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7. Differentiation of Functions of One Real Variable (continued)

7.6. Taylor’s Theorem

The result obtained in Proposition 7.3 is a special case of a more
general result. That more general result is a version of Taylor’s
Theorem with remainder. The proof of this theorem will make use
of the following lemma.



7. Differentiation of Functions of One Real Variable (continued)

Lemma 7.6

Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s
and s + h, let c0, c1, . . . , ck−1 be real numbers, and let

p(t) = f (s + th)−
k−1∑
n=0

cnt
n.

for all real numbers t belonging to some open interval D for which
0 ∈ D and 1 ∈ D. Then p(n)(0) = 0 for all integers n satisfying
0 ≤ n < k if and only if

cn =
hnf (n)(s)

n!

for all integers n satisfying 0 ≤ n < k.
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Proof
On setting t = 0, we find that p(0) = f (s)− c0, and thus p(0) = 0
if and only if c0 = f (s).
Let the integer n satisfy 0 < n < k . On differentiating p(t) n times
with respect to t, we find that

p(n)(t) = hnf (n)(s + th)−
k−1∑
j=n

j!

(j − n)!
cj t

j−n.

Then, on setting t = 0, we find that only the term with j = n
contributes to the value of the sum on the right hand side of the
above identity, and therefore

p(n)(0) = hnf (n)(s)− n!cn.

The result follows.
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Theorem 7.7

(Taylor’s Theorem) Let s and h be real numbers, and let f be a
k times differentiable real-valued function defined on some open
interval containing s and s + h. Then

f (s + h) = f (s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s + θh)

for some real number θ satisfying 0 < θ < 1.
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Proof
Let D be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f (s + th) is defined for all t ∈ D, and let
p : D → R be defined so that

p(t) = f (s + th)− f (s)−
k−1∑
n=1

tnhn

n!
f (n)(s)

for all t ∈ D. A straightforward calculation shows that p(n)(0) = 0
for n = 0, 1, . . . , k − 1 (see Lemma 7.6). Thus if
q(t) = p(t)− p(1)tk for all s ∈ [0, 1] then q(n)(0) = 0 for
n = 0, 1, . . . , k − 1, and q(1) = 0. We can therefore apply Rolle’s
Theorem (Theorem 7.1) to the function q on the interval [0, 1] to
deduce the existence of some real number t1 satisfying 0 < t1 < 1
for which q′(t1) = 0. We can then apply Rolle’s Theorem to the
function q′ on the interval [0, t1] to deduce the existence of some
real number t2 satisfying 0 < t2 < t1 for which q′′(t2) = 0.
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By continuing in this fashion, applying Rolle’s Theorem in turn to
the functions q′′, q′′′, . . . , q(k−1), we deduce the existence of real
numbers t1, t2, . . . , tk satisfying 0 < tk < tk−1 < · · · < t1 < 1 with
the property that q(n)(tn) = 0 for n = 1, 2, . . . , k. Let θ = tk .
Then 0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s + θh)− p(1),

hence

f (s + h) = f (s) +
k−1∑
n=1

hn

n!
f (n)(s) + p(1)

= f (s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s + θh),

as required.
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Corollary 7.8

Let f : D → R be a k-times continuously differentiable function
defined over an open subset D of R and let s ∈ R. Then given any
strictly positive real number ε, there exists some strictly positive
real number δ such that∣∣∣∣∣f (s + h)− f (s)−

k∑
n=1

hn

n!
f (n)(s)

∣∣∣∣∣ < ε|h|k

whenever |h| < δ.
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Proof
The function f is k-times continuously differentiable, and therefore
its kth derivative f (k) is continuous. Let some strictly positive real
number ε be given. Then there exists some strictly positive real
number δ that is small enough to ensure that s + h ∈ D and
|f (k)(s + h)− f (k)(s)| < k!ε whenever |h| < δ. If h is an real
number satisfying |h| < δ, and if θ is a real number satisfying
0 < θ < 1, then s + θh ∈ D and |f (k)(s + θh)− f (k)(s)| < k!ε.
Now it follows from Taylor’s Theorem (Theorem 7.7) that, given
any real number h satisfying |h| < δ there exists some real
number θ satisfying 0 < θ < 1 for which

f (s + h) = f (s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s + θh).
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Then ∣∣∣∣∣f (s + h)− f (s)−
k∑

n=1

hn

n!
f (n)(s)

∣∣∣∣∣
=
|h|k

k!
|f (k)(s + θh)− f (k)(s)|

< ε|h|k ,

as required.
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Let f : [a, b]→ R be a continuous function on a closed interval
[a, b]. We say that f is continuously differentiable on [a, b] if the
derivative f ′(x) of f exists for all x satisfying a < x < b, the
one-sided derivatives

f ′(a) = lim
h→0+

f (a + h)− f (a)

h
,

f ′(b) = lim
h→0−

f (b + h)− f (b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous
on [a, b].
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If f : [a, b]→ R is continuous, and if F (x) =
∫ x
a f (t) dt for all

x ∈ [a, b] then the one-sided derivatives of F at the endpoints of
[a, b] exist, and

lim
h→0+

F (a + h)− F (a)

h
= f (a), lim

h→0−

F (b + h)− F (b)

h
= f (b).

