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6. The Multidimensional Riemann Integral (continued)

6.4. Integrability of Continuous Functions

Theorem 6.17

Let C be a closed n-cell in Rn. Then any continuous real-valued
function on C is Riemann-integrable.

Proof
Let f : C → R be a continuous real-valued function on C . Then f
is bounded above and below on C , and moreover f : C → R is
uniformly continuous on C . (These results follow from
Theorem 4.21 and Theorem 4.22.) Therefore there exists some
strictly positive real number δ such that |f (u)− f (w)| < ε
whenever u,w ∈ C satisfy |u−w| < δ.
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Choose a partition P of the n-cell C such that each cell in the
partition has diameter less than δ. Let Ω(P) be an index set which
indexes the cells of the partition P and, for each α ∈ Ω(P) let
CP,α be the corresponding cell of the partition P of C . Also let pα
be a point of CP,α for all α ∈ Ω(P). Then |x− pα| < δ for all
x ∈ CP,α. Thus if

mP,α = inf{f (x) : x ∈ CP,α}

and
MP,α = sup{f (x) : x ∈ CP,α}

then
f (pα)− ε ≤ mP,α ≤ MP,α ≤ f (pα) + ε

for all α ∈ Ω(P). It follows that
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n∑
i=1

f (pα)µ(CP,α)− εµ(C )

≤ L(P, f ) ≤ U(P, f )

≤
n∑

i=1

f (pα)µ(CP,α) + εµ(C ),

where L(P, f ) and U(P, f ) denote the lower and upper sums of the
function f for the partition P.
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We have now shown that

0 ≤ U
∫
C
f (x) dµ− L

∫
C
f (x) dµ

≤ U(P, f )− L(P, f ) ≤ 2εµ(C ).

But this inequality must be satisfied for any strictly positive real
number ε. Therefore

U
∫
C
f (x) dµ = L

∫
C
f (x) dµ,

and thus the function f is Riemann-integrable on C .
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6.5. Repeated Integration

Let C be an n-cell in Rn, given by

C =
n∏

i=1

[ai , bi ]

= {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers which
satisfy ai ≤ bi for each i . Given any continuous real-valued
function f on C , let us denote by IC (f ) the repeated integral of f
over the n-cell C whose value is∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f (x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

(Thus IC (f ) is obtained by integrating the function f first over the
coordinate x1, then over the coordinate x2, and so on).
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Note that if m ≤ f (x) ≤ M on C for some constants m and M
then

m µ(C ) ≤ IC (f ) ≤ M µ(C ).

We shall use this fact to show that if f is a continuous function on
some n-cell C in Rn then

IC (f ) =

∫
C
f (x) dµ

(i.e., IC (f ) is equal to the Riemann integral of f over C ).
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Theorem 6.18

Let f be a continuous real-valued function defined on some
n-cell C in Rn, where

C = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then the Riemann integral ∫
C
f (x) dµ

of f over C is equal to the repeated integral∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f (x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.
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Proof
Given a partition P of the n-cell C , we denote by L(P, f ) and
U(P, f ) the quantities so that

L(P, f ) =
∑

α∈Ω(P)

mP,α(f )µ(CP,α)

and
U(P, f ) =

∑
α∈Ω(P)

MP,α(f )µ(CP,α)

where Ω(P) is an indexing set that indexes the cells of the
partition P, and where, for all α ∈ Ω(P), µ(CP,α) is the content of
the cell CP,α of the partition P indexed by α,

mP,α(f ) = inf{f (x) : x ∈ CP,α},

and
MP,α(f ) = sup{f (x) : x ∈ CP,α}.
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Now
mP,α(f ) ≤ f (x) ≤ MP,α(f )

for all α ∈ Ω(P) and x ∈ CP,α, and therefore

mP,α(f )µ(CP,α) ≤ IC ,α(f ) ≤ MP,α(f )µ(CP,α)

for all α ∈ Ω(P).
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Summing these inequalities as α ranges over the indexing
set Ω(P), we find that

L(P, f ) =
∑

α∈Ω(P)

mP,α(f )µ(CP,α)

≤
∑

α∈Ω(P)

IC ,α(f )

≤
∑

α∈Ω(P)

MP,α(f )µ(CP,α)

= U(P, f ).

But ∑
α∈Ω(P)

IC ,α(f ) = IC (f ).

It follows that
L(P, f ) ≤ IC (f ) ≤ U(P, f ).
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The Riemann integral of f is equal to the supremum of the
quantities L(P, f ) as P ranges over all partitions of the n-cell C ,
hence ∫

C
f (x) dµ ≤ IC (f ).

Similarly the Riemann integral of f is equal to the infimum of the
quantities U(P, f ) as P ranges over all partitions of the n-cell C ,
hence

IC (f ) ≤
∫
C
f (x) dµ.

Hence

IC (f ) =

∫
C
f (x) dµ,

as required.
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Note that the order in which the integrations are performed in the
repeated integral plays no role in the above proof. We may
therefore deduce the following important corollary.
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Corollary 6.19

Let f be a continuous real-valued function defined over some
closed rectangle C in R2, where

C = {(x , y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then ∫ b

a

(∫ d

c
f (x , y) dy

)
dx =

∫ d

c

(∫ b

a
f (x , y) dx

)
dy .
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Proof
It follows directly from Theorem 6.18 that the repeated integrals∫ b

a

(∫ d

c
f (x , y) dy

)
dx and

∫ d

c

(∫ b

a
f (x , y) dx

)
dy

are both equal to the Riemann integral of the function f over the
rectangle C . Therefore these repeated integrals must be equal.
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Example
Let f : R2 → R be defined such that

f (x , y) =


4xy(x2 − y2)

(x2 + y2)3
if (x , y) 6= (0, 0);

0 if (x , y) = (0, 0).

Set u = x2 + y2. Then

f (x , y) =
2x(2x2 − u)

u3

∂u

∂y
,

and therefore, when x 6= 0,
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∫ 1

y=0
f (x , y) dy =

∫ x2+1

u=x2

(
4x3

u3
− 2x

u2

)
du

=

[
−2x3

u2
+

2x

u

]x2+1

u=x2

= − 2x3

(x2 + 1)2
+

2x

x2 + 1

=
2x

(x2 + 1)2
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It follows that∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx =

∫ 1

x=0

2x

(x2 + 1)2
dx

=

[
− 1

x2 + 1

]1

0

=
1

2
.

Now f (y , x) = −f (x , y) for all x and y . Interchanging x and y in
the above evaluation, we find that∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy =

∫ 1

x=0

(∫ 1

y=0
f (y , x) dy

)
dx

= −
∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx

= −1

2
.
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Thus∫ 1

x=0

(∫ 1

y=0
f (x , y) dy

)
dx 6=

∫ 1

y=0

(∫ 1

x=0
f (x , y) dx

)
dy .

when

f (x , y) =
4xy(x2 − y2)

(x2 + y2)3

for all (x , y) ∈ R2 distinct from (0, 0). Note that, in this case
f (2t, t)→ +∞ as t → 0+, and f (t, 2t)→ −∞ as t → 0−. Thus
the function f is not continuous at (0, 0) and does not remain
bounded as (x , y)→ (0, 0).
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