MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 8 (October 12, 2017)

David R. Wilkins

Definition

Let $f: X \to \mathbb{R}^n$ be a function mapping some subset X of *m*-dimensional Euclidean space \mathbb{R}^m into \mathbb{R}^n , and let **p** be a limit point of X. We say that $f(\mathbf{x})$ remains bounded as **x** tends to **p** in X if strictly positive constants C and δ can be determined so that $|f(\mathbf{x})| \le C$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Proposition 4.9

Let $f: X \to \mathbb{R}^n$ be a function mapping some subset X of \mathbb{R}^m into \mathbb{R}^n , let $h: X \to \mathbb{R}$ be a real-valued function on X, and let \mathbf{p} be a limit point of X. Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{0}$. Suppose also that $h(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}\Big(h(\mathbf{x})f(\mathbf{x})\Big)=\mathbf{0}.$$

Let some strictly positive real number ε be given. Now $h(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X, and therefore positive constants C and δ_0 can be determined so that $|h(\mathbf{x})| \leq C$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. A strictly positive real number ε_0 can then be chosen small enough to ensure that $C\varepsilon_0 < \varepsilon$. There then exists a strictly positive real number δ_1 that is small enough to ensure that $|f(\mathbf{x})| < \varepsilon_0$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$. Let δ be the minimum of δ_0 and δ_1 . Then $\delta > 0$, and if $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then $|h(\mathbf{x})| \leq C$ and $|f(\mathbf{x})| < \varepsilon_0$, and therefore

 $|h(\mathbf{x})f(\mathbf{x})| < C\varepsilon_0 < \varepsilon.$

The result follows.

Let $f: X \to \mathbb{R}^n$ be a function mapping some subset X of \mathbb{R}^m into \mathbb{R}^n , let $h: X \to \mathbb{R}$ be a real-valued function on X, and let **p** be a limit point of X. Suppose that $\lim_{x \to \mathbf{p}} h(x) = 0$. Suppose also that $f(\mathbf{x})$ remains bounded as **x** tends to **p** in X. Then

 $\lim_{\mathbf{x}\to\mathbf{p}}(h(\mathbf{x})f(\mathbf{x}))=\mathbf{0}.$

Let some strictly positive real number ε be given. Now $f(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X, and therefore positive constants C and δ_0 can be determined such that $|f(\mathbf{x})| \leq C$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. A strictly positive real number ε_0 can then be chosen small enough to ensure that $C\varepsilon_0 < \varepsilon$. There then exists a strictly positive real number δ_1 that is small enough to ensure that $|h(\mathbf{x})| < \varepsilon_0$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$. Let δ be the minimum of δ_0 and δ_1 . Then $\delta > 0$, and if $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then $|f(\mathbf{x})| \leq C$ and $|h(\mathbf{x})| < \varepsilon_0$, and therefore

 $|h(\mathbf{x})f(\mathbf{x})| < C\varepsilon_0 < \varepsilon.$

The result follows.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ and $g: X \to \mathbb{R}^n$ be functions mapping X into \mathbb{R}^n , and let **p** be a limit point of X. Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{0}$. Suppose also that $g(\mathbf{x})$ remains bounded as **x** tends to **p** in X. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}\Big(f(\mathbf{x})\cdot g(\mathbf{x})\Big)=0.$$

Let some strictly positive real number ε be given. Now $g(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X, and therefore positive constants C and δ_0 can be determined such that $|g(\mathbf{x})| \leq C$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. A strictly positive real number ε_0 can then be chosen small enough to ensure that $C\varepsilon_0 < \varepsilon$. There then exists a strictly positive real number δ_1 that is small enough to ensure that $|f(\mathbf{x})| < \varepsilon_0$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$. Let δ be the minimum of δ_0 and δ_1 . Then $\delta > 0$, and if $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then $|f(\mathbf{x})| < \varepsilon_0$ and $|g(\mathbf{x})| \leq C$. It then follows from Schwarz's Inequality (Proposition 2.1) that

$$|f(\mathbf{x}) \cdot g(\mathbf{x})| \leq |f(\mathbf{x})| |g(\mathbf{x})| < C arepsilon_0 < arepsilon.$$

The result follows.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping X into \mathbb{R}^n , let $h: X \to \mathbb{R}$ be a real-valued function on X, let **p** be a limit point of X, let **q** be a point of \mathbb{R}^n and let s be a real number. Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}h(\mathbf{x})=s.$$

Then

 $\lim_{\mathbf{x}\to\mathbf{p}}h(\mathbf{x})f(\mathbf{x})=s\mathbf{q}.$

The functions f and h satisfy the equation

$$h(\mathbf{x})f(\mathbf{x}) = h(\mathbf{x})(f(\mathbf{x}) - \mathbf{q}) + (h(\mathbf{x}) - s)\mathbf{q} + s\mathbf{q},$$

where

$$\lim_{\mathbf{x}\to\mathbf{p}} \left(f(\mathbf{x})-\mathbf{q}\right) = \mathbf{0} \quad \text{and} \quad \lim_{\mathbf{x}\to\mathbf{p}} \left(h(\mathbf{x})-s\right) = \mathbf{0}.$$

Moreover there exists a strictly positive constant δ_0 such that $|h(\mathbf{x}) - s| < 1$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. But it then follows from the Triangle Inequality that $|h(\mathbf{x})| < |s| + 1$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. Thus $h(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X. It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(h(\mathbf{x})(f(\mathbf{x})-\mathbf{q})\right)=\mathbf{0}$$

(see Proposition 4.10).