One can verify these results by adapting the proof of the
Fundamental Theorem of Calculus.
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Proposition 7.9

Let f be a continuously differentiable real-valued function on the
interval [a, b]. Then∫ b

a

df (x)

dx
dx = f (b)− f (a)
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Proof
Define g : [a, b]→ R by

g(x) = f (x)− f (a)−
∫ x

a

df (t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=

df (x)

dx
− d

dx

(∫ x

a

df (t)

dt
dt

)
= 0

for all x satisfying a < x < b, by the Fundamental Theorem of
Calculus. Now it follows from the Mean Value Theorem
(Theorem 7.2) that there exists some s satisfying a < s < b for
which g(b)− g(a) = (b − a)g ′(s). We deduce therefore that
g(b) = 0, which yields the required result.
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Corollary 7.10 (Integration by Parts)

Let f and g be continuously differentiable real-valued functions on
the interval [a, b]. Then∫ b

a
f (x)

dg(x)

dx
dx = f (b)g(b)− f (a)g(a)−

∫ b

a
g(x)

df (x)

dx
dx .

Proof
This result follows from Proposition 7.9 on integrating the identity

f (x)
dg(x)

dx
=

d

dx
(f (x)g(x))− g(x)

df (x)

dx
.
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Corollary 7.11 (Integration by Substitution)

Let u : [a, b]→ R be a continuously differentiable monotonically
increasing function on the interval [a, b], and let c = u(a) and
d = u(b). Then∫ d

c
f (x) dx =

∫ b

a
f (u(t))

du(t)

dt
dt.

for all continuous real-valued functions f on [c , d ].
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Proof
Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c
f (y)dy , G (x) =

∫ x

a
f (u(t))

du(t)

dt
dt.

Then F (a) = 0 = G (a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c
f (y) dy ,

and H ′(s) = f (s) for all s ∈ [a, b]. Using the Chain Rule and the
Fundamental Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f (u(x))u′(x) = G ′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem
(Theorem 7.2) to the function F − G on the interval [a, b], we see
that F (b)−G (b) = F (a)−G (a) = 0. Thus H(d) = F (b) = G (b),
which yields the required identity.
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Proposition 7.12

Let s and h be real numbers, and let f be a function whose first k
derivatives are continuous on an interval containing s and s + h.
Then

f (s + h) = f (s) +
k−1∑
n=1

hn

n!
f (n)(s)

+
hk

(k − 1)!

∫ 1

0
(1− t)k−1f (k)(s + th) dt.
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Proof
Let

rm(s, h) =
hm

(m − 1)!

∫ 1

0
(1− t)m−1f (m)(s + th) dt

for m = 1, 2, . . . , k − 1. Then

r1(s, h) = h

∫ 1

0
f ′(s+th) dt =

∫ 1

0

d

dt
f (s+th) dt = f (s+h)− f (s).
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Let m be an integer between 1 and k − 2. It follows from the rule
for Integration by Parts (Corollary 7.10) that

rm+1(s, h) =
hm+1

m!

∫ 1

0
(1− t)mf (m+1)(s + th) dt

=
hm

m!

∫ 1

0
(1− t)m

d

dt

(
f (m)(s + th)

)
dt

=
hm

m!

[
(1− t)mf (m)(s + th)

]1
0

− hm

m!

∫ 1

0

d

dt
((1− t)m) f (m)(s + th) dt

= −hm

m!
f (m)(s)

+
hm

(m − 1)!

∫ 1

0
(1− t)m−1f (m)(s + th) dt

= rm(s, h)− hm

m!
f (m)(s).
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Thus

rm(s, h) =
hm

m!
f (m)(s) + rm+1(s, h)

for m = 1, 2, . . . , k − 1. It follows by induction on k that

f (s + h) = f (s) +
k−1∑
n=1

hn

n!
f (n)(s) + rk(s, h)

= f (s) +
k−1∑
n=1

hn

n!
f (n)(s)

+
hk

(k − 1)!

∫ 1

0
(1− t)k−1f (k)(s + th) dt,

as required.
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