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6. The Multidimensional Riemann Integral (continued)

6.3. The Multidimensional Riemann-Darboux Integral

Definition

Let C be an n-cell in Rn, and let f : C → R be a bounded
real-valued function on C . The lower Riemann integral and the
upper Riemann integral, denoted by

L
∫
C
f (x) dµ and U

∫
C
f (x) dµ

respectively, are defined such that

L
∫
C
f (x) dµ = sup{L(P, f ) : P is a partition of C},

U
∫
C
f (x) dµ = inf{U(P, f ) : P is a partition of C}.



6. The Multidimensional Riemann Integral (continued)

Lemma 6.7

Let f be a bounded real-valued function on an n-cell C in Rn.
Then

L
∫
C
f (x) dx ≤ U

∫
C
f (x) dx .

L
∫
C
f (x) dµ ≤ U

∫
C
f (x) dµ.
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Proof
The inequality L(P, f ) ≤ L(Q, f ) holds for all partitions P and Q
of the closed n-cell C (Lemma 6.6). It follows that, for a fixed
partition Q, the upper sum U(Q, f ) is an upper bound on all the
lower sums L(P, f ), and therefore

L
∫
C
f (x) dx ≤ U(Q, f ).

The lower Riemann integral is then a lower bound on all the upper
sums, and therefore

L
∫
C
f (x) dµ ≤ U

∫
C
f (x) dµ.

as required.
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Definition

A bounded function f : C → R on a closed n-cell C in Rn is said to
be Riemann-integrable (or Darboux-integrable) on C if

U
∫
C
f (x) dµ = L

∫
C
f (x) dµ,

in which case the Riemann integral
∫
C f (x) dµ (or Darboux

integral) of f on X is defined to be the common value of
U
∫
C f (x) dµ and L

∫
C f (x) dµ.
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Lemma 6.8

Let f : C → R be a bounded function on a closed n-cell C in Rn.
Then the lower and upper Riemann integrals of f and −f are
related by the identities

U
∫
C

(−f (x)) dµ = −L
∫
C
f (x) dµ,

L
∫
C

(−f (x)) dµ = −U
∫
C
f (x) dµ.
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Proof
Let P be a partition of C , let Ω(P) be the indexing set for the cells
of the partition P, and let the cell of the partition indexed by
α ∈ Ω(P) be denoted by CP,α. Then the lower and upper sums of
f for the partition P satisfy the equations

L(P, f ) =
∑

α∈Ω(P)

mP,α µ(CP,α), U(P, f ) =
∑

α∈Ω(P)

MP,α µ(CP,α),

where

mP,α = inf{f (x) : x ∈ CP,α},
MP,α = sup{f (x) : x ∈ CP,α}.
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Now

sup{−f (x) : x ∈ CP,α} = − inf{f (x) : x ∈ CP,α} = −mP,α,

inf{−f (x) : x ∈ CP,α} = − sup{f (x) : x ∈ CP,α} = −MP,α

It follows that

U(P,−f ) =
∑

α∈Ω(P)

(−mP,α)µ(CP,α) = −L(P, f ),

L(P,−f ) =
∑

α∈Ω(P)

(−MP,α)µ(CP,α) = −U(P, f ).
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We have now shown that

U(P,−f ) = −L(P, f ) and L(P,−f ) = −U(P, f )

for all partitions P of the interval C . Applying the definition of the
upper and lower integrals, we see that

U
∫
C

(−f (x)) dµ

= inf {U(P,−f ) : P is a partition of C}
= inf {−L(P, f ) : P is a partition of C}
= − sup {L(P, f ) : P is a partition of C}

= −L
∫
C
f (x) dµ
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Similarly

L
∫
C

(−f (x)) dµ

= sup {L(P,−f ) : P is a partition of C}
= sup {−U(P, f ) : P is a partition of C}
= − inf {U(P, f ) : P is a partition of C}

= −U
∫
C
f (x) dµ.

