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5. The Riemann Integral in One Dimension (continued)

Proposition 5.6

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b.
Then the function f is Riemann-integrable on [a, b] if and only if,
given any positive real number ε, there exists a partition P of [a, b]
with the property that

U(P, f )− L(P, f ) < ε.



5. The Riemann Integral in One Dimension (continued)

Proof
First suppose that f : [a, b]→ R is Riemann-integrable on [a, b].
Let some positive real number ε be given. Then∫ b

a
f (x) dx

is equal to the common value of the lower and upper integrals of
the function f on [a, b], and therefore there exist partitions Q and
R of [a, b] for which

L(Q, f ) >

∫ b

a
f (x) dx − 1

2ε

and

U(R, f ) <

∫ b

a
f (x) dx + 1

2ε.



5. The Riemann Integral in One Dimension (continued)

Let P be a common refinement of the partitions Q and R. Now

L(Q, f ) ≤ L(P, f ) ≤ U(P, f ) ≤ U(R, f ).

(see Lemma 5.1). It follows that

U(P, f )− L(P, f ) ≤ U(R, f )− L(Q, f ) < ε.



5. The Riemann Integral in One Dimension (continued)

Now suppose that f : [a, b]→ R is a bounded function on [a, b]
with the property that, given any positive real number ε, there
exists a partition P of [a, b] for which U(P, f )− L(P, f ) < ε. Let
ε > 0 be given. Then there exists a partition P of [a, b] for which
U(P, f )− L(P, f ) < ε. Now it follows from the definitions of the
upper and lower integrals that

L(P, f ) ≤ L
∫ b

a
f (x) dx ≤ U

∫ b

a
f (x) dx ≤ U(P, f ),

and therefore

U
∫ b

a
f (x) dx − L

∫ b

a
f (x) dx < U(P, f )− L(P, f ) < ε.



5. The Riemann Integral in One Dimension (continued)

Thus the difference between the values of the upper and lower
integrals of f on [a, b] must be less than every strictly positive real
number ε, and therefore

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx .

This completes the proof.



5. The Riemann Integral in One Dimension (continued)

Proposition 5.7

Let f be a bounded real-valued function on the interval [a, c].
Suppose that f is Riemann-integrable on the intervals [a, b] and
[b, c], where a < b < c . Then f is Riemann-integrable on [a, c],
and ∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

Proof
Let some positive real number ε be given. The function f is
Riemann-integrable on the interval [a, b] and therefore there exists
a partition Q of [a, b] such that the lower Darboux sum L(Q, f ) of
f on [a, b] with respect to the partition Q of [a, b] satisfies

L(Q, f ) >

∫ b

a
f (x) dx − 1

2ε.

Similarly there exists a partition R of [b, c] of [a, b] such that the
lower Darboux sum L(Q, f ) of f on [b, c] with respect to the
partition R of [b, c] satisfies

L(R, f ) >

∫ c

b
f (x) dx − 1

2ε.



5. The Riemann Integral in One Dimension (continued)

Now the partitions Q and R combine to give a partition P of the
interval [a, c], where P = Q ∪ R. Indeed Q = {u0, u1, . . . , um},
where u0, u1, . . . , um are real numbers satisfying

a = u0 < u1 < u2 < · · · um−1 < um = b,

and R = {v0, v1, . . . , vn}, where v0, v1, . . . , vn are real numbers
satisfying

b = v0 < v1 < v2 < · · · vn−1 < vn = c .

Then

P = {a, u1, u2, . . . , um−1, b, v1, v2, . . . , vn−1, c}.

It follows directly from the definition of Darboux lower sums that

L(P, f ) = L(Q, f ) + L(R, f ).



5. The Riemann Integral in One Dimension (continued)

The choice of the partitions Q and R then ensures that

L(P, f ) >

∫ b

a
f (x) dx +

∫ c

b
f (x) dx − ε.

The lower Riemann integral L
∫ c

a
f (x) dx is by definition the least

upper bound of the lower Darboux sums of f on the interval [a, c].
It follows that

L
∫ c

a
f (x) dx >

∫ b

a
f (x) dx +

∫ c

b
f (x) dx − ε.