Similarly

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(h(\mathbf{x})-s\right)\mathbf{q}=\mathbf{0}.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}} (h(\mathbf{x})f(\mathbf{x}))$$

$$= \lim_{\mathbf{x}\to\mathbf{p}} (h(\mathbf{x})(f(\mathbf{x})-\mathbf{q})) + \lim_{\mathbf{x}\to\mathbf{p}} \left((h(\mathbf{x})-s)\mathbf{q} \right) + s\mathbf{q}$$

$$= \mathbf{0} + s\mathbf{q},$$

as required.

Lemma 4.13

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, let **p** be a limit point of X, let **q** be a point of Y, let $f: X \to Y$ be a function satisfying $f(X) \subset Y$, and let $g: Y \to \mathbb{R}^k$ be a function from Y to \mathbb{R}^k . Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q}$$

and that the function g is continuous at q. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}g(f(\mathbf{x}))=g(\mathbf{q}).$$

Let $\varepsilon > 0$ be given. Then there exists some $\eta > 0$ such that $|g(\mathbf{y}) - g(\mathbf{q})| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \mathbf{q}| < \eta$, because the function g is continuous at \mathbf{q} . But then there exists some $\delta > 0$ such that $|f(\mathbf{x}) - \mathbf{q}| < \eta$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|g(f(\mathbf{x})) - g(\mathbf{q})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|g(f(\mathbf{x})) - g(\mathbf{q})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

$$\lim_{\mathbf{x}\to\mathbf{p}}g(f(\mathbf{x}))=g(\mathbf{q}),$$

as required.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ and $g: X \to \mathbb{R}^n$ be functions mapping X into \mathbb{R}^n , let **p** be a limit point of X, and let **q** and **r** be points of \mathbb{R}^n . Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})=\mathbf{r}.$$

Then

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})\cdot g(\mathbf{x}))=\mathbf{q}\cdot\mathbf{r}.$$

The functions f and g satisfy the equation

$$f(\mathbf{x}) \cdot g(\mathbf{x}) = (f(\mathbf{x}) - \mathbf{q}) \cdot g(\mathbf{x}) + \mathbf{q} \cdot (g(\mathbf{x}) - \mathbf{r}) + \mathbf{q} \cdot \mathbf{r},$$

where

$$\lim_{\mathbf{x}\to\mathbf{p}} \Big(f(\mathbf{x})-\mathbf{q}\Big) = \mathbf{0} \quad \text{and} \quad \lim_{\mathbf{x}\to\mathbf{p}} \Big(g(\mathbf{x})-\mathbf{r}\Big) = \mathbf{0}.$$

Moreover there exists a strictly positive constant δ_0 such that $|g(\mathbf{x}) - \mathbf{r}| < 1$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. But it then follows from the Triangle Inequality that $|g(\mathbf{x})| < |\mathbf{r}| + 1$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. Thus $g(\mathbf{x})$ remains bounded as \mathbf{x} tends to \mathbf{p} in X. It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\left(f(\mathbf{x})-\mathbf{q}\right)\cdot g(\mathbf{x})\right)=0$$

(see Proposition 4.11).

Similarly

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\mathbf{q}\cdot\left(g(\mathbf{x})-\mathbf{r}\right)\right)=0.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})\cdot g(\mathbf{x}))$$

$$= \lim_{\mathbf{x}\to\mathbf{p}} \left(\left(f(\mathbf{x}) - \mathbf{q} \right) \cdot g(\mathbf{x}) \right) + \lim_{\mathbf{x}\to\mathbf{p}} \left(\mathbf{q} \cdot \left(g(\mathbf{x}) - \mathbf{r} \right) \right) + \mathbf{q} \cdot \mathbf{r}$$

$$= \mathbf{q} \cdot \mathbf{r},$$

as required.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be real-valued functions on X, and let **p** be a limit point of the set X. Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $\lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$ both exist. Then so do $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x})), \lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) - g(\mathbf{x}))$ and $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})g(\mathbf{x}))$, and moreover

$$\begin{split} &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})\times\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}), \end{split}$$

