MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 10 (October 19, 2017)

David R. Wilkins

5. The Riemann Integral in One Dimension

5.1. Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was developed by Jean-Gaston Darboux (1842–1917). The integral defined using lower and upper sums in the manner described below is sometimes referred to as the *Darboux integral* of a function on a given interval. However the class of functions that are integrable according to the definitions introduced by Darboux is the class of *Riemann-integrable* functions. Thus the approach using Darboux sums provides a convenient approach to define and establish the basic properties of the *Riemann integral*.

Definition

A partition P of an interval [a, b] is a set $\{x_0, x_1, x_2, \dots, x_n\}$ of real numbers satisfying $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$.

5. The Riemann Integral in One Dimension (continued)

Given any bounded real-valued function f on [a, b], the *upper sum* (or *upper Darboux sum*) U(P, f) of f for the partition P of [a, b] is defined so that

$$U(P, f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}),$$

where $M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}.$

Similarly the *lower sum* (or *lower Darboux sum*) L(P, f) of f for the partition P of [a, b] is defined so that

$$L(P, f) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}),$$

where $m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}.$

Clearly
$$L(P, f) \leq U(P, f)$$
. Moreover $\sum_{i=1}^{n} (x_i - x_{i-1}) = b - a$, and therefore

$$m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a),$$

for any real numbers m and M satisfying $m \le f(x) \le M$ for all $x \in [a, b]$.

5. The Riemann Integral in One Dimension (continued)

Definition

Let f be a bounded real-valued function on the interval [a, b], where a < b. The upper Riemann integral $\mathcal{U} \int_a^b f(x) dx$ (or upper Darboux integral) and the lower Riemann integral $\mathcal{L} \int_a^b f(x) dx$ (or lower Darboux integral) of the function f on [a, b] are defined by

$$\mathcal{U} \int_{a}^{b} f(x) dx = \inf \{ U(P, f) : P \text{ is a partition of } [a, b] \},$$

$$\mathcal{L} \int_{a}^{b} f(x) dx = \sup \{ L(P, f) : P \text{ is a partition of } [a, b] \}.$$

The definition of upper and lower integrals thus requires that $\mathcal{U} \int_a^b f(x) dx$ be the infimum of the values of U(P, f) and that $\mathcal{L} \int_a^b f(x) dx$ be the supremum of the values of L(P, f) as P ranges over all possible partitions of the interval [a, b].

Definition

A bounded function $f : [a, b] \to \mathbb{R}$ on a closed bounded interval [a, b] is said to be *Riemann-integrable* (or *Darboux-integrable*) on [a, b] if

$$\mathcal{U}\int_{a}^{b}f(x)\,dx=\mathcal{L}\int_{a}^{b}f(x)\,dx,$$

in which case the *Riemann integral* $\int_{a}^{b} f(x) dx$ (or *Darboux integral*) of f on [a, b] is defined to be the common value of $\mathcal{U} \int_{a}^{b} f(x) dx$ and $\mathcal{L} \int_{a}^{b} f(x) dx$.

When a > b we define

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$

for all Riemann-integrable functions f on [b, a]. We set $\int_a^b f(x) dx = 0$ when b = a.

If f and g are bounded Riemann-integrable functions on the interval [a, b], and if $f(x) \le g(x)$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$, since $L(P, f) \le L(P, g)$ and $U(P, f) \le U(P, g)$ for all partitions P of [a, b].

Definition

Let *P* and *R* be partitions of [a, b], given by $P = \{x_0, x_1, \ldots, x_n\}$ and $R = \{u_0, u_1, \ldots, u_m\}$. We say that the partition *R* is a *refinement* of *P* if $P \subset R$, so that, for each x_i in *P*, there is some u_j in *R* with $x_i = u_j$.

Lemma 5.1

Let R be a refinement of some partition P of [a, b]. Then

 $L(R, f) \ge L(P, f)$ and $U(R, f) \le U(P, f)$

for any bounded function $f : [a, b] \rightarrow \mathbb{R}$.