Moreover this inequality holds for all values of the positive real
number ε. It follows that

L
∫ c

a
f (x) dx ≥

∫ b

a
f (x) dx +

∫ c

b
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

Applying this result with the function f replaced by −f yields the
inequality

L
∫ c

a
(−f (x)) dx ≥ −

∫ b

a
f (x) dx −

∫ c

b
f (x) dx .

But

L
∫ c

a
(−f (x)) dx = −U

∫ c

a
f (x) dx

(see Lemma 5.3). It follows that

U
∫ c

a
f (x) dx ≤

∫ b

a
f (x) dx +

∫ c

b
f (x) dx ≤ L

∫ c

a
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

But

L
∫ c

a
f (x) dx ≤ U

∫ c

a
f (x) dx .

It follows that

L
∫ c

a
f (x) dx = U

∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx .

The result follows.



5. The Riemann Integral in One Dimension (continued)

5.3. Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued
function f : [a, b]→ R defined on the closed bounded interval [a, b]
is said to be non-decreasing if f (u) ≤ f (v) for all real numbers u
and v satisfying a ≤ u ≤ v ≤ b. Similarly f : [a, b]→ R is said to
be non-increasing if f (u) ≥ f (v) for all real numbers u and v
satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is said to be
monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 5.8

Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on
[a, b].



5. The Riemann Integral in One Dimension (continued)
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5. The Riemann Integral in One Dimension (continued)

Proof
Let f : [a, b]→ R be a non-decreasing function on the closed
bounded interval [a, b]. Then f (a) ≤ f (x) ≤ f (b) for all x ∈ [a, b],
and therefore the function f is bounded on [a, b]. Let some
positive real number ε be given. Let δ be some strictly positive
real number for which (f (b)− f (a))δ < ε, and let P be a partition
of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

and xi − xi−1 < δ for i = 1, 2, . . . , n.



5. The Riemann Integral in One Dimension (continued)

The maximum and minimum values of f (x) on the interval
[xi−1, xi ] are attained at xi and xi−1 respectively, and therefore the
upper sum U(P, f ) and L(P, f ) of f for the partition P satisfy

U(P, f ) =
n∑

i=1

f (xi )(xi − xi−1)

and

L(P, f ) =
n∑

i=1

f (xi−1)(xi − xi−1).

Now f (xi )− f (xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that



5. The Riemann Integral in One Dimension (continued)
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5. The Riemann Integral in One Dimension (continued)

U(P, f )− L(P, f )

=
n∑

i=1

(f (xi )− f (xi−1))(xi − xi−1)

< δ

n∑
i=1

(f (xi )− f (xi−1)) = δ(f (b)− f (a)) < ε.

We have thus shown that

U
∫ b

a
f (x) dx − L

∫ b

a
f (x) dx < ε

for all strictly positive numbers ε. But

U
∫ b

a
f (x) dx ≥ L

∫ b

a
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

It follows that

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx ,

and thus the function f is Riemann-integrable on [a, b].

Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then
−f is a non-decreasing function on [a, b] and it follows from what
we have just shown that −f is Riemann-integrable on [a, b]. It
follows that the function f itself must be Riemann-integrable on
[a, b], as required.



5. The Riemann Integral in One Dimension (continued)

Corollary 5.9

Let f : [a, b]→ R be a real-valued function on the interval [a, b],
where a and b are real numbers satisfying a < b. Suppose that
there exist real numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

such that the function f restricted to the interval [xi−1, xi ] is
monotonic on [xi−1, xi ] for i = 1, 2, . . . , n. Then f is
Riemann-integrable on [a, b].

Proof
The result follows immediately on applying the results of
Proposition 5.7 and Proposition 5.8.



5. The Riemann Integral in One Dimension (continued)

Remark
The result and proof-strategy of Proposition 5.8 are to be found in
their essentials in Isaac Newton, Philosophiae naturalis principia
mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.



5. The Riemann Integral in One Dimension (continued)

5.4. Integrability of Continuous functions

Theorem 5.10

Let a and b be real numbers satisfying a < b. Then any continuous
real-valued function on the interval [a, b] is Riemann-integrable.

Proof
Let f be a continuous real-valued function on [a, b]. Then f is
bounded above and below on the interval [a, b], and moreover
f : [a, b]→ R is uniformly continuous on [a, b]. (These results
follow from Theorem 4.21 and Theorem 4.22.) Therefore there
exists some strictly positive real number δ such that
|f (x)− f (y)| < ε whenever x , y ∈ [a, b] satisfy |x − y | < δ.



