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5. The Riemann Integral in One Dimension

5. The Riemann Integral in One Dimension

5.1. Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was
developed by Jean-Gaston Darboux (1842–1917). The integral
defined using lower and upper sums in the manner described below
is sometimes referred to as the Darboux integral of a function on a
given interval. However the class of functions that are integrable
according to the definitions introduced by Darboux is the class of
Riemann-integrable functions. Thus the approach using Darboux
sums provides a convenient approach to define and establish the
basic properties of the Riemann integral.



5. The Riemann Integral in One Dimension (continued)

Definition

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real
numbers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.



5. The Riemann Integral in One Dimension (continued)

Given any bounded real-valued function f on [a, b], the upper sum
(or upper Darboux sum) U(P, f ) of f for the partition P of [a, b] is
defined so that

U(P, f ) =
n∑

i=1

Mi (xi − xi−1),

where Mi = sup{f (x) : xi−1 ≤ x ≤ xi}.
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5. The Riemann Integral in One Dimension (continued)

Similarly the lower sum (or lower Darboux sum) L(P, f ) of f for
the partition P of [a, b] is defined so that

L(P, f ) =
n∑

i=1

mi (xi − xi−1),

where mi = inf{f (x) : xi−1 ≤ x ≤ xi}.
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5. The Riemann Integral in One Dimension (continued)

Clearly L(P, f ) ≤ U(P, f ). Moreover
n∑

i=1
(xi − xi−1) = b − a, and

therefore

m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a),

for any real numbers m and M satisfying m ≤ f (x) ≤ M for all
x ∈ [a, b].
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5. The Riemann Integral in One Dimension (continued)

Definition

Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a f (x) dx (or upper

Darboux integral) and the lower Riemann integral L
∫ b
a f (x) dx (or

lower Darboux integral) of the function f on [a, b] are defined by

U
∫ b

a
f (x) dx = inf {U(P, f ) : P is a partition of [a, b]} ,

L
∫ b

a
f (x) dx = sup {L(P, f ) : P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that
U
∫ b
a f (x) dx be the infimum of the values of U(P, f ) and that

L
∫ b
a f (x) dx be the supremum of the values of L(P, f ) as P ranges

over all possible partitions of the interval [a, b].



5. The Riemann Integral in One Dimension (continued)

Definition

A bounded function f : [a, b]→ R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on
[a, b] if

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx ,

in which case the Riemann integral
∫ b
a f (x) dx (or Darboux

integral) of f on [a, b] is defined to be the common value of

U
∫ b
a f (x) dx and L

∫ b
a f (x) dx .



5. The Riemann Integral in One Dimension (continued)

When a > b we define∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

for all Riemann-integrable functions f on [b, a]. We set∫ b
a f (x) dx = 0 when b = a.

If f and g are bounded Riemann-integrable functions on the
interval [a, b], and if f (x) ≤ g(x) for all x ∈ [a, b], then∫ b
a f (x) dx ≤

∫ b
a g(x) dx , since L(P, f ) ≤ L(P, g) and

U(P, f ) ≤ U(P, g) for all partitions P of [a, b].



5. The Riemann Integral in One Dimension (continued)

Definition

Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a
refinement of P if P ⊂ R, so that, for each xi in P, there is some
uj in R with xi = uj .

Lemma 5.1

Let R be a refinement of some partition P of [a, b]. Then

L(R, f ) ≥ L(P, f ) and U(R, f ) ≤ U(P, f )

for any bounded function f : [a, b]→ R.



5. The Riemann Integral in One Dimension (continued)

Proof
Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where
a = x0 < x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b.
Now for each integer i between 0 and n there exists some
integer j(i) between 0 and m such that xi = uj(i) for each i , since
R is a refinement of P. Moreover
0 = j(0) < j(1) < · · · < j(n) = n. For each i , let Ri be the
partition of [xi−1, xi ] given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then

L(R, f ) =
n∑

i=1
L(Ri , f ) and U(R, f ) =

n∑
i=1

U(Ri , f ). Moreover

mi (xi − xi−1) ≤ L(Ri , f ) ≤ U(Ri , f ) ≤ Mi (xi − xi−1),

since mi ≤ f (x) ≤ Mi for all x ∈ [xi−1, xi ]. On summing these
inequalities over i , we deduce that
L(P, f ) ≤ L(R, f ) ≤ U(R, f ) ≤ U(P, f ), as required.