Proof

Let $P = \{x_0, x_1, \dots, x_n\}$ and $R = \{u_0, u_1, \dots, u_m\}$, where $a = x_0 < x_1 < \dots < x_n = b$ and $a = u_0 < u_1 < \dots < u_m = b$. Now for each integer *i* between 0 and *n* there exists some integer *j*(*i*) between 0 and *m* such that $x_i = u_{j(i)}$ for each *i*, since *R* is a refinement of *P*. Moreover $0 = j(0) < j(1) < \dots < j(n) = n$. For each *i*, let R_i be the partition of $[x_{i-1}, x_i]$ given by $R_i = \{u_j : j(i-1) \le j \le j(i)\}$. Then $L(R, f) = \sum_{i=1}^n L(R_i, f)$ and $U(R, f) = \sum_{i=1}^n U(R_i, f)$. Moreover

$$m_i(x_i - x_{i-1}) \leq L(R_i, f) \leq U(R_i, f) \leq M_i(x_i - x_{i-1}),$$

since $m_i \leq f(x) \leq M_i$ for all $x \in [x_{i-1}, x_i]$. On summing these inequalities over *i*, we deduce that $L(P, f) \leq L(R, f) \leq U(R, f) \leq U(P, f)$, as required.

Given any two partitions P and Q of [a, b] there exists a partition R of [a, b] which is a refinement of both P and Q. For example, we can take $R = P \cup Q$. Such a partition is said to be a *common refinement* of the partitions P and Q.

Lemma 5.2

Let f be a bounded real-valued function on the interval [a, b]. Then

$$\mathcal{L}\int_a^b f(x)\,dx \leq \mathcal{U}\int_a^b f(x)\,dx.$$

Proof

Let *P* and *Q* be partitions of [a, b], and let *R* be a common refinement of *P* and *Q*. It follows from Lemma 5.1 that $L(P, f) \leq L(R, f) \leq U(R, f) \leq U(Q, f)$. Thus, on taking the supremum of the left hand side of the inequality $L(P, f) \leq U(Q, f)$ as *P* ranges over all possible partitions of the interval [a, b], we see that $\mathcal{L} \int_a^b f(x) dx \leq U(Q, f)$ for all partitions *Q* of [a, b]. But then, taking the infimum of the right hand side of this inequality as *Q* ranges over all possible partitions of [a, b], we see that $\mathcal{L} \int_a^b f(x) dx \leq \mathcal{U} \int_a^b f(x) dx$, as required.

Example

Let f(x) = cx + d, where $c \ge 0$. We shall show that f is Riemann-integrable on [0, 1] and evaluate $\int_0^1 f(x) dx$ from first principles.

For each positive integer *n*, let P_n denote the partition of [0, 1] into *n* subintervals of equal length. Thus $P_n = \{x_0, x_1, \ldots, x_n\}$, where $x_i = i/n$. Now the function *f* takes values between (i - 1)c/n + d and ic/n + d on the interval $[x_{i-1}, x_i]$, and therefore

$$m_i = rac{(i-1)c}{n} + d, \qquad M_i = rac{ic}{n} + a$$

where $m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}$ and $M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}$. Thus

5. The Riemann Integral in One Dimension (continued)

$$L(P_n, f) = \sum_{i=1}^n m_i (x_i - x_{i-1}) = \frac{1}{n} \sum_{i=1}^n \left(\frac{c_i}{n} + d - \frac{c}{n} \right)$$

$$= \frac{c(n+1)}{2n} + d - \frac{c}{n} = \frac{c}{2} + d - \frac{c}{2n},$$

$$U(P_n, f) = \sum_{i=1}^n M_i (x_i - x_{i-1}) = \frac{1}{n} \sum_{i=1}^n \left(\frac{c_i}{n} + d \right)$$

