(\mathbf{p}+t\mathbf{u})-\varphi(\mathbf{p})\right)=(D\varphi)_{\mathbf{p}}\mathbf{u},$$

as required.

We now show that given two differentiable functions mapping X into \mathbb{R} , where X is an open set in \mathbb{R}^m , the sum, difference and product of these functions are also differentiable.

Proposition 9.6

Let X be an open set in \mathbb{R}^m , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions mapping X into \mathbb{R} . Let **p** be a point of X. Suppose that f and g are differentiable at **p**. Then the functions f + g and f - g are differentiable at **p**, and

$$D(f+g)_{\mathbf{p}} = (Df)_{\mathbf{p}} + (Dg)_{\mathbf{p}}$$

and

$$D(f-g)_{\mathbf{p}}=(Df)_{\mathbf{p}}-(Dg)_{\mathbf{p}}.$$

Proof

The limit of a sum of functions is the sum of the limits of those functions, provided that these limits exist. Applying the definition of differentiability, it therefore follows that

$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(f(\mathbf{x}) + g(\mathbf{x}) - (f(\mathbf{p}) + g(\mathbf{p})) - ((Df)_{\mathbf{p}} + (Dg)_{\mathbf{p}})(\mathbf{x}-\mathbf{p}) \right)$$
$$= \lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(f(\mathbf{x}) - f(\mathbf{p}) - (Df)_{\mathbf{p}}(\mathbf{x}-\mathbf{p}) \right)$$
$$+ \lim_{\mathbf{x}\to\mathbf{p}} \frac{1}{|\mathbf{x}-\mathbf{p}|} \left(g(\mathbf{x}) - g(\mathbf{p}) - (Dg)_{\mathbf{p}}(\mathbf{x}-\mathbf{p}) \right)$$
$$= 0.$$

Therefore

$$D(f+g)_{\mathbf{p}} = (Df)_{\mathbf{p}} + (Dg)_{\mathbf{p}}.$$

Also the function -g is differentiable, with derivative $-(Dg)_p$. It follows that f - g is differentiable, with derivative $(Df)_p - (Dg)_p$. This completes the proof.