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4. Limits and Continuity for Functions of Several Variables (continued)

Definition

Let f: X — R" be a function mapping some subset X of
m-dimensional Euclidean space R into R”, and let p be a limit
point of X. We say that f(x) remains bounded as x tends to p in
X if strictly positive constants C and § can be determined so that
|f(x)| < C for all x € X satisfying 0 < |x — p| < .

| \

Proposition 4.9

Let f: X — R" be a function mapping some subset X of R™ into

R", let h: X — R be a real-valued function on X, and let p be a

limit point of X. Suppose that lim f(x) = 0. Suppose also that
X—p

h(x) remains bounded as x tends to p in X. Then

lim (h(x)f(x)) —0.

x—p

N




4. Limits and Continuity for Functions of Several Variables (continued)

Proof

Let some strictly positive real number € be given. Now h(x)
remains bounded as x tends to p in X, and therefore positive
constants C and Jp can be determined so that |h(x)| < C for all

x € X satisfying 0 < [x — p| < dp. A strictly positive real

number €g can then be chosen small enough to ensure that

Ceg < €. There then exists a strictly positive real number 41 that is
small enough to ensure that |f(x)| < g¢9 whenever 0 < |x — p| < J7.
Let  be the minimum of dg and §1. Then § > 0, and if

0 < |x — p| < ¢ then |h(x)| < C and |f(x)| < €0, and therefore

|h(x)f(x)] < Ceg < €.

The result follows. |



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.10

Let f: X — R" be a function mapping some subset X of R™ into

R", let h: X — R be a real-valued function on X, and let p be a

limit point of X. Suppose that Ii_r}n h(x) = 0. Suppose also that
x—p

f(x) remains bounded as x tends to p in X. Then

lim (h(x)f(x)) = 0.

x—p




4. Limits and Continuity for Functions of Several Variables (continued)

Proof

Let some strictly positive real number € be given. Now f(x)
remains bounded as x tends to p in X, and therefore positive
constants C and dp can be determined such that |f(x)| < C for all
x € X satisfying 0 < [x — p| < dp. A strictly positive real

number €g can then be chosen small enough to ensure that

Ceg < €. There then exists a strictly positive real number 41 that is
small enough to ensure that |h(x)| < g9 whenever 0 < |x — p| < I7.
Let  be the minimum of dg and d1. Then 6 > 0, and if

0 < |x —p| < ¢ then |f(x)| < C and |h(x)| < €0, and therefore

|h(x)f(x)] < Ceg < e.

The result follows. |



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.11

Let X be a subset of R™, let f: X — R" and g: X — R" be

functions mapping X into R", and let p be a limit point of X.

Suppose that Ii_r;n f(x) = 0. Suppose also that g(x) remains
x—p

bounded as x tends to p in X. Then

lim (f(x) -g(x)) = 0.

X—p




4. Limits and Continuity for Functions of Several Variables (continued)

Proof

Let some strictly positive real number € be given. Now g(x)
remains bounded as x tends to p in X, and therefore positive
constants C and dg can be determined such that |g(x)| < C for all
x € X satisfying 0 < |x — p| < dp. A strictly positive real

number g can then be chosen small enough to ensure that

Cep < &. There then exists a strictly positive real number §; that
is small enough to ensure that |f(x)| < g9 whenever

0 < |x —p| < d1. Let & be the minimum of dp and §1. Then 6 > 0,
and if 0 < |[x — p| < 0 then |[f(x)| < g and |g(x)| < C. It then
follows from Schwarz's Inequality (Proposition 2.1) that

(%) - g(¥)| < [F(x)|[g(x)] < Ceo <.

The result follows. |



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.12

Let X be a subset of R™, let f: X — R" be a function mapping X
into R", let h: X — R be a real-valued function on X, let p be a
limit point of X, let q be a point of R" and let s be a real number.
Suppose that

lim f(x) =q
and

)!i_r)np h(x) = s.
Then

lim h(x)f(x) = sq.