$$= \frac{c(n+1)}{2n} + d = \frac{c}{2} + d + \frac{c}{2n}.$$

It follows that

$$\lim_{n\to+\infty}L(P_n,f)=\frac{c}{2}+d$$

and

$$\lim_{n\to+\infty}U(P_n,f)=\frac{c}{2}+d$$

Now $L(P_n, f) \leq \mathcal{L} \int_a^b f(x) dx \leq \mathcal{U} \int_a^b f(x) dx \leq U(P_n, f)$ for all positive integers *n*. It follows that $\mathcal{L} \int_a^b f(x) dx = \frac{1}{2}c + d = \mathcal{U} \int_a^b f(x) dx$. Thus *f* is Riemann-integrable on the interval [0, 1], and $\int_0^1 f(x) dx = \frac{1}{2}c + d$.

Example

Let $f : [0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Let P be a partition of the interval [0,1] given by $P = \{x_0, x_1, x_2, \dots, x_n\}$, where $0 = x_0 < x_1 < x_2 < \dots < x_n = 1$. Then

$$\inf\{f(x): x_{i-1} \le x \le x_i\} = 0, \qquad \sup\{f(x): x_{i-1} \le x \le x_i\} = 1,$$

for i = 1, 2, ..., n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P of the interval [0, 1]. It follows that $\mathcal{L} \int_0^1 f(x) dx = 0$ and $\mathcal{U} \int_0^1 f(x) dx = 1$, and therefore the function f is not Riemann-integrable on the interval [0, 1].

5.2. Basic Properties of the Riemann Integral

Lemma 5.3

Let $f: [a, b] \to \mathbb{R}$ be a bounded function on a closed bounded interval [a, b], where a and b are real numbers satisfying $a \leq b$. Then the lower and upper Riemann integrals of f and -f are related by the identities

$$\mathcal{U} \int_{a}^{b} (-f(x)) dx = -\mathcal{L} \int_{a}^{b} f(x) dx,$$

$$\mathcal{L} \int_{a}^{b} (-f(x)) dx = -\mathcal{U} \int_{a}^{b} f(x) dx.$$

Proof
Let
$$P = \{x_0, x_1, x_2, \dots, x_n\}$$
, where
 $a = x_0 < x_1 < x_2 < \dots < x_n = b$,

and let

$$m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}, M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}.$$

Then the lower and upper sums of f for the partition P are given by the formulae

$$L(P, f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}), \quad U(P, f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}).$$

Now

$$sup\{-f(x) : x_{i-1} \le x \le x_i\} \\ = -\inf\{f(x) : x_{i-1} \le x \le x_i\} = -m_i, \\ \inf\{-f(x) : x_{i-1} \le x \le x_i\} \\ = -\sup\{f(x) : x_{i-1} \le x \le x_i\} = -M_i$$

It follows that

$$U(P,-f) = \sum_{i=1}^{n} (-m_i)(x_i - x_{i-1}) = -L(P, f),$$

$$L(P,-f) = \sum_{i=1}^{n} (-M_i)(x_i - x_{i-1}) = -U(P, f).$$

We have now shown that

$$U(P, -f) = -L(P, f)$$
 and $L(P, -f) = -U(P, f)$

for all partitions P of the interval [a, b]. Applying the definition of the upper and lower integrals, we see that

$$\mathcal{U} \int_{a}^{b} (-f(x)) dx = \inf \{ U(P, -f) : P \text{ is a partition of } [a, b] \}$$

= $\inf \{ -L(P, f) : P \text{ is a partition of } [a, b] \}$
= $-\sup \{ L(P, f) : P \text{ is a partition of } [a, b] \}$
= $-\mathcal{L} \int_{a}^{b} f(x) dx$

Similarly

$$\mathcal{L} \int_{a}^{b} (-f(x)) dx = \sup \{ L(P, -f) : P \text{ is a partition of } [a, b] \}$$

= $\sup \{ -U(P, f) : P \text{ is a partition of } [a, b] \}$
= $-\inf \{ U(P, f) : P \text{ is a partition of } [a, b] \}$
= $-\mathcal{U} \int_{a}^{b} f(x) dx.$

This completes the proof.