5. The Riemann Integral in One Dimension (continued)

Choose a partition P of the interval [a, b] such that each
subinterval in the partition has length less than δ. Write
P = {x0, x1, . . . , xn}, where a = x0 < x1 < · · · < xn = b. Now if
xi−1 ≤ x ≤ xi then |x − xi | < δ, and hence
f (xi )− ε < f (x) < f (xi ) + ε. It follows that

f (xi )− ε ≤ mi ≤ Mi ≤ f (xi ) + ε (i = 1, 2, . . . , n),

where mi = inf{f (x) : xi−1 ≤ x ≤ xi} and
Mi = sup{f (x) : xi−1 ≤ x ≤ xi}. Therefore

n∑
i=1

f (xi )(xi − xi−1)− ε(b − a)

≤ L(P, f ) ≤ U(P, f )

≤
n∑

i=1

f (xi )(xi − xi−1) + ε(b − a),

where L(P, f ) and U(P, f ) denote the lower and upper sums of the
function f for the partition P.



5. The Riemann Integral in One Dimension (continued)

We have now shown that

0 ≤ U
∫ b

a
f (x) dx−L

∫ b

a
f (x) dx ≤ U(P, f )−L(P, f ) ≤ 2ε(b−a).

But this inequality must be satisfied for any strictly positive real
number ε. Therefore

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx ,

and thus the function f is Riemann-integrable on [a, b].



5. The Riemann Integral in One Dimension (continued)

5.5. The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that
all continuous functions on the interval [a, b] are
Riemann-integrable (see Theorem 5.10). However the task of
calculating the Riemann integral of a continuous function directly
from the definition is difficult if not impossible for all but the
simplest functions. Thus to calculate such integrals one makes use
of the Fundamental Theorem of Calculus.

Theorem 5.11 (The Fundamental Theorem of Calculus)

Let f be a continuous real-valued function on the interval [a, b],
where a < b. Then

d

dx

(∫ x

a
f (t) dt

)
= f (x)

for all x satisfying a < x < b.



5. The Riemann Integral in One Dimension (continued)

Proof
Let some strictly positive real number ε be given, and let ε0 be a
real number chosen so that 0 < ε0 < ε. (For example, one could
choose ε0 = 1

2ε.) Now the function f is continuous at x , where
a < x < b. It follows that there exists some strictly positive real
number δ such that

f (x)− ε0 ≤ f (t) ≤ f (x) + ε0

for all t ∈ [a, b] satisfying x − δ < t < x + δ.



5. The Riemann Integral in One Dimension (continued)

Let F (s) =
∫ s
a f (t) dt for all s ∈ (a, b). Then

F (x + h) =

∫ x+h

a
f (t) dt =

∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt

= F (x) +

∫ x+h

x
f (t) dt

whenever x + h ∈ [a, b]. Also

1

h

∫ x+h

x
f (x) dt =

f (x)

h

∫ x+h

x
dt = f (x),

because f (x) is constant as t varies between x and x + h. It
follows that

F (x + h)− F (x)

h
− f (x) =

1

h

∫ x+h

x
(f (t)− f (x)) dt

whenever x + h ∈ [a, b].



5. The Riemann Integral in One Dimension (continued)

But if 0 < |h| < δ and x + h ∈ [a, b] then

−ε0 ≤ f (t)− f (x) ≤ ε0

for all real numbers t belonging to the closed interval with
endpoints x and x + h, and therefore

−ε0|h| ≤
∫ x+h

x
(f (t)− f (x)) dt ≤ ε0|h|.

It follows that ∣∣∣∣F (x + h)− F (x)

h
− f (x)

∣∣∣∣ ≤ ε0 < ε

whenever x + h ∈ [a, b] and 0 < |h| < δ. We conclude that

d

dx

(∫ x

a
f (t) dt

)
= lim

h→0

F (x + h)− F (x)

h
= f (x),

as required.


	The Real Number System
	Convergence in Euclidean Spaces
	Open and Closed Sets in Euclidean Spaces
	Limits and Continuity for Functions of Several Variables
	The Riemann Integral in One Dimension
	Integrability of Monotonic Functions
	Integrability of Continuous functions
	The Fundamental Theorem of Calculus


