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9. Differentiation of Functions of Several Real Variables (continued)

9.3. Properties of Differentiable Functions of Several Real Variables

Lemma 9.4

Let ϕ : X → Rn be a function which maps an open subset X of
Rm into Rn which is differentiable at some point p of X . Then ϕ
is continuous at p.



9. Differentiation of Functions of Several Real Variables (continued)

Proof
Let Ω: X → Rn be defined so that Ω(p) = 0 and

Ω(x) =
1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p (x− p))

for all points x of X satisfying x 6= p. If ϕ : X → Rn is
differentiable at p then Ω: X → Rn is continuous at p (see
Lemma 9.3). Moreover

ϕ(x) = ϕ(p) + (Dϕ)p (x− p) + |x− p|Ω(x)

for all x ∈ X . It follows that ϕ : X → Rn is continuous at p, as
required.



9. Differentiation of Functions of Several Real Variables (continued)

Lemma 9.5

Let ϕ : X → Rn be a function which maps an open subset X of
Rm into Rn which is differentiable at some point p of X . Let
(Dϕ)p : Rm → Rn be the derivative of ϕ at p. Let u be an element
of Rm. Then

(Dϕ)pu = lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)) .

Thus the derivative (Dϕ)p of ϕ at p is uniquely determined by the
map ϕ.



9. Differentiation of Functions of Several Real Variables (continued)

Proof
It follows from the differentiability of ϕ at p that

lim
x→p

1

|x− p|
(ϕ(x)− ϕ(p)− (Dϕ)p (x− p)) = 0.

In particular, if we set (x− p) = tu, and (x− p) = −tu, where t is
a real variable, we can conclude that

lim
t→0+

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

lim
t→0−

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

It follows that

lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)) = (Dϕ)pu,

as required.



9. Differentiation of Functions of Several Real Variables (continued)

We now show that given two differentiable functions mapping X
into R, where X is an open set in Rm, the sum, difference and
product of these functions are also differentiable.

Proposition 9.6

Let X be an open set in Rm, and let f : X → R and g : X → R be
functions mapping X into R. Let p be a point of X . Suppose that
f and g are differentiable at p. Then the functions f + g and
f − g are differentiable at p, and

D(f + g)p = (Df )p + (Dg)p

and
D(f − g)p = (Df )p − (Dg)p.



9. Differentiation of Functions of Several Real Variables (continued)

Proof
The limit of a sum of functions is the sum of the limits of those
functions, provided that these limits exist. Applying the definition
of differentiability, it therefore follows that

lim
x→p

1

|x− p|

(
f (x) + g(x)− (f (p) + g(p))− ((Df )p + (Dg)p)(x− p)

)
= lim

x→p

1

|x− p|

(
f (x)− f (p)− (Df )p(x− p)

)
+ lim

x→p

1

|x− p|

(
g(x)− g(p)− (Dg)p(x− p)

)
= 0.

Therefore
D(f + g)p = (Df )p + (Dg)p.



9. Differentiation of Functions of Several Real Variables (continued)

Also the function −g is differentiable, with derivative −(Dg)p. It
follows that f − g is differentiable, with derivative (Df )p − (Dg)p.
This completes the proof.
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