Lemma 5.4

Let $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ be bounded functions on a closed bounded interval [a, b], where a and b are real numbers satisfying $a \le b$, and let P be a partition of the interval [a, b]. Then the lower sums of the functions f, g and f + g satisfy

 $L(P, f + g) \geq L(P, f) + L(P, g),$

and the upper sums of these functions satisfy

 $U(P, f + g) \leq U(P, f) + U(P, g).$

Proof
Let
$$P = \{x_0, x_1, x_2, \dots, x_n\}$$
, where
 $a = x_0 < x_1 < x_2 < \dots < x_n = b.$

Then

$$L(P, f) = \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1}),$$

$$L(P, g) = \sum_{i=1}^{n} m_i(g)(x_i - x_{i-1}),$$

$$L(P, f + g) = \sum_{i=1}^{n} m_i(f + g)(x_i - x_{i-1}),$$

where

$$m_i(f) = \inf\{f(x) : x_{i-1} \le x \le x_i\},\$$

$$m_i(g) = \inf\{g(x) : x_{i-1} \le x \le x_i\},\$$

$$m_i(f+g) = \inf\{f(x) + g(x) : x_{i-1} \le x \le x_i\}$$

for i = 1, 2, ..., n.

Now

$$f(x) \ge m_i(f)$$
 and $g(x) \ge m_i(g)$.

for all $x \in [x_{i-1}, x_i]$. Adding, we see that

$$f(x) + g(x) \ge m_i(f) + m_i(g)$$

for all $x \in [x_{i-1}, x_i]$, and therefore $m_i(f) + m_i(g)$ is a lower bound for the set

$$\{f(x) + g(x) : x_{i-1} \le x \le x_i\}.$$

The greatest lower bound for this set is $m_i(f + g)$. Therefore

$$m_i(f+g) \geq m_i(f) + m_i(g).$$

It follows that

$$L(P, f + g) = \sum_{i=1}^{n} m_i (f + g) (x_i - x_{i-1})$$

$$\geq \sum_{i=1}^{n} (m_i (f) + m_i (g)) (x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} m_i (f) (x_i - x_{i-1}) + \sum_{i=1}^{n} m_i (g) (x_i - x_{i-1})$$

$$= L(P, f) + L(P, g).$$

An analogous argument applies to upper sums. Now

$$U(P,f) = \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1}),$$

$$U(P,g) = \sum_{i=1}^{n} M_i(g)(x_i - x_{i-1}),$$

$$U(P,f+g) = \sum_{i=1}^{n} M_i(f+g)(x_i - x_{i-1}),$$

where

$$\begin{array}{lll} M_i(f) &=& \sup\{f(x): x_{i-1} \leq x \leq x_i\}, \\ M_i(g) &=& \sup\{g(x): x_{i-1} \leq x \leq x_i\}, \\ M_i(f+g) &=& \sup\{f(x) + g(x): x_{i-1} \leq x \leq x_i\} \end{array}$$

for i = 1, 2, ..., n.

Now

$$f(x) \leq M_i(f)$$
 and $g(x) \leq M_i(g)$.

for all $x \in [x_{i-1}, x_i]$. Adding, we see that

$$f(x) + g(x) \le M_i(f) + M_i(g)$$

for all $x \in [x_{i-1}, x_i]$, and therefore $M_i(f) + M_i(g)$ is an upper bound for the set

$${f(x) + g(x) : x_{i-1} \le x \le x_i}.$$

The least upper bound for this set is $M_i(f + g)$. Therefore

$$M_i(f+g) \leq M_i(f) + M_i(g).$$

It follows that

$$U(P, f + g) = \sum_{i=1}^{n} M_i(f + g)(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} (M_i(f) + M_i(g))(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1}) + \sum_{i=1}^{n} M_i(g)(x_i - x_{i-1})$$