5. The Riemann Integral in One Dimension (continued)

Given any two partitions P and Q of [a, b] there exists a
partition R of [a, b] which is a refinement of both P and Q. For
example, we can take R = P ∪ Q. Such a partition is said to be a
common refinement of the partitions P and Q.

Lemma 5.2

Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a
f (x) dx ≤ U

∫ b

a
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

Proof
Let P and Q be partitions of [a, b], and let R be a common
refinement of P and Q. It follows from Lemma 5.1 that
L(P, f ) ≤ L(R, f ) ≤ U(R, f ) ≤ U(Q, f ). Thus, on taking the
supremum of the left hand side of the inequality L(P, f ) ≤ U(Q, f )
as P ranges over all possible partitions of the interval [a, b], we see

that L
∫ b
a f (x) dx ≤ U(Q, f ) for all partitions Q of [a, b]. But

then, taking the infimum of the right hand side of this inequality as
Q ranges over all possible partitions of [a, b], we see that

L
∫ b
a f (x) dx ≤ U

∫ b
a f (x) dx , as required.



5. The Riemann Integral in One Dimension (continued)

Example
Let f (x) = cx + d , where c ≥ 0. We shall show that f is

Riemann-integrable on [0, 1] and evaluate
∫ 1
0 f (x) dx from first

principles.
For each positive integer n, let Pn denote the partition of [0, 1] into
n subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where
xi = i/n. Now the function f takes values between (i − 1)c/n + d
and ic/n + d on the interval [xi−1, xi ], and therefore

mi =
(i − 1)c

n
+ d , Mi =

ic

n
+ d

where mi = inf{f (x) : xi−1 ≤ x ≤ xi} and
Mi = sup{f (x) : xi−1 ≤ x ≤ xi}. Thus
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L(Pn, f ) =
n∑

i=1

mi (xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d − c

n

)
=

c(n + 1)

2n
+ d − c

n
=

c

2
+ d − c

2n
,

U(Pn, f ) =
n∑

i=1

Mi (xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n + 1)

2n
+ d =

c

2
+ d +

c

2n
.
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It follows that
lim

n→+∞
L(Pn, f ) =

c

2
+ d

and
lim

n→+∞
U(Pn, f ) =

c

2
+ d

Now L(Pn, f ) ≤ L
∫ b
a f (x) dx ≤ U

∫ b
a f (x) dx ≤ U(Pn, f ) for all

positive integers n. It follows that
L
∫ b
a f (x) dx = 1

2c + d = U
∫ b
a f (x) dx . Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1
0 f (x) dx = 1

2c + d .



5. The Riemann Integral in One Dimension (continued)

Example
Let f : [0, 1]→ R be the function defined by

f (x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by
P = {x0, x1, x2, . . . , xn}, where 0 = x0 < x1 < x2 < · · · < xn = 1.
Then

inf{f (x) : xi−1 ≤ x ≤ xi} = 0, sup{f (x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f ) = 0 and U(P, f ) = 1 for all

partitions P of the interval [0, 1]. It follows that L
∫ 1
0 f (x) dx = 0

and U
∫ 1
0 f (x) dx = 1, and therefore the function f is not

Riemann-integrable on the interval [0, 1].



5. The Riemann Integral in One Dimension (continued)

5.2. Basic Properties of the Riemann Integral

Lemma 5.3

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b.
Then the lower and upper Riemann integrals of f and −f are
related by the identities

U
∫ b

a
(−f (x)) dx = −L

∫ b

a
f (x) dx ,

L
∫ b

a
(−f (x)) dx = −U

∫ b

a
f (x) dx .



5. The Riemann Integral in One Dimension (continued)

Proof
Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

mi = inf{f (x) : xi−1 ≤ x ≤ xi},
Mi = sup{f (x) : xi−1 ≤ x ≤ xi}.

