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7. Differentiation of Functions of One Real Variable

7. Differentiation of Functions of One Real Variable

7.1. Interior Points and Open Sets in the Real Line

Definition

Let D be a subset of the set R of real numbers, and let s be a real
number belonging to D. We say that s is an interior point of D if
there exists some strictly positive number δ such that x ∈ D for all
real numbers x satisfying s − δ < x < s + δ. The interior of D is
then the subset of D consisting of all real numbers belonging to D
that are interior points of D.
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It follows from the definition of open sets in Euclidean spaces that
a subset D of the set R of real numbers is an open set in R if and
only if every point of D is an interior point of D.
Let s be a real number. We say that a function f : D → R is
defined around s if the real number s is an interior point of the
domain D of the function f . It follows that the function f is
defined around s if and only if there exists some strictly positive
real number δ such that f (x) is defined for all real numbers x
satisfying s − δ < x < s + δ.
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7.2. Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition

Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s,
with derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f (s + h)− f (s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose

value at s is the derivative f ′(s) of f at s.
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Let s be some real number, and let f and g be real-valued
functions defined around s that are differentiable at s. The basic
rules of differential calculus then ensure that the functions f + g ,
f − g and f · g are differentiable at s (where

(f + g)(x) = f (x) + g(x), (f − g)(x) = f (x)− g(x)

and
(f .g)(x) = f (x)g(x)

for all real numbers x at which both f (x) and g(x) are defined),
and

(f + g)′(s) = f ′(s) + g ′(s), (f − g)′(s) = f ′(s)− g ′(s).

(f · g)′(s) = f ′(s)g(s) + f (s)g ′(s) (Product Rule).
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If moreover g(s) 6= 0 then the function f /g is differentiable at s
(where (f /g)(x) = f (x)/g(x) where both f (x) and g(x) are
defined), and

(f /g)′(s) =
f ′(s)g(s)− f (s)g ′(s)

g(s)2
(Quotient Rule).

Moreover if h is a real-valued function defined around f (s) which is
differentiable at f (s) then the composition function h ◦ f is
differentiable at f (s) and

(h ◦ f )′(s) = h′(f (s))f ′(s) (Chain Rule).
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Derivatives of some standard functions are as follows:—

d

dx
(xm) = mxm−1,

d

dx
(sin x) = cos x ,

d

dx
(cos x) = − sin x ,

d

dx
(exp x) = exp x ,

d

dx
(log x) =

1

x
(x > 0).
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7.3. Rolle’s Theorem

Theorem 7.1 (Rolle’s Theorem)

Let f : [a, b]→ R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is
differentiable on (a, b). Suppose also that f (a) = f (b). Then there
exists some real number s satisfying a < s < b which has the
property that f ′(s) = 0.
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Proof
First we show that if the function f attains its minimum value at
u, and if a < u < b, then f ′(u) = 0. Now the difference quotient

f (u + h)− f (u)

h

is non-negative for all sufficiently small positive values of h;
therefore f ′(u) ≥ 0. On the other hand, this difference quotient is
non-positive for all sufficiently small negative values of h; therefore
f ′(u) ≤ 0. We deduce therefore that f ′(u) = 0.
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Similarly if the function f attains its maximum value at v , and if
a < v < b, then f ′(v) = 0. (Indeed the result for local maxima can
be deduced from the corresponding result for local minima simply
by replacing the function f by −f .)
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Now the function f is continuous on the closed bounded interval
[a, b]. It therefore follows from the Extreme Value Theorem that
there must exist real numbers u and v in the interval [a, b] with the
property that f (u) ≤ f (x) ≤ f (v) for all real numbers x satisfying
a ≤ x ≤ b (see Theorem 4.21). If a < u < b then f ′(u) = 0 and
we can take s = u. Similarly if a < v < b then f ′(v) = 0 and we
can take s = v . The only remaining case to consider is when both
u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f (a) = f (b), and we can
choose s to be any real number satisfying a < s < b.
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7.4. The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following
important theorem.

Theorem 7.2 (The Mean Value Theorem)

Let f : [a, b]→ R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is
differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

f (b)− f (a) = f ′(s)(b − a).
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Proof
Let g : [a, b]→ R be the real-valued function on the closed
interval [a, b] defined by

g(x) = f (x)− b − x

b − a
f (a)− x − a

b − a
f (b).

Then the function g is continuous on [a, b] and differentiable
on (a, b). Moreover g(a) = 0 and g(b) = 0. It follows from Rolle’s
Theorem (Theorem 7.1) that g ′(s) = 0 for some real number s
satisfying a < s < b. But

g ′(s) = f ′(s)− f (b)− f (a)

b − a
.

Therefore f (b)− f (a) = f ′(s)(b − a), as required.
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7.5. Concavity and the Second Derivative

Proposition 7.3

Let s and h be real numbers, and let f be a twice differentiable
real-valued function defined on some open interval containing s
and s + h. Then there exists a real number θ satisfying 0 < θ < 1
for which

f (s + h) = f (s) + hf ′(s) + 1
2h

2f ′′(s + θh).
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Proof
Let I be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f (s + th) is defined for all t ∈ I , and let
q : I → R be defined so that

q(t) = f (s + th)− f (s)− thf ′(s)− t2(f (s + h)− f (s)− hf ′(s)).

for all t ∈ I . Differentiating, we find that

q′(t) = hf ′(s + th)− hf ′(s)− 2t(f (s + h)− f (s)− hf ′(s))

and

q′′(t) = h2f ′′(s + th)− 2(f (s + h)− f (s)− hf ′(s)).
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Now q(0) = q(1) = 0. It follows from Rolle’s Theorem, applied to
the function q on the interval [0, 1], that there exists some real
number ϕ satisfying 0 < ϕ < 1 for which q′(ϕ) = 0.

Then q′(0) = q′(ϕ) = 0, and therefore Rolle’s Theorem can be
applied to the function q′ on the interval [0, ϕ] to prove the
existence of some real number θ satisfying 0 < θ < ϕ for which
q′′(θ) = 0. Then

0 = q′′(θ) = h2f ′′(s + θh)− 2(f (s + h)− f (s)− hf ′(s)).

Rearranging, we find that

f (s + h) = f (s) + hf ′(s) + 1
2h

2f ′′(s + θh),

as required.
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Corollary 7.4

Let f : (s − δ0, s + δ0) be a twice-differentiable function throughout
some open interval (s − δ0, s + δ0) centred on a real number s.
Suppose that f ′′(s + h) > 0 for all real numbers h satisfying
|h| < δ0. Then

f (s + h) ≥ f (s) + hf ′(s)

for all real numbers h satisfying |h| < δ0.

It follows from Corollary 7.4 that if a twice-differentiable function
has positive second derivative throughout some open interval, then
it is concave upwards throughout that interval. In particular the
function has a local minimum at any point of that open interval
where the first derivative is zero and the second derivative is
positive.
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Corollary 7.5

Let f : D → R be a twice-differentiable function defined over a
subset D of R, and let s be a point in the interior of D. Suppose
that f ′(s) = 0 and that f ′′(x) > 0 for all real numbers x belonging
to some sufficiently small neighbourhood of x . Then s is a local
minimum for the function f .
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