$$= U(P, f) + U(P, g).$$

This completes the proof that

$$L(P, f + g) \ge L(P, f) + L(P, g)$$

and

$$U(P, f+g) \leq U(P, f) + U(P, g).$$

Proposition 5.5

Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be bounded Riemann-integrable functions on a closed bounded interval [a, b], where a and b are real numbers satisfying $a \le b$. Then the functions f + g and f - g are Riemann-integrable on [a, b], and moreover

$$\int_a^b (f(x)+g(x))\,dx=\int_a^b f(x)\,dx+\int_a^b g(x)\,dx,$$

and

$$\int_a^b (f(x)-g(x))\,dx=\int_a^b f(x)\,dx-\int_a^b g(x)\,dx.$$

Proof

Let some strictly positive real number ε be given. The definition of Riemann-integrability and the Riemann integral ensures that there exist partitions P and Q of [a, b] for which

$$L(P,f) > \int_a^b f(x) \, dx - \frac{1}{2}\varepsilon$$

and

$$L(Q,g) > \int_a^b g(x) dx - \frac{1}{2}\varepsilon.$$

5. The Riemann Integral in One Dimension (continued)

Let the partition R be a common refinement of the partitions P and Q. Then

$$L(R, f) \ge L(P, f)$$
 and $L(R, g) \ge L(P, g)$.

Applying Lemma 5.4, and the definition of the lower Riemann integral, we see that

$$\mathcal{L} \int_{a}^{b} (f(x) + g(x)) dx$$

$$\geq L(R, f + g) \geq L(R, f) + L(R, g)$$

$$\geq L(P, f) + L(Q, g)$$

$$> \left(\int_{a}^{b} f(x) dx - \frac{1}{2}\varepsilon \right) + \left(\int_{a}^{b} g(x) dx - \frac{1}{2}\varepsilon \right)$$

$$> \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx - \varepsilon$$

We have now shown that

$$\mathcal{L}\int_a^b (f(x) + g(x)) \, dx > \int_a^b f(x) \, dx + \int_a^b g(x) \, dx - \varepsilon$$

for all strictly positive real numbers ε . However the quantities of

$$\mathcal{L}\int_{a}^{b}(f(x)+g(x))\,dx, \quad \int_{a}^{b}f(x)\,dx \quad \text{and} \quad \int_{a}^{b}g(x)\,dx$$

have values that have no dependence whatsoever on the value of $\varepsilon.$ It follows that

$$\mathcal{L}\int_a^b (f(x)+g(x))\,dx\geq \int_a^b f(x)\,dx+\int_a^b g(x)\,dx.$$

5. The Riemann Integral in One Dimension (continued)

We can deduce a corresponding inequality involving the upper integral of f + g by replacing f and g by -f and -g respectively (Lemma 5.3). We find that

$$\mathcal{L}\int_{a}^{b} (-f(x) - g(x)) dx \geq \int_{a}^{b} (-f(x)) dx + \int_{a}^{b} (-g(x)) dx$$
$$= -\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

and therefore

$$\mathcal{U}\int_{a}^{b}(f(x)+g(x))\,dx = -\mathcal{L}\int_{a}^{b}(-f(x)-g(x))\,dx$$
$$\leq \int_{a}^{b}f(x)\,dx + \int_{a}^{b}g(x)\,dx.$$

Combining the inequalities obtained above, we find that

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\leq \mathcal{L} \int_{a}^{b} (f(x) + g(x)) dx$$

$$\leq \mathcal{U} \int_{a}^{b} (f(x) + g(x)) dx$$

$$\leq \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

5. The Riemann Integral in One Dimension (continued)

The quantities at the left and right hand ends of this chain of inequalities are equal to each other. It follows that

$$\mathcal{L} \int_{a}^{b} (f(x) + g(x)) dx = \mathcal{U} \int_{a}^{b} (f(x) + g(x)) dx$$
$$= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

Thus the function f + g is Riemann-integrable on [a, b], and

$$\int_a^b (f(x)+g(x))\,dx=\int_a^b f(x)\,dx+\int_a^b g(x)\,dx.$$

Then, replacing g by -g, we find that

$$\int_a^b (f(x) - g(x)) \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx.$$

as required.