Then the lower and upper sums of f for the partition P are given
by the formulae

L(P, f ) =
n∑

i=1

mi (xi − xi−1), U(P, f ) =
n∑

i=1

Mi (xi − xi−1).



5. The Riemann Integral in One Dimension (continued)

Now

sup{−f (x) : xi−1 ≤ x ≤ xi}
= − inf{f (x) : xi−1 ≤ x ≤ xi} = −mi ,

inf{−f (x) : xi−1 ≤ x ≤ xi}
= − sup{f (x) : xi−1 ≤ x ≤ xi} = −Mi

It follows that

U(P,−f ) =
n∑

i=1

(−mi )(xi − xi−1) = −L(P, f ),

L(P,−f ) =
n∑

i=1

(−Mi )(xi − xi−1) = −U(P, f ).



5. The Riemann Integral in One Dimension (continued)

We have now shown that

U(P,−f ) = −L(P, f ) and L(P,−f ) = −U(P, f )

for all partitions P of the interval [a, b]. Applying the definition of
the upper and lower integrals, we see that

U
∫ b

a
(−f (x)) dx = inf {U(P,−f ) : P is a partition of [a, b]}

= inf {−L(P, f ) : P is a partition of [a, b]}
= − sup {L(P, f ) : P is a partition of [a, b]}

= −L
∫ b

a
f (x) dx



5. The Riemann Integral in One Dimension (continued)

Similarly

L
∫ b

a
(−f (x)) dx = sup {L(P,−f ) : P is a partition of [a, b]}

= sup {−U(P, f ) : P is a partition of [a, b]}
= − inf {U(P, f ) : P is a partition of [a, b]}

= −U
∫ b

a
f (x) dx .

This completes the proof.



5. The Riemann Integral in One Dimension (continued)

Lemma 5.4

Let f : [a, b]→ R and g : [a, b]→ R be bounded functions on a
closed bounded interval [a, b], where a and b are real numbers
satisfying a ≤ b, and let P be a partition of the interval [a, b].
Then the lower sums of the functions f , g and f + g satisfy

L(P, f + g) ≥ L(P, f ) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f ) + U(P, g).



5. The Riemann Integral in One Dimension (continued)

Proof
Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f ) =
n∑

i=1

mi (f )(xi − xi−1),

L(P, g) =
n∑

i=1

mi (g)(xi − xi−1),

L(P, f + g) =
n∑

i=1

mi (f + g)(xi − xi−1),



5. The Riemann Integral in One Dimension (continued)

where

mi (f ) = inf{f (x) : xi−1 ≤ x ≤ xi},
mi (g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi (f + g) = inf{f (x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.
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Now
f (x) ≥ mi (f ) and g(x) ≥ mi (g).

for all x ∈ [xi−1, xi ]. Adding, we see that

f (x) + g(x) ≥ mi (f ) + mi (g)

for all x ∈ [xi−1, xi ], and therefore mi (f ) + mi (g) is a lower bound
for the set

{f (x) + g(x) : xi−1 ≤ x ≤ xi}.

The greatest lower bound for this set is mi (f + g). Therefore

mi (f + g) ≥ mi (f ) + mi (g).



5. The Riemann Integral in One Dimension (continued)

It follows that

L(P, f + g) =
n∑

i=1

mi (f + g)(xi − xi−1)

≥
n∑

i=1

(mi (f ) + mi (g))(xi − xi−1)

=
n∑

i=1

mi (f )(xi − xi−1) +
n∑

i=1

mi (g)(xi − xi−1)

= L(P, f ) + L(P, g).



5. The Riemann Integral in One Dimension (continued)

An analogous argument applies to upper sums. Now

U(P, f ) =
n∑

i=1

Mi (f )(xi − xi−1),

U(P, g) =
n∑

i=1

Mi (g)(xi − xi−1),

U(P, f + g) =
n∑

i=1

Mi (f + g)(xi − xi−1),



5. The Riemann Integral in One Dimension (continued)

where

Mi (f ) = sup{f (x) : xi−1 ≤ x ≤ xi},
Mi (g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi (f + g) = sup{f (x) + g(x) : xi−1 ≤ x ≤ xi}

for i = 1, 2, . . . , n.