This completes the proof.
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Lemma 6.9

Let f : C → R and g : C → R be bounded functions on a closed
n-cell C in Rn. Then the lower sums of the functions f , g and
f + g satisfy

L(P, f + g) ≥ L(P, f ) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f ) + U(P, g).
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Proof
Let P be a partition of C , let Ω(P) be the indexing set for the cells
of the partition P, and let the cell of the partition indexed by
α ∈ Ω(P) be denoted by CP,α. Then

L(P, f ) =
∑

α∈Ω(P)

mP,α(f )µ(CP,α),

L(P, g) =
∑

α∈Ω(P)

mP,α(g)µ(CP,α),

L(P, f + g) =
∑

α∈Ω(P)

mP,α(f + g)µ(CP,α),
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U(P, f ) =
∑

α∈Ω(P)

MP,α(f )µ(CP,α),

U(P, g) =
∑

α∈Ω(P)

MP,α(g)µ(CP,α),

U(P, f + g) =
∑

α∈Ω(P)

MP,α(f + g)µ(CP,α),
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where

mP,α(f ) = inf{f (x) : x ∈ CP,α},
mP,α(g) = inf{g(x) : x ∈ CP,α},

mP,α(f + g) = inf{f (x) + g(x) : x ∈ CP,α}
MP,α(f ) = sup{f (x) : x ∈ CP,α},
MP,α(g) = sup{g(x) : x ∈ CP,α},

MP,α(f + g) = sup{f (x) + g(x) : x ∈ CP,α}

for α ∈ Ω(P).
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Now

mP,α(f ) ≤ f (x) ≤ MP,α(f ) and mP,α(g) ≤ g(x) ≤ MP,α(g).

for all x ∈ CP,α. Adding, we see that

mP,α(f ) + mP,α(g) ≤ f (x) + g(x) ≤ MP,α(f ) + MP,α(g)

for all x ∈ CP,α, and therefore MP,α(f ) + MP,α(g) is an upper
bound for the set

{f (x) + g(x) : x ∈ CP,α}.

and mP,α(f ) + mP,α(g) is a lower bound for the same set. The
least upper bound and greatest lower bound for this set are
MP,α(f + g) and mP,α(f + g) respectively.
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Therefore

mP,α(f ) + mP,α(g) ≤ mP,α(f + g)

≤ MP,α(f + g)

≤ MP,α(f ) + MP,α(g).

It follows that

U(P, f + g)

=
∑

α∈Ω(P)

MP,α(f + g)µ(CP,α)

≤
∑

α∈Ω(P)

(MP,α(f ) + MP,α(g))µ(CP,α)

=
∑

α∈Ω(P)

MP,α(f )µ(CP,α) +
∑

α∈Ω(P)

MP,α(g)µ(CP,α)

= U(P, f ) + U(P, g).



6. The Multidimensional Riemann Integral (continued)

Similarly

L(P, f + g)

=
∑

α∈Ω(P)

mP,α(f + g)µ(CP,α)

≥
∑

α∈Ω(P)

(mP,α(f ) + mP,α(g))µ(CP,α)

=
∑

α∈Ω(P)

mP,α(f )µ(CP,α) +
∑

α∈Ω(P)

mP,α(g)µ(CP,α)

= L(P, f ) + L(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f ) + L(P, g)

and
U(P, f + g) ≤ U(P, f ) + U(P, g).
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Proposition 6.10

Let f : C → R and g : C → R be bounded Riemann-integrable
functions on a closed n-cell C . Then the functions f + g and f − g
are Riemann-integrable on C, and moreover∫

C
(f (x) + g(x)) dµ

=

∫
C
f (x) dµ+

∫
C
g(x) dµ,

and ∫
C

(f (x)− g(x)) dµ

=

∫
C
f (x) dµ−

∫
C
g(x) dµ.
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Proof
Let some strictly positive real number ε be given. The definition of
Riemann-integrability and the Riemann integral ensures that there
exist partitions P and Q of C for which

L(P, f ) >

∫
C
f (x) dµ− 1

2ε

and

L(Q, g) >

∫
C
g(x) dµ− 1

2ε.
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Let the partition R be a common refinement of the partitions P
and Q. Then

L(R, f ) ≥ L(P, f ) and L(R, g) ≥ L(P, g).