4. Limits and Continuity for Functions of Several Variables (continued)

If moreover
$$g(\mathbf{x}) \neq 0$$
 for all $\mathbf{x} \in X$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$ then
$$\lim_{\mathbf{x} \to \mathbf{p}} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x})}{\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x})}.$$

First Proof

It follows from Proposition 4.8 (applied in the case when the target space is one-dimensional) that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x}))=\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}).$$

Replacing the function g by -g, we deduce that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x}))=\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}).$$

It follows from Proposition 4.12 (applied in the case when the target space is one-dimensional), or alternatively from Proposition 4.14, that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})\times\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}).$$

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and that $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$. Let $e \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the reciprocal function defined so that e(t) = 1/t for all non-zero real numbers t. Then the reciprocal function e is continuous. Applying the result of Lemma 4.13, we find that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{1}{g(\mathbf{x})}=\lim_{\mathbf{x}\to\mathbf{p}}e(g(\mathbf{x}))=e\left(\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})\right)=\frac{1}{\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})}.$$

Second Proof

Let $q = \lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x})$ and $r = \lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x})$, and let $h: X \to \mathbb{R}^2$ be defined such that

$$h(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x}))$$

for all $\mathbf{x} \in X$. Then

$$\lim_{\mathbf{x}\to\mathbf{p}}h(\mathbf{x})=(q,r)$$

(see Proposition 4.7).

Let $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ be the functions from \mathbb{R}^2 to \mathbb{R} defined such that s(u, v) = u + v and m(u, v) = uv for all $u, v \in \mathbb{R}$. Then the functions s and m are continuous (see Lemma 4.4). Also $f + g = s \circ h$ and $f \cdot g = m \circ f$. It follows from this that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}s(f(\mathbf{x}),g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}}s(h(\mathbf{x}))$$
$$= s\left(\lim_{\mathbf{x}\to\mathbf{p}}h(\mathbf{x})\right) = s(q,m) = q+r,$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} m(f(\mathbf{x}),g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} m(h(\mathbf{x}))$$
$$= m\left(\lim_{\mathbf{x}\to\mathbf{p}} h(\mathbf{x})\right) = m(q,r) = qr$$

(see Lemma 4.13).

Also

$$\lim_{\mathbf{x}\to\mathbf{p}}(-g(\mathbf{x}))=-r.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x}))=q-r.$$

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and that $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$. Representing the function sending $\mathbf{x} \in X$ to $1/g(\mathbf{x})$ as the

composition of the function g and the reciprocal function $e \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$, where e(t) = 1/t for all non-zero real numbers t, we find, as in the first proof, that the function sending each point \mathbf{x} of X to

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{1}{g(\mathbf{x})}\right)=\frac{1}{r}$$

It then follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})}=\frac{q}{r},$$

as required.

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ and $g: Y \to \mathbb{R}^k$ be functions satisfying $f(X) \subset Y$. Let **p** be a limit point of X in \mathbb{R}^m , let **q** be a limit point of Y in \mathbb{R}^n let **r** be a point of \mathbb{R}^k . Suppose that the following three conditions are satisfied:

- (i) $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{q};$
- (ii) $\lim_{\mathbf{y}\to\mathbf{q}}g(\mathbf{y})=\mathbf{r};$
- (iii) there exists some positive real number δ_0 such that $f(\mathbf{x}) \neq \mathbf{q}$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$.

Then

$$\lim_{\mathbf{x}\to\mathbf{p}}g(f(\mathbf{x}))=\mathbf{r}.$$

Let some positive real number ε be given. Then there exists some positive real number η such that $|g(\mathbf{y}) - \mathbf{r}| < \varepsilon$ whenever $\mathbf{y} \in Y$ satisfies $0 < |\mathbf{y} - \mathbf{q}| < \eta$. There then exists some positive real number δ_1 such that $|f(\mathbf{x}) - \mathbf{q}| < \eta$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$. Also there exists some positive real number δ_0 such that $f(\mathbf{x}) \neq \mathbf{q}$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_0$. Let δ be the minimum of δ_0 and δ_1 . Then $\delta > 0$, and $0 < |f(\mathbf{x}) - \mathbf{q}| < \eta$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$. But this then ensures that $|g(f(\mathbf{x})) - \mathbf{r}| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$. The result follows.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into \mathbb{R}^n , and let **p** be a point of the set X that is also a limit point of X. Then the function f is continuous at the point **p** if and only if $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$.

Proof

The result follows directly on comparing the relevant definitions.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , and let **p** be a point of the set X. Suppose that the point **p** is not a limit point of the set X. Then there exists some strictly positive real number δ_0 such that $|\mathbf{x} - \mathbf{p}| \ge \delta_0$ for all $\mathbf{x} \in X$ satisfying $\mathbf{x} \neq \mathbf{p}$. The point **p** is then said to be an *isolated point* of X.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m . The definition of continuity then ensures that any function $f: X \to \mathbb{R}^n$ mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n is continuous at any isolated point of its domain X.