5. The Riemann Integral in One Dimension (continued)

Now
f (x) ≤ Mi (f ) and g(x) ≤ Mi (g).

for all x ∈ [xi−1, xi ]. Adding, we see that

f (x) + g(x) ≤ Mi (f ) + Mi (g)

for all x ∈ [xi−1, xi ], and therefore Mi (f ) + Mi (g) is an upper
bound for the set

{f (x) + g(x) : xi−1 ≤ x ≤ xi}.

The least upper bound for this set is Mi (f + g). Therefore

Mi (f + g) ≤ Mi (f ) + Mi (g).
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It follows that

U(P, f + g) =
n∑

i=1

Mi (f + g)(xi − xi−1)

≤
n∑

i=1

(Mi (f ) + Mi (g))(xi − xi−1)

=
n∑

i=1

Mi (f )(xi − xi−1) +
n∑

i=1

Mi (g)(xi − xi−1)

= U(P, f ) + U(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f ) + L(P, g)

and
U(P, f + g) ≤ U(P, f ) + U(P, g).
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Proposition 5.5

Let f : [a, b]→ R and g : [a, b]→ R be bounded
Riemann-integrable functions on a closed bounded interval [a, b],
where a and b are real numbers satisfying a ≤ b. Then the
functions f + g and f − g are Riemann-integrable on [a, b], and
moreover∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx ,

and ∫ b

a
(f (x)− g(x)) dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx .
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Proof
Let some strictly positive real number ε be given. The definition of
Riemann-integrability and the Riemann integral ensures that there
exist partitions P and Q of [a, b] for which

L(P, f ) >

∫ b

a
f (x) dx − 1

2ε

and

L(Q, g) >

∫ b

a
g(x) dx − 1

2ε.
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Let the partition R be a common refinement of the partitions P
and Q. Then

L(R, f ) ≥ L(P, f ) and L(R, g) ≥ L(P, g).

Applying Lemma 5.4, and the definition of the lower Riemann
integral, we see that

L
∫ b

a
(f (x) + g(x)) dx

≥ L(R, f + g) ≥ L(R, f ) + L(R, g)

≥ L(P, f ) + L(Q, g)

>

(∫ b

a
f (x) dx − 1

2ε

)
+

(∫ b

a
g(x) dx − 1

2ε

)
>

∫ b

a
f (x) dx +

∫ b

a
g(x) dx − ε
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We have now shown that

L
∫ b

a
(f (x) + g(x)) dx >

∫ b

a
f (x) dx +

∫ b

a
g(x) dx − ε

for all strictly positive real numbers ε. However the quantities of

L
∫ b

a
(f (x) + g(x)) dx ,

∫ b

a
f (x) dx and

∫ b

a
g(x) dx

have values that have no dependence whatsoever on the value of ε.
It follows that

L
∫ b

a
(f (x) + g(x)) dx ≥

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .
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We can deduce a corresponding inequality involving the upper
integral of f + g by replacing f and g by −f and −g respectively
(Lemma 5.3). We find that

L
∫ b

a
(−f (x)− g(x)) dx ≥

∫ b

a
(−f (x)) dx +

∫ b

a
(−g(x)) dx

= −
∫ b

a
f (x) dx −

∫ b

a
g(x) dx

and therefore

U
∫ b

a
(f (x) + g(x)) dx = −L

∫ b

a
(−f (x)− g(x)) dx

≤
∫ b

a
f (x) dx +

∫ b

a
g(x) dx .
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Combining the inequalities obtained above, we find that∫ b

a
f (x) dx +

∫ b

a
g(x) dx

≤ L
∫ b

a
(f (x) + g(x)) dx

≤ U
∫ b

a
(f (x) + g(x)) dx

≤
∫ b

a
f (x) dx +

∫ b

a
g(x) dx .
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The quantities at the left and right hand ends of this chain of
inequalities are equal to each other. It follows that

L
∫ b

a
(f (x) + g(x)) dx = U

∫ b

a
(f (x) + g(x)) dx

=

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

Thus the function f + g is Riemann-integrable on [a, b], and∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .

Then, replacing g by −g , we find that∫ b

a
(f (x)− g(x)) dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx .

as required.
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