X—p




4. Limits and Continuity for Functions of Several Variables (continued)

Proof
The functions f and h satisfy the equation

h(x)f(x) = h(x) (F(x) — @) + (h(x) — s)a + sa,
where

)llnp(f(x) - q) ~—0 and x@p(h(x) - s> ~0.
Moreover there exists a strictly positive constant g such that
|h(x) —s| < 1 for all x € X satisfying 0 < |x — p| < dp. But it then
follows from the Triangle Inequality that |h(x)| < |s| + 1 for all
x € X satisfying 0 < |x — p| < dg. Thus h(x) remains bounded as
x tends to p in X. It follows that

fim (A(x)(F(x) — @) = 0

x—p

(see Proposition 4.10).



4. Limits and Continuity for Functions of Several Variables (continued)

Similarly
lim (h(x) —s)gq=0.
X—p
It follows that
lim (H(x)£(x))
= Jim (hx)(F(x) ~ @) + Jim ((h(x) ~s)a) +sq
= 0+ sq,

as required. ||



4. Limits and Continuity for Functions of Several Variables (continued)

Lemma 4.13

Let X and Y be subsets of R™ and R" respectively, let p be a limit
point of X, let q be a point of Y, let f: X — Y be a function
satisfying f(X) C Y, and let g: Y — R¥ be a function from Y to

RK. Suppose that
lim f(x) =q

X—p

and that the function g is continuous at . Then

lim &(£()) = £(a).




4. Limits and Continuity for Functions of Several Variables (continued)

Proof
Let € > 0 be given. Then there exists some 1 > 0 such that
lg(y) — g(q)| < e for all y € Y satisfying |y — q| < 7, because the
function g is continuous at q. But then there exists some § > 0
such that |f(x) — q| < 7 for all x € X satisfying 0 < |[x — p| <. It
follows that |g(f(x)) — g(q)| < € for all x € X satisfying
0 < |x —p| <6, and thus

lim g((x)) = g(a),

x—p

as required. ||



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.14

Let X be a subset of R™, let f: X — R" and g: X — R" be
functions mapping X into R", let p be a limit point of X, and let q
and r be points of R". Suppose that

lim f(x) =q
and

lim g(x) =r.
Then

lim (f(x) - g(x)) =q-r.

x—p




4. Limits and Continuity for Functions of Several Variables (continued)

Proof
The functions f and g satisfy the equation

f(x)-g(x) = (f(x) —a) - g(x) +a- (g(x) —r) +aq-r,

lim (f(x) - q) =0 and lim (g(x) — r) =0.
X—p X—p
Moreover there exists a strictly positive constant Jdp such that
lg(x) —r| <1 for all x € X satisfying 0 < |x — p| < dp. But it then
follows from the Triangle Inequality that [g(x)| < |r| + 1 for all

x € X satisfying 0 < |[x — p| < dp. Thus g(x) remains bounded as
x tends to p in X. It follows that

lim ((f(x) - q) -g(x)) =0

X—p

(see Proposition 4.11).



4. Limits and Continuity for Functions of Several Variables (continued)

Similarly

lim (a- (g0 —r)) = 0.

It follows that

lim (f(x) - (x))

= Jm ((f(x) - q> 'g(x)) + Jim (q' (g(X) - r)) +q-r
= q-r,

as required. |



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.15

Let X be a subset of R™, let f: X - R and g: X — R be
real-valued functions on X, and let p be a limit point of the set X.
Suppose that Ii_r;n f(x) and Ii_r)n g(x) both exist. Then so do

X—p X—p

lim (F(x) + £(x)), lim (F(x) — g(x)) and Jim (F(x)g(x)), and
I () +800) = Jiy 09 + i ()
lim (F(x) = g(x)) = Jim £(x) ~ lim g(x)
lim (F()g(x)) = Jim £(x) x lim g(x)




4. Limits and Continuity for Functions of Several Variables (continued)

If moreover g(x) # 0 for all x € X and Ii_n>1 g(x) # 0 then
x—p

lim fx) = li_’;”p f(X).
=5 g(x)  Jim g()

First Proof
It follows from Proposition 4.8 (applied in the case when the target
space is one-dimensional) that

im (F(x) + g(x)) = fim £(x) + Jim g(x).

X—p

Replacing the function g by —g, we deduce that

lim (f(x) — g(x)) = )li_r;np f(x) — lim g(x).

X—p X—p



4. Limits and Continuity for Functions of Several Variables (continued)

It follows from Proposition 4.12 (applied in the case when the
target space is one-dimensional), or alternatively from
Proposition 4.14, that

lim (f(x)g(x)) = lim f(x) x lim g(x).

