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4. Limits and Continuity for Functions of Several Variables (continued)

4.3. Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a
function from X to Y . We recall that the function f is continuous
at a point p of X if, given any ε > 0, there exists some δ > 0 such
that |f (x)− f (p)| < ε for all points x of X satisfying |x− p| < δ.
Thus the function f : X → Y is continuous at p if and only if,
given any ε > 0, there exists some δ > 0 such that the function f
maps BX (p, δ) into BY (f (p), ε) (where BX (p, δ) and BY (f (p), ε)
denote the open balls in X and Y of radius δ and ε about p and
f (p) respectively).
Given any function f : X → Y , we denote by f −1(V ) the preimage
of a subset V of Y under the map f , defined by
f −1(V ) = {x ∈ X : f (x) ∈ V }.
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Proposition 4.18

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a
function from X to Y . The function f is continuous if and only if
f −1(V ) is open in X for every open subset V of Y .

Proof
Suppose that f : X → Y is continuous. Let V be an open set
in Y . We must show that f −1(V ) is open in X . Let p ∈ f −1(V ).
Then f (p) ∈ V . But V is open, hence there exists some ε > 0
with the property that BY (f (p), ε) ⊂ V . But f is continuous at p.
Therefore there exists some δ > 0 such that f maps BX (p, δ) into
BY (f (p), ε) (see the remarks above). Thus f (x) ∈ V for all
x ∈ BX (p, δ), showing that BX (p, δ) ⊂ f −1(V ). This shows that
f −1(V ) is open in X for every open set V in Y .
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Conversely suppose that f : X → Y is a function with the property
that f −1(V ) is open in X for every open set V in Y . Let p ∈ X .
We must show that f is continuous at p. Let ε > 0 be given.
Then BY (f (p), ε) is an open set in Y , by Lemma 3.1, hence
f −1 (BY (f (p), ε)) is an open set in X which contains p. It follows
that there exists some δ > 0 such that
BX (p, δ) ⊂ f −1 (BY (f (p), ε)). Thus, given any ε > 0, there exists
some δ > 0 such that f maps BX (p, δ) into BY (f (p), ε). We
conclude that f is continuous at p, as required.
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4. Limits and Continuity for Functions of Several Variables (continued)

Let X be a subset of Rn, let f : X → R be continuous, and let c
be some real number. Then the sets {x ∈ X : f (x) > c} and
{x ∈ X : f (x) < c} are open in X , and, given real numbers a and
b satisfying a < b, the set {x ∈ X : a < f (x) < b} is open in X .
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4.4. Limits and Neighbourhoods

Definition

Let X be a subset of m-dimensional Euclidean space Rm, and let p
be a point of X . A subset N of X is said to be a neighbourhood of
p in X if there exists some strictly positive real number δ for which

{x ∈ X : |x− p| < δ} ⊂ N.
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Lemma 4.19

Let X be a subset of m-dimensional Euclidean space Rm, and let p
be a point of X that is not an isolated point of X . Let f : X → Rn

be a function mapping X into some Euclidean space Rn, and let
q ∈ Rn. Then

lim
x→p

f (x) = q

if and only if, given any positive real number ε, there exists a
neighbourhood N of p in X such that

|f (x)− q| < ε

for all points x of N that satisfy x 6= p.

Proof
This result follows directly from the definitions of limits and
neighbourhoods.
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Remark
Let X be a subset of m-dimensional Euclidean space Rm, and let p
be a limit point of X that does not belong to X . Let f : X → Rn

be a function mapping X into some Euclidean space Rn, and let
q ∈ Rn. Then

lim
x→p

f (x) = q

if and only if, given any positive real number ε, there exists a
neighbourhood N of p in X ∪ {p} such that

|f (x)− q| < ε

for all points x of N that satisfy x 6= p. Thus the result of
Lemma 4.19 can be extended so as to apply to limits of functions
taken at limit points of the domain that do not belong to the
domain of the function.
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4.5. The Multidimensional Extreme Value Theorem

Proposition 4.20

Let X be a closed bounded set in Rm, and let f : X → Rn be a
continuous function mapping X into Rn. Then there exists a point
w of X such that |f (x)| ≤ |f (w)| for all x ∈ X.

Proof
Let g : X → R be defined such that

g(x) =
1

1 + |f (x)|

for all x ∈ X . Now the function mapping each x ∈ X to |f (x)| is
continuous (see Lemma 4.6) and quotients of continuous functions
are continuous where they are defined (see Lemma 4.5). It follows
that the function g : X → R is continuous.
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Let
m = inf{g(x) : x ∈ X}.

Then there exists an infinite sequence x1, x2, x3, . . . in X such that

g(xj) < m +
1

j

for all positive integers j . It follows from the multidimensional
Bolzano-Weierstrass Theorem (Theorem 2.6) that this sequence
has a subsequence xk1 , xk2 , xk3 , . . . which converges to some point
w of Rn.
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Now the point w belongs to X because X is closed (see
Lemma 3.7). Also

m ≤ g(xkj ) < m +
1

kj

for all positive integers j . It follows that g(xkj )→ m as j → +∞.
It then follows from Lemma 4.2 that

g(w) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj ) = m.

Then g(x) ≥ g(w) for all x ∈ X , and therefore |f (x)| ≤ |f (w)| for
all x ∈ X , as required.
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Theorem 4.21 (The Multidimensional Extreme Value
Theorem)

Let X be a closed bounded set in Rm, and let f : X → R be a
continuous real-valued function defined on X . Then there exist
points u and v of X such that f (u) ≤ f (x) ≤ f (v) for all x ∈ X.
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Proof
It follows from Proposition 4.20 that the function f is bounded on
X . It follows that there exists a real number C large enough to
ensure that f (x) + C > 0 for all x ∈ X . It then follows from
Proposition 4.20 that there exists some point v of X such that

f (x) + C ≤ f (v) + C .

for all x ∈ X . But then f (x) ≤ f (v) for all x ∈ X . Applying this
result with f replaced by −f , we deduce that there exists some
u ∈ X such that −f (x) ≤ −f (u) for all x ∈ X . The result
follows.
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4.6. Uniform Continuity for Functions of Several Real Variables

Definition

Let X be a subset of Rm. A function f : X → Rn from X to Rn is
said to be uniformly continuous if, given any ε > 0, there exists
some δ > 0 (which does not depend on either x′ or x) such that
|f (x′)− f (x)| < ε for all points x′ and x of X satisfying |x′−x| < δ.

Theorem 4.22

Let X be a subset of Rm that is both closed and bounded. Then
any continuous function f : X → Rn is uniformly continuous.
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Proof
Let ε > 0 be given. Suppose that there did not exist any δ > 0
such that |f (x′)− f (x)| < ε for all points x′, x ∈ X satisfying
|x′ − x| < δ. Then, for each positive integer j , there would exist
points uj and vj in X such that |uj − vj | < 1/j and
|f (uj)− f (vj)| ≥ ε. But the sequence u1,u2,u3, . . . would be
bounded, since X is bounded, and thus would possess a
subsequence uj1 ,uj2 ,uj3 , . . . converging to some point p
(Theorem 2.6). Moreover p ∈ X , since X is closed. The sequence
vj1 , vj2 , vj3 , . . . would also converge to p, since

lim
k→+∞

|vjk − ujk | = 0.
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But then the sequences

f (uj1), f (uj2), f (uj3), . . .

and
f (vj1), f (vj2), f (vj3), . . .

would both converge to f (p), since f is continuous (Lemma 4.2),
and thus

lim
k→+∞

|f (ujk )− f (vjk )| = 0.

But this is impossible, since uj and vj have been chosen so that

|f (uj)− f (vj)| ≥ ε

for all j . We conclude therefore that there must exist some positive
real number δ such that such that |f (x′)− f (x)| < ε for all points
x′, x ∈ X satisfying |x′ − x| < δ, as required.
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4.7. Norms on Vector Spaces

Definition

A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number
‖x‖, such that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X ,

(ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x , y ∈ X ,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X , ‖.‖) consists of a a real or complex
vector space X , together with a norm ‖.‖ on X .
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The Euclidean norm |.| is a norm on Rn defined so that

|(x1, x2, . . . , xn)| =
√

x21 + x22 + · · · x2n

for all (x1, x2, . . . , xn). There are other useful norms on Rn. These
include the norms ‖.‖1 and ‖.‖sup, where

‖(x1, x2, . . . , xn)‖1 = |x1|+ |x2|+ · · ·+ |xn|

and

‖(x1, x2, . . . , xn)‖sup = maximum(|x1|, |x2|, . . . , |xn|)

for all (x1, x2, . . . , xn).
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Definition

Let ‖.‖ and ‖.‖∗ be norms on a real vector space X . The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist
constants c and C , where 0 < c ≤ C , such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X .

Lemma 4.23

If two norms on a real vector space are equivalent to a third norm
then they are equivalent to each other.
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Proof
let ‖.‖∗ and ‖.‖∗∗ be norms on a real vector space X that are both
equivalent to a norm ‖.‖ on X . Then there exist constants c∗, c∗∗,
C∗ and C∗∗, where 0 < c∗ ≤ C∗ and 0 < c∗∗ ≤ C∗∗, such that

c∗‖x‖ ≤ ‖x‖∗ ≤ C∗‖x‖

and
c∗∗‖x‖ ≤ ‖x‖∗∗ ≤ C∗∗‖x‖

for all x ∈ X . But then

c∗∗
C∗
‖x‖∗ ≤ ‖x‖∗∗ ≤

C∗∗
c∗
‖x‖∗.

for all x ∈ X , and thus the norms ‖.‖∗ and ‖.‖∗∗ are equivalent to
one another. The result follows.
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We shall show that all norms on a finite-dimensional real vector
space are equivalent.

Lemma 4.24

Let ‖.‖ be a norm on Rn. Then there exists a positive real
number C with the property that ‖x‖ ≤ C |x| for all x ∈ Rn.

Proof
Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · ,

en = (0, 0, 0, . . . , 1).

Let x be a point of Rn, where

x = (x1, x2, . . . , xn).
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Using Schwarz’s Inequality, we see that

‖x‖ =

∥∥∥∥∥∥
n∑

j=1

xjej

∥∥∥∥∥∥ ≤
n∑

j=1

|xj | ‖ej‖

≤

 n∑
j=1

x2j

 1
2
 n∑

j=1

‖ej‖2
 1

2

= C |x|,

where
C 2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

and

|x| =

 n∑
j=1

x2j

 1
2

for all (x1, x2, . . . , xn) ∈ Rn. The result follows.
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Lemma 4.25

Let ‖.‖ be a norm on Rn. Then there exists a positive constant C
such that ∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ≤ C |x− y|

for all x, y ∈ Rn.

Proof
Let x, y ∈ Rn. Then

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.
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It follows that
‖x‖ − ‖y‖ ≤ ‖x− y‖

and
‖y‖ − ‖x‖ ≤ ‖x− y‖,

and therefore ∣∣∣∣‖y‖ − ‖x‖∣∣∣∣ ≤ ‖x− y‖

for all x, y ∈ Rn. The result therefore follows from
Lemma 4.24.
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Theorem 4.26

Any two norms on Rn are equivalent.

Proof
Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm |.|. Let Sn−1 denote the unit sphere in Rn, defined
by

Sn−1 = {x ∈ Rn : |x| = 1}.

Now it follows from Lemma 4.25 that the function x 7→ ‖x‖ is
continuous. Also Sn−1 is a compact subset of Rn, since it is both
closed and bounded. It therefore follows from the Extreme Value
Theorem (Theorem 4.21) that there exist points u and v of Sn−1

such that ‖u‖ ≤ ‖x‖ ≤ ‖v‖ for all x ∈ Sn−1. Set c = ‖u‖ and
C = ‖v‖. Then 0 < c ≤ C (since it follows from the definition of
norms that the norm of any non-zero element of Rn is necessarily
non-zero).
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If x is any non-zero element of Rn then λx ∈ Sn−1, where
λ = 1/|x|. But ‖λx‖ = |λ| ‖x‖ (see the the definition of norms).
Therefore c ≤ |λ| ‖x‖ ≤ C , and hence c|x| ≤ ‖x‖ ≤ C |x| for all
x ∈ Rn, showing that the norm ‖.‖ is equivalent to the Euclidean
norm |.| on Rn. If two norms on a vector space are equivalent to a
third norm, then they are equivalent to each other. It follows that
any two norms on Rn are equivalent, as required.
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