Applying Lemma 6.9, and the definition of the lower Riemann
integral, we see that

L
∫
C

(f (x) + g(x)) dµ

≥ L(R, f + g) ≥ L(R, f ) + L(R, g)

≥ L(P, f ) + L(Q, g)

>

(∫
C
f (x) dµ− 1

2ε

)
+

(∫
C
g(x) dµ− 1

2ε

)
>

∫
C
f (x) dµ+

∫
C
g(x) dµ− ε
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We have now shown that

L
∫
C

(f (x) + g(x)) dµ

>

∫
C
f (x) dµ+

∫
C
g(x) dµ− ε

for all strictly positive real numbers ε. However the quantities of

L
∫
C

(f (x) + g(x)) dµ,

∫
C
f (x) dµ

and ∫
C
g(x) dµ

have values that have no dependence whatsoever on the value of ε.
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It follows that

L
∫
C

(f (x) + g(x)) dµ

≥
∫
C
f (x) dµ+

∫
C
g(x) dµ.

We can deduce a corresponding inequality involving the upper
integral of f + g by replacing f and g by −f and −g respectively
(Lemma 6.8). We find that
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L
∫
C

(−f (x)− g(x)) dµ

≥
∫
C

(−f (x)) dµ+

∫
C

(−g(x)) dµ

= −
∫
C
f (x) dµ−

∫
C
g(x) dµ

and therefore

U
∫
C

(f (x) + g(x)) dµ

= −L
∫
C

(−f (x)− g(x)) dµ

≤
∫
C
f (x) dµ+

∫
C
g(x) dµ.
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Combining the inequalities obtained above, we find that∫
C
f (x) dµ+

∫
C
g(x) dµ ≤ L

∫
C

(f (x) + g(x)) dµ

≤ U
∫
C

(f (x) + g(x)) dµ

≤
∫
C
f (x) dµ+

∫
C
g(x) dµ.
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The quantities at the left and right hand ends of this chain of
inequalities are equal to each other. It follows that

L
∫
C

(f (x) + g(x)) dµ = U
∫
C

(f (x) + g(x)) dµ

=

∫
C
f (x) dµ+

∫
C
g(x) dµ.

Thus the function f + g is Riemann-integrable on C , and∫
C

(f (x) + g(x)) dµ

=

∫
C
f (x) dµ+

∫
C
g(x) dµ.
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Then, replacing g by −g , we find that∫
C

(f (x)− g(x)) dµ

=

∫
C
f (x) dµ−

∫
C
g(x) dµ.

as required.
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Proposition 6.11

Let f : C → R be a bounded function on a closed n-cell C in Rn.
Then the function f is Riemann-integrable on C if and only if,
given any positive real number ε, there exists a partition P of C
with the property that

U(P, f )− L(P, f ) < ε.
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Proof
First suppose that f : C → R is Riemann-integrable on C . Let
some positive real number ε be given. Then∫

C
f (x) dµ

is equal to the common value of the lower and upper integrals of
the function f on C , and therefore there exist partitions Q and R
of C for which

L(Q, f ) >

∫
C
f (x) dµ− 1

2ε

and

U(R, f ) <

∫
C
f (x) dµ+ 1

2ε.
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Let P be a common refinement of the partitions Q and R. Now

L(Q, f ) ≤ L(P, f ) ≤ U(P, f ) ≤ U(R, f ).

(see Lemma 6.5). It follows that

U(P, f )− L(P, f ) ≤ U(R, f )− L(Q, f ) < ε.
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Now suppose that f : C → R is a bounded function on C with the
property that, given any positive real number ε, there exists a
partition P of C for which U(P, f )− L(P, f ) < ε. Let ε > 0 be
given. Then there exists a partition P of C for which
U(P, f )− L(P, f ) < ε. Now it follows from the definitions of the
upper and lower integrals that

L(P, f ) ≤ L
∫
C
f (x) dµ

≤ U
∫
C
f (x) dµ ≤ U(P, f ),

and therefore

U
∫
C
f (x) dµ− L

∫
C
f (x) dµ

< U(P, f )− L(P, f ) < ε.
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Thus the difference between the values of the upper and lower
integrals of f on C must be less than every strictly positive real
number ε, and therefore

U
∫
C
f (x) dµ = L

∫
C
f (x) dµ.

This completes the proof.
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