X—p X—p X—p

Now suppose that g(x) # 0 for all x € X and that lim g(x) # 0.
X—p

Let e: R\ {0} — R be the reciprocal function defined so that
e(t) = 1/t for all non-zero real numbers t. Then the reciprocal
function e is continuous. Applying the result of Lemma 4.13, we
find that

. 1 = lim x)) = im X :#
i, gt ) = (Jst) = oy



4. Limits and Continuity for Functions of Several Variables (continued)

It follows that

li X) . )l!)np f(X)
o g(x)  Jim g(x)’

as required. ||



4. Limits and Continuity for Functions of Several Variables (continued)

Second Proof
Let ¢ = lim f(x) and r = lim g(x), and let h: X — R? be defined
X—p

X—p
such that

for all x € X. Then
lim h(x) = (g, )

x—p

(see Proposition 4.7).



4. Limits and Continuity for Functions of Several Variables (continued)

Let s: R? —+ R and m: R? — R be the functions from R? to R
defined such that s(u,v) = u+ v and m(u, v) = uv for all

u,v € R. Then the functions s and m are continuous (see

Lemma 4.4). Also f + g=sohand f-g=mof. It follows from

this that
i (F() +8()) = lim s(£(x), 80) = Jim s(h(x)
= s (Jignp h(X)> =s(q,m)=q+r,
and
lim (F()g(x) = lim m(F(x),g(x)) = lim m(h(x)
= (i h) ) = m(a.r) = ar

(see Lemma 4.13).



4. Limits and Continuity for Functions of Several Variables (continued)

Also
lim(—g(x)) = —r.

x—p
It follows that
m(f(x) —g(x))=q—r.

o
Now suppose that g(x) # 0 for all x € X and that Ii_r)n g(x) #0.
x—p

Representing the function sending x € X to 1/g(x) as the
composition of the function g and the reciprocal function
e: R\ {0} — R, where e(t) = 1/t for all non-zero real numbers t,
we find, as in the first proof, that the function sending each point

x of X to
lim i = E
X—p g(x) - r'

It then follows that

as required. ||



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.16

Let X and Y be subsets of R™ and R" respectively, and let

f: X — Y and g: Y — R¥ be functions satisfying f(X) C Y. Let
p be a limit point of X in R™, let q be a limit point of Y in R" let
r be a point of R¥. Suppose that the following three conditions are
satisfied:

(i) Jim F(x) = a;
i i —
(ii) lim g(y)
(iii) there exists some positive real number 0y such that f(x) # q
for all x € X satisfying 0 < |x — p| < do.

Then
lim g(f(x)) =r.

X—p




4. Limits and Continuity for Functions of Several Variables (continued)

Proof

Let some positive real number € be given. Then there exists some
positive real number 7 such that |g(y) — r| < € whenevery € Y
satisfies 0 < |y — g| < 1. There then exists some positive real
number d; such that |f(x) — q| < n whenever x € X satisfies

0 < |x — p| < 61. Also there exists some positive real number dg
such that f(x) # q whenever x € X satisfies 0 < [x — p| < dp. Let
0 be the minimum of g and d1. Then § > 0, and

0 < |f(x) — q|] < n whenever x € X satisfies 0 < |[x — p| < J. But
this then ensures that |g(f(x)) — r| < & whenever x € X satisfies
0 < |x —p| < 6. The result follows. |}



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.17

Let X be a subset of R™, let f: X — R" be a function mapping
the set X into R", and let p be a point of the set X that is also a
limit point of X. Then the function f is continuous at the point p
if and only if)!i_rpp f(x) = f(p).

Proof
The result follows directly on comparing the relevant
definitions. |



4. Limits and Continuity for Functions of Several Variables (continued)

Let X be a subset of m-dimensional Euclidean space R™, and let p
be a point of the set X. Suppose that the point p is not a limit
point of the set X. Then there exists some strictly positive real
number &g such that |x — p| > dp for all x € X satisfying x # p.
The point p is then said to be an isolated point of X.

Let X be a subset of m-dimensional Euclidean space R™. The
definition of continuity then ensures that any function f: X — R”"
mapping the set X into n-dimensional Euclidean space R" is
continuous at any isolated point of